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Abstract

In this paper the optimal control of nonlinear dynamical systems on a finite
time interval is considered. The free end-point problem as well as the fixed
end-point problem is studied. The existence of a solution is proved and a

power series solution of both the problems is constructed.



1. Introduction

We comsider control processes in R" of the form
(1.1) % = F(x,u,t)

and investigate the problem of finding a bounded r dimensional feedback
control u(x,t) which minimizes the integral
T

(1.2) J(t,b,u) = L(x(T)) + [ G(x,u,t)dt

T
for all initial states x(t) = b in a neighborhood of the origin in R™.
In section 2 we treat the free end-point problem and in section 3 the
fixed end-point problem. More specifically, in section 3 we require the
final value x(T) of the state to be zero.
For the situation where F is linear and L and G are quadratic the solution
of the optimal control problem is well known (e.g. see [2] section 3.21,
[3] section 2.3, [4] section 9.7 for the free end-point problem and [2]
section 3.22 for the fixed end-point problem).
Here we consider the situation where the states and controls remain in a
neighborhood of a fixed point (for which we without loss of generality take
the origin) where the functions F, G and L can be expanded in power series.
An analogous problem has been considered by D.L. Lukes [1] (see also [5]
section 4.3) for the infinite horizon case and our treatment will follow
this paper to some extent, in particular as far as the free end-point case
is concerned. The theory is more complete than the related Hamilton-Jacobi
theory since existence and uniqueness proofs of optimal controls are given.,
For the solution of the fixed end-point problem we introduce a dual problem
of (1.1) and (1.2) which we use to reduce the fixed end-point problem to a

free end-point problem., Some examples are added to illustrate the theory.
Notation

The inner product of two vectors x and y we shall dencte. by xTy. The length

of a vector x by |x| = /x'x and the transposed of a matrix M by ML, The notation

M>0 and M20 means that M represents s (symmetric)positive definite and a



2.1. Assumgtions

non-negative definite matrix respectively. If f(x) denotes a vector
. n . m
function from R~ into R, the

functional matrix will be used:

2., Free end-point problem

following notation and definition of the
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(ii)

(iii)

F(x,u,t) = A(t)x + B(t)u + £(x,u,t). Here A(t) and B(t) are continuous
real matrix functions of dimension n x n and n x r respectively., The
function f(x,u,t) contains the higher order terms in x and u, and is
continuous with respect to t. Furthermore f(x,u,t) is given as a power
series in (x,u) which starts with second order terms and converges

about the origin, uniformly for t e [t,T].

G(x,u,t) = XTQ(t)X + uTR(t)u + g(x,u,t). Here Q(t) and R(t) are
continuous real matrix functions of dimension n x n and r X r respec-
tively. The function g(x,u,t) contains the higher order terms in x and
u, and is continous with respect to t. Furthermore g(x,u,t) is given
as a power series in (x,u) which starts with third cvrder terms and

converges about the origin, uniformly for t ¢ [t,T].

T . . . .
L{x) = xMx + 2(x). Here M is a real matrix of dimension n x n. The

function 2(x) is given as a power series which starts with third order




2.2.

terms and converges about the origin.
(iv) Q(t) =z O and R(t) > 0 for t ¢ [t,T]; M = O.
We consider the class of feedback controls which are of the form
(2.1) u(x,t) = D(t)x + h(x,t)
Here D(t) is a continuous matrix function of dimension r x n. The function
h(x,t) contains the higher order terms in x and is continuous with respect
to t. Furthermore h(x,t) is given as a power series in x which starts with
second order terms and converges about the origin, uniformly for t € [1,T].

We shall denote the class of admissible feedback controls by Q.

Definition of an optimal feedback control

A feedback control u € Q is called optimal if there exists an € > O and a
neighborhood N_ of the origin in R™ such that for each b ¢ N the response
x*(t) satisfies ]x*(t)l < e and |u*(x*(t),t)] < ¢ for t ¢ [1,T], and
furthermore J(T,b,u*) < J(tr,b,u) among all feedback controls u ¢

generating responses x(t) with |x(t)] < ¢ and Iu(x(t),t)] <e for t ¢ [t,T].

Statement of the main results

Theorem 2.1. (Main Theorem)

For the control process in R"

x = F(x,u,t), x(t) = b

‘with performance index

J(t,b,u). = L{x(T)) + J G(x,u,t)dt
' T
there exists a unique optimal feedback control u, (x,t). This feedback control

18 the unique solution of the funetional equation

(*) Fu(x,u*(x,t),t)Jx(t,x,u*) + Gu(x,ﬁ*(x,t),t) =0



2.

3.

for small |x|.and t e [1,T]. Furthermore
u, (x,£) =D_ (t)x + h, (x,t)
and
J(t,b,u) = bR ()b + § (1,b),

where the matrix functions D, (t) and K*(t) > 0 depend only on the

truncated problem.

Theorem 2.2. (Truncated problem)

For the spectal case in which f£(x,u,t) = 0, g(x,u,t) = 0 and 2(x) = 0O

the optimal control is given by

u*(x,t) = D*(t)x

where
-1 T
D*(t) = ~R (t)B (t)K*(t).
Here K*(t) > 0 Zs a solution of the Riccati equation on [t1,T]:

R(t) + Q(t) + R(D)A(E) + AT(0)R(t) - R(£)B(OR ()BT (£)R(E) = 0
R(T) = M

Furthermore D, (t)x is a global optimal control in the sense that we can take

N, = R™ and € = » in the definition of optimal feedback control. Finally
T
J(r,b,u*) = b K*(T)b.

Remark. Note that for u ¢ Q the property J(T,b,u) = L(b) holds.

Construction of the optimal feedback control

Lemma 2.1,
For each feedback control u ¢ Q, ulx,t) = D(t)x + h(x,t), there exists a

netghborhood N of the origin in RT in which



J(t,b,u) = bR(T)b + j(1,b).
Here j(t,b) contains the higher order terms in b. The matrix function

K(t) 2 0 depends only on the truncated problem. Furthermore, the

functional equation

FOGu(x,t),0) 0, (8,%,0) + J_(6,%,0) + 6x,ulx,t),t) = 0
holds for each x ¢ Nu’ te [1,T].
Proof. The following differential equation holds:

x = (A(t) + B(t)D(t)x + B(t)h(x,t) + £(x,u(x,t),t)
x(t) = b

If we define A*(t): = A(t) + B(t)D(t) and v(x,t): = B(t)h(x,t) + £(x,u(x,t),t)

then this equation becomes

X = A*(t)x + v(x,t)
x(t) =b

From the theory of ordinary differential equations it is known that there
exists a neighborhood N, of the origin such that the solution exists for each

b € N] , and furthermore

x(t) = o(e)e ()b + &(|p|%),

uniformly for t ¢ [1,T]. Here ¢(t) is a fundamental matrix of the linear

equation x = A*(t)x (i.e. a nonsingular matrix function of dimension n x n

which satisfies é(t) = A*(t)Q(t)). Hence
_ T T ., T oelx!3y =
G(x(t),u(x(t),t),t) = x(£) Q(t)x(t) + x(t) D(t) R(£)D(t)x(t) + &(|x|™)
= b7 T(nyeT(e){Qee) + p(e) TR(E)D(E) Yo (E)e ()b + &(|b]),

uniformly for t ¢ [t,T]. Furthermore



L(x(T)) = x(T) Mx(T) + &(|x(T)|>) =

= b T(nyeT(mMe(Tyo ()b + @(|b|?)

So
J(t,b,u) = bIR(ODL + €(|b]%),
where
K(1y: = o e (myMe(Tye” (1) +
T |
(2.2) " J [ T(r)o T (£){Q(e) + D(t) TR(E)D(t) o (t) @1 (1) lde

T

~

It is easy to verify that K(t) = O and K(T) = M. It is known that there

exists a neighborhood N, of the origin in R" such that for each

- s € [1,T] and for each é € N2, the solution of % = F(x,u(x,t),t) with
x(s) = b, exists on [5,T]. Now let Nu: = N1 n NZ’ s € [t,T] and b ¢ N,
If x(t,s,b) denotes the solution of % = F(x,u(x,t),t) with x(s) = b than
we can write
T
J(t,x(t,s,b),u) = L(x(T,sp)) + J G(x(E,s8,b),u(x(g,s,b),),£)dE
T
for t € [s,T]. One can verify that it is allowed to differentiate this

equation with respect to t. Setting t = s afterwards we get the equation
F(b,u(b,s),s)TJX(s,b,u) + Jt(s,b,u) + G(b,u(b,s),s) = O.

If we finally replace b and s by x and t we get the desired result.

Remark. From the proof.it follows that we even have

J{t,x,u) ='xTi(t)x + U(|x|3)

uniformly for t ¢ [7,T] and for small [x

Lemms 2.2. The equation



Fu(x,u*,t)p + Gu(x,u*,t) =0

has a solution u*(x,p,t) near the origin in iRzn for which u*(0,0,t) =0

for t € [1,T]. Furthermore
ﬁ*(x,p,t) = R ()BT (t)p + h (x,p,t),
where h*(x,p,t) contains the higher order terms in (x,p).
Proof. For each t ¢ [1,T] we can use the result in [1],lemma 2.2. d

Lemma 2.3. There exists a unique solution K*(t) on [t,T] to the matrix

differential equation (Riceati equation)

K(t) + Qt) + K(DA(E) + AT(E)K(E) - K(£)B(E)R ' (£)BT(£)R(t) = O
RK(T) = M

The property K (t) 2 O holds on [t,T].
Proof. See [3j section 2.3. O

Lemma 2.4. Suppose there exists a feedback control u*(x,t) =

D, (t)x + h*(x,t); which satisfies the nonlinear functional equation
(%) Fu(x,u*(x,t),t)Jx(t,x,u*) + Gu(x’u*(x,t)’t) =0

for small |x| and t ¢ [t,T]. Then u, 18 the unique optimal feedback control.

Furthermore

D, (t) = - Rf‘(c)BT(t)K*(t)
and
J(t,b,u,) = bK ()b + j,(1,b),

where g (t) 18 defined in lemma 2.3. The function j*(r,b) contains the higher

terms in b.



Proof. Consider the following real valued function defined for t e [7,T]

. e . + T
and for (x,u) near the origin in IRn :

(2.3) Q(t,x,0): = F(x,u,0) 0_(t,x,u,) + Je(t,%,u,) + G(x,u,t)
By lemma 2.1.

Q(t,x;ﬁ*(x,t)) = 0 near x = 0 and for t ¢ [1,T],
We have assumed that

Qu(t,x,u*(x,t)) = 0 near x = 0 and for t ¢ [7,T].
Furthermore the Hessién

Quu(t,0,0> = 2R(t) 1is positive definite for t ¢ [7,T],
It follows that

E:Quu(t,x;u) > 0 for |x| small, |u| small and t e [7,T]

because Q(t,x,u) is a continuous function. Hence we conclude that there

exists an ¢ > 0 such that
0= Q(t,X,U*(X,t)) < Q(tQX’ul)

for t € [1,T], |x[ < ¢ and |ul‘ <€ ¢, while strict inequality holds for
vulxu*(x,t). So

| T
(2.4) 0 < F(x,ul,t) Jx(t,x,u*) + Jt(t,x,u*) + G(x,u],t)

Now let N_ be a neighborhood of the origin in R™ such that for each b e N,
the solution x*(t) of x = F(x,u*(x,t),t), x(t) = b, exists for t ¢ [1,T],

|x*(t)! < ¢ and Iu*(x*(t),t)] < €.

Furthermore let ue 2 be an arbitrary feedback control such that the solution

x](t) of x = F(x,u](x,t),t),x(T) = b is defined on [7,T}, and satisfies

]x](t)l < ¢ and ‘ul(x](t),t)l < e, 1f b ¢ N*. Then we can write:



T

0 < J {F(x](t),ul(xl(t>,t>,t)TJx(t,x1(t),u*) +
T

+ I (6x (0),u) + G(x, (t),u, (x,(t),t),t) Hdt,

and so
T T
0 < J {E%J(t,xl(t);u*)}dt + J G(xl(t),ul(xl(t);t),t)dt
T T
This yields the result
. | T
0 < J(T,xl(T),u*) - J(T,b,u*) + J G(xl(t),u](xl(t),t),t)dt
T

and thus
J(T,b,u*) < J(T,b,ul).

So u*(x,t)‘is the unique optimal feedback control.

By lemma 2.2. we have
ip] T 2
u (x,t) = = 3R (£)B(£)J_(t,x,u ) + #(x]%),
uniformly for t € [7,T] and in lemma 2.1. we have

Jx(t,x,u*) = ZE(t)x + BK’xlz)

So
-1 T - 2

(2.5) S u (x,t) = - R (£)BT(0)R(t)x + d(|x[%),
uniformly for t ¢ [1,T]. By lemma 2.1. we have

T
(2.6) F(x,u*(x,t),t) Jx(t,x,u*) + Jt(t,x,u*) + G(x,u*(x,t),t) = 0
for |x| small and t ¢ [1,T]. Using (2.5) collecting the quadratic terms
in x we find that K(t) is a solution of the Riccati equation. We also know

that K(T) = M and by the uniqueness of the solution we have K(t) = K*(t) on

T=,T1.

This yields the result
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u (x,8) = - R ()BT ()X (D)x + (|x|%)
and

J(t,b,u) = bTK*(r)b + (b 0
Proof of theorem 2.2. Let u_(x,t) = D_(t)x, where D (t) = - R ' (£)B"(£)K_(t)

and the matrix K*(t) satisfies the Riccati equation, hence

xR (£) + Q(t) + K, (£)A(t) + AT(£)K, (¢)
+ K*(t)B(t)R—](t)BT(t)K*(t)}x =0
for all x eIRn. So we can write

[(ACE) - B(ER ' (£)B (K, (£))x1T2K (£)x + x'K (£)x +

"
(@)

+ xTQ(t)x + xTK*(t)B(t)R_] (t)BT(t)K*(t)x

It follows that

+

[(ACt) + B(E)D, (£))x1 2K (£)x + x K _(t)x
x'Q(t)x + [D, (£)x] R(E)D, (£)x = O

This yields
F(x,u, (x,£),£) 2K, ()% + x'K_(£)x + G(x,u,(x,t),t) = O

By integrating this equation along the trajectory x = F(x,u*(x,t),t),
x(1) = b, where b is arbitrary in JRn, we obtain the equation

J(T,b,u*) = bTK*(T)b (b « an)

It is now easy to verify that u*(x,t) satisfies the functional equation
(*) in lemma 2.4. The global character of u*(x,t) follows by examining the

procf of lemma 2.4, N



—]1_

Before giving the proof of the main theorem, we consider the Hamiltonian

. 2n
system in {R7

(2.7) X

P

F(x,u, (x,p.t),t)
- {FX(X,U*(x,p,t),t)p + Gx(x’u*(x,p’t)’t)}

with the boundary values

il

b
L (x(T))

x(1)
p(T)

n

Here u*(x,p,t) is defined in lemma 1.2.

Lemma 2.5. For small |b| system (2.7) has a solution (x*(t),P*(t)) on [1,T]
with the property

p,(£) = 2K (£)x,(t) + &(|x (©)]),

untiformly for t e [1,T].
Proof. The Hamiltonian system has the form

x| A - 1B(OR )T (e)| |x
= T + h(XsP’t),
b - 2Q(t) - AT(t) P

where the function h(x,p,t) contains the higher order terms. First of all we
shall prove that the lemma holds for the case that h(x,p,t) = O. The solva-
bility of the linear system together with the implicit function theorem will
be used to obtain a proof for the general case. So we shall first consider

the linear Hamiltonian system

{i {A(t)A - %B(t)R—](t)BT(t) X
& [— 2Q(t) - AT (t) p

with x(7) = b and p(T) = 2Mx(T). This system has a solution (x*(t),p*(t))
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with the property p (t) = ZK*(t)x*(t), which can easily be verified.
Note that this solution exists for each b ¢ R". If we now consider
this linear system as a final value problem: x(T) = xT,p(T) = Pp» then

the solution is given by

(2.8) 1 (e) = (6o (1) XT]
P Py

flere ¢(t) is a fundamental matrix of the problem. If we partition
(
| Lell(t,T) elz(t,T)

o(t)e (T) =|
PZI(t,T) 0,,(t,T)

»

then (2.8) can be written as

x(tsxTQPT) = O]](t,T)XT + elz(t’T)pT

So

x(t,xT,ZMxT) = (ell(t’T) + 2612(t,T)M)xT

We saw that for each b ¢ IR” there exists a solution on [t,T] with

p(T) = 2Mx(T). So

v 3 : (O

.bean xTean 1

(t,T) + 2 @IZ(T,T)M)XT = b
Hence the matrix
(2.9) OII(T,T) + 2912(T,T)M

is regular. We shall need this result later. Now consider the nonlinear

Hamiltonian system as a final value problem : x(T) = xT,p(T) = Ppe The

solution has the form



_.‘3_

X -1 X
(r) = o(t)e "(T)

T
+ V(t’XT’pT) b4

where v(t,xT,pT) contains the second and higher order terms in X and Ppe

It follows that

X
v T2
¥ 2
p(t,xppp) = 0,,(t,Tx, + 0,,(t,Dpg + &(] . 1,
' T

uniformly for t € [1,T]. The question is: does there exist for arbitrary

b ean, 'bl small, a vector X

the implicit function theorem can help us. Define

€an such that x(T,xT,Lx(xT)) = b ? Here

vF(b,xT): = x(T,xT,Lx(XT)) -b

Then F(0,0) = O and Fx (0,0) = O]l(T,T) + 2@12(T,T)M. By (2.9) we have that
T

Fx (0,0) is regular. Thus there exists a neighborhood Q of the origin in R"
T

and a function §T: Q - Rp such that

(i) §T(0) =0

(I1) F(b,x(b)) =0  for b ¢ Q
So x(T,;T(b), L:J;T(b))> = b. Hence the Hamiltonian system (2.7) has a
solution on [1,T] for small fbl. From the considerations of the linear system
we have
2
p,(t) = 2K (£)x_(t) + O(|x, (t)|),

uniformly for t ¢ {t,T] (1

Proof of the main theorem. It is sufficient to establish the existence of a

feedback control u €9 which satisfies the functional equation (*). Define

(2.10) u*(x,t): = u*(x,p*(x,t),t),



_14_

where Rk(x,t) represents the solution of (2.7) and u*(x,p,t) is defined

as in lemma 2.2. Then

u, (x,8) = = R (£)B (£)p, (x,t) + €(]x|%) =

{

- R_](t)BT(t)K*(t)X + 3(|X12)

uniformly for t ¢ [1,T]. Thus we can conclude that u € Q. Now let

s € [1,T] fixed and choose y ¢ an so small that the solution of

X = F(x,u, (x,t),t), with x(s) =y, exists on [7,T], and x(1t) = : b is so
small that the solution of (2.7) exists. By the continuity and analyticity

of G(x,u*(x,t),t) the following differentiation of the integral is allowed:

3J(s,y,u ) T 5 5
"—'_a'y_'—_ = J"—a; G(x,u*(x,t)’t)dt + -a'}'; L(X(T)) =
: s
T
3G (x,u (x,t),t) d3u. 3G(x,u (x,t),t)
L] e XG0, . 2600, 2 i
- SJ {ay 3x * 3y au* e+ oy L(x(T)
T
3F(x,u (xX,t),t)
= SJ % [~ p,(x,t) - *ax p,(x,£)] +
du 3G (x,u (x,t),t)
* * ] _
+ 5y T, }de + 3y L(x(T)) =
T
X . P
= - J {3;-p*(x,t)}dt + 5; L(x(T)) +
)
T du_ BF(x,u*(x,t),t) % BF(x,u*(x,t),t)
+ J {By L- _ 5, p*(x,t)] Ay o p*(x,t)}dt =
s
T T
Ix d 9x 9
== e, |+ J (35 3 9, G 0)ME + 5 LT +

S S
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T
- j [53-F(x,u*(x,t),t)]p*(x,t)dt =
s

= 2, - B L (x(T) + g5 Lx(T) = p,(3,9).

So Jy(s,y,u*) = p*(y,s) for small |y‘ and s € [1,T]. If we now replace s by t

and y by x, and if we use lemma 2.2., we obtain

Fu(xau*(xst)st)Jx<t’x’u*) + Gu(x,u*(xst)9t) =0

'forllxl small and t ¢ [1,T]. So u*(x,t) satisfies (*). O

A method for calculating u*(x,t) and J(t,x,u*)

In this section we shall use the following notation: if t(x) is a power

series in x then the kEE order term will be denoted by t(k)(x) or [t(x)](k).
u*(x;t) and J*(x,t): = J(t,x,u*) can be expanéed in power series:

u*(x,t) = u*(])(x,t) + u*(z)(x,t) S S

J*(x,t) = J*(z)(x,t) + J*(3)(x,t) R

We have seen that the lowest order terms are given by

w, D x,e) = p_(6)x
and

5, P x,0 = $k_(0)x,
where

D,(t) = - R (£)B ()X, (£)

and K*(t) is the solution of the Riccati equation. We indicate a method for

computing the higher order terms analogous to the method followed in [1].
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This method is based on the fact that u*(x,t) is a solution of the following

two functional equations
T
[f(x,u*(x,t),t) Jx(t,x,u*) + Jt(t,x,u*) + G(x,u*(x,t),t) = 0
fu(x,u*(x,t),t)Jx(t,x,u*) + G (x,u, (x,t),t) =0

In contrast to [1] where one has to solve linear equations, the problem defined
here reduces to solving successively a set linear differential equations. We

shall now give the result in the form of two equations :
: T
4, 00 TI™ @01, + P01 -

m—1] _
== kz3[B(t)u£m kH)(x,t):lT [Jik)(x,t)]x +

m—1 .
-1 D o 0,07 108 00+ |
k=2 * x

w6, ) TR (8 +

- ug%m)(x,t)TR(t)uiim)(x,t) - g<m)(x=u*(x’t)’t)

(m = 3,4, ...) A

ufk)(x,t) = - R oyt [J*(k”)(x,t)]x +

k=1 .
+ .Z'[fu(x,u*(x,t),t)](J) Ly

D07+
j=1 *

<1(B)

+ [gu(x,u*(x,t),t)](k)}

(k=2,3, ...) J

Here A*(t): = A(t) + B(t)D*(t); [k] denotes the integer part of k.
(3m)

N is tc be omitted for odd values of m.

Furthermore the term with u
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With the values Jiz)(x,t) and uil)(x,t) to start with, the higher order

terms can be calculated from (A) and (B) in the sequence

3 2 4 3
13 (x, 03,082 (x,0,5 (x,0),0 3 (x, 09,
, -2 - .
The sequence of terms {uil), cens uim ); Jiz), R Jim l)} determines
me) in equation (A) by solving a partial differential equation with
boundary value J(m)(x,T) = L(m)(x). The sequence of terms {uil) . e uik-l);

sz), cees J£k+] } determines uik) in equation (B).
s
Example. ;i = x  + u,x(0) = X
< T
imin J (x2 + u2)dt
L 0

3

,Q(t) = 1 and R(t) = 1, Furthermore £(x,u,t) = x~,

Here A(t) = 0,B(t) =1
0. We have the Riccati equation

g(x,u,t) = 0 and L(x)

‘.
K+ 1 - K% =

RK(T) = O

|
o

and the solution is given by K*(t) = tanh(T - t). Hence

sz)(x,t) xTK*(t)x = xztanh(T*t)

and
uil)(x,t) = - R_l(t)BT(t)K*(t)x = -x tanh(T-t)
Furthermore
A (t) = A(t) - B(t)R_i(t)BT(t)K*(t) = ~tanh(T-t)
For m = 3 equation (A)‘reads as follows:

(-x tanh (-t )3 (x, 01 +13 P 2,07 = 0
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If we set

JiB)(x,t) = a(t)x3
then this equation becomes

~3x%a(t)tanh (T-t) + &(£)x> = 0
or

a(t) - 3a(t)tanh(T-t) = O

with the boundary value o(T) = 0. This yields the solution a(t) = O on
[t,T1 So {53>(x,t) = 0 and equation (B) gives for k = 2: qu)(x,t) =0

For m = 4 equation (A) becomes
(—x‘tanb(T‘t))[Jié)(x,t)]x + [Jia)(x,t)]t -
= -f(3)(x,u*,t)[J£2)(X,t)]x

Séttinngfa)(x,t)‘= a(t)x4 we have
{—4a(t)taﬁh(T—t) + d(t)}x4 = -2 tanh(T—t)x4

or |
d(t)‘-éu(t)tanh(T-t) + 2 tanh(T-t) = O

with the boundary value a(T) = O. The solution of this differential equation

is
a(t) = %-- %{cosh(T—t))_a

Thus

32050 < g = leosn(r-e) ™"
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Formula (B) gives for k = 3:

WP e = - o oMol

soO

3

uiB)(x,t) { -1 + (cosh(T—t))—4}x .

The higher order terms can be computed in a simular manner.

Fixed end-point problem

Assumptions

In this section we consider a problem similar to the problem discussed in
section 2. The difference being that now we require the final value of the
state to be zero : x(T) = 0. As a matter of course we can take now L(x) = O.
The basic assumptions made in section 2, remain. A new assumption is the

controllability to the zero state of the linear system x = A(t)x + B(t)u.

Furthermore we restrict ourselves to feedback controls u(x,t) with the

following properties:

I. u(x,t) = D(t)x + h(x,t). Here D(t) is a continuous matrix function for
t ¢ [1,T).The function h(x,t) contains the higher order terms in x and is
continuous with respect to t ¢ [1,T).Furthermore h(x,t) is given as a
power series in x which starts with second order terms and converges about
the origin.

2. There exists a neighborhood Nu of the origin in [R™ such that for b e Nu
the solution x(t,t,b) of (1.1) is defined on [1,T] and in addition
x(T,t,b) = 0.

3. u(x(t,t,b),t) is a bounded function on [t,T].

We shall denote again the class of admissible feedback controls by Q.

If u € Q then it is clear that u(x,t) has a singularity in t = T. Further-
more there exists for given u e Q, s ¢ [1,T), a neighborhood N of the
origin in(R™ with the property that, if c € Nu * the solution ;f

X = F(x,u(x,t),t),x(s) = ¢, is defined on [s,Ti and x(T) = 0. It is evi-

dant that

(3.1) Nys © = {x(s,T,b)| b € N}
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represents such a neighborhood !

Statement of the main results

Theorem 3.1. (Main Theorem)

For the control process in R"

x = F(x,u,t),x(1t) = b,x(T) = 0

there exists a unique optimal feedback control u_ e Q which minimizes the
integral
T
J (t,b,u) = J G(x,u,t)dt

T

for all initial states b in a neighborhood of the origin in R". Thie

feedback control is the unique solution of the functional equation

(%) Fu(x,u*(x,t),t)Jx(t,x,u*) + Gu(x,u*(x,t),t) =0

for t € [1,T) and small |x|. Furthermore
u*(x,t) = D*(t)x + h*(x,t)
and

T .
J(t,b,u) = 'K (1)b + j_(1,b),

where the matrix functions D*(t) and K*(t) are defined on [t,T) and depend
only on the truncated problem.

The truncated problem is the case that f£(x,u,t) = 0 and g(x,u,t) = O,

R.W. Brockett has proved in [2]that under our hypothesis an optimal control
exists. One can easily show that his results can be written in the following

form:
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(3.2) u*(x,t) = D*(t)x
where
-1 T
(3.3) D*(t) = -R (t)B (t)K*(t).

tere K, (t) satisfies the Riccati equation on [T1,T):

]
o

k(t) + Q(t) + R(t)A(t) + AT(t)K(t) - K(t)B(t)R_l(t)BT(t)K(t)

If W*(t) satisfies the dual Riccati equation

]
o

(weey + B(o)R ()BT () - w(e)AT(t) - AW(E) - W(r)Q(e)W(t)
kW(T) =0

on [t,T], then we have K;](t) = W*(t) for t ¢ [1,T). Finally
T
J(T,hp*) = b K*(T)b

Construction of the optimal feedback control

Lemma 3.1. For each feedback control u e Q, u(x,t) = D(t)x + h(x,t),
we have the property

I(t,byu) = bIR(T)b + (T,b)

for b ¢ N, - The matrix function K(t) depends only on the truncated problem.

Furthermore the functional equation
F(x,u(x,t),t)TJx(t,x,u) + Jt(t,x,u) + G(x,u(x,t),t) =0

holds for t € [1,T) and x e N _.
u,t
Proof. The proof is analogous to the proof of lemma 2.]1. Here we have
®(T) = 0. One can show that the solution of the differential equation
x = F{x,u(x,t),t) is of the form x(t) = ®(t)®—](1)b + d(‘blz), again

unitormly for t € [1,T]. Note that K(t) may have a singularity in t = T,
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Lemma 3.2. The exists a unique solution W*(t)'on [t,T] to the matrix
differential equation (dual Ricecati equation)

W(E) + BCOR ()BT (E) - We)AT(E) — AEW(E) - W(E)Q(EIW(E) = O
W(T) = 0.

The property W*(t) > 0 holds on [1,T). If K*(t) = W:l(t) on [1,T] then

K, (t) satisfies the Riccati equation
ﬁ(t) + Q(t) + K(£)A(t) + AT(t)K(t) - K(t)B(t)R_l(t)BT(t)K(t) =0
on [1,T)..

Proof. This lemma is a consequence of the analysis of R.W. Brockett in [2]

section 3.22.

Lemma 3.3. Suppose there exists a feedback control u,e Q, u (x,t) =

= D*(t)x + h*(x,t), which satisfies the functional equation

(%) Fu(x,u*(x,t),t)Jx(t,x,u*) + Gu(X,U*(X,t),t) =0

for t € [1,T) and x ¢ N, e Then u_ i the unique optimal feedback control.

*’
Furthermore

D, (t) = -k ' (£)B (£)K, (©)
and
J(t,b,u) = b'K ()b + j (1,b),

where K, (t) 18 defined in lemma 3.2. The function j*(r,b) containg the

higher order terms in b.

Proof. The method to proof that u_ represents the unique optimal feedback

control is analogous to the method followed in lemma 2.4. Now we can choose



_23._

|u*(x*(t),t) ! < € and lul(xl(t),t) ‘ < € because we have assumed that
u*(x*(t),t) and u](xl(t),t) are bounded functions on [t,T]. By lemma 2.2.

we have
u(x,8) = =R ()BT (£)I_(t,x,u) + &(x|?)
* b4 2 X bl s *
and in lemma 3.1. we have
3 (t,xyu.) = 2K(t)x + 0O 12)
AL | X

for t € [1,T] and x € N . So
u*,t

(3.4) u, (x,t) = =R ()BT (D)K(t)x + &(|x|%)
In the truncated case the corresponding formula is:
-1 T -
u*(x,t) = -R " (t)B (t)K(t)x.
N

Comparing this result with (3.2) and (3.3) it follows that K(t) = K*(t) on
[1,T), where K*(t) is defined in lemma 3.2.
Conclusion:

u (x,8) = -R ' (£)B (DK ()x + o(|x|?)
and

J(t,byu) = bR (Db + O([b]7)

Before proving the main theorem we consider again the Hamiltonian system in
'R2n.

(3.5) p'q

F(x,u, (X,p,t),t)

T
]

—{Fx(x,u*(x,p,t),t)p + Gx(x,u*(x,p,t),t)}

with the boundary values
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IX(T)
LX(T)

]
o

Here u*(x,p,t) is defined in lemma 2.2.

Lemma 3.4. For small Ibl system (3.5) has a solution (x*(t), p*(t)) with
the property

x, (£) = 30 _(£)p, () + &(p, (6|
or t € [1,T] . Furthermore p_ (t) is a bounded function on [1,T].
5 x

Proof, The Hamiltonian system has the form

. 1 -1 T
X A(t) —~—B(t)R (t)B (t) X
() 7 () + nempeo)
P’ -2Q(t) -A"(t) P

It can easily be verified that the linear system (i.e. the case that

hix,p,t) = CDhas for each b ¢ IR" a solution of the form x*(t) = %W*(t)p*(t).
Analogous to the proof of lemma 2.5. we shall use the implicit function
theorem to proof that the nonlinear system has a solution of the desired
form. We need again a property which we shall derive from the solvability of
the linear system. So consider again the linear Hamiltonian system as a final

value problem. The solution can be written as

P(t’xT’PT) = eZI(t’T)xT + ezz(t,T)PT

n . . .
We have seen that for each b ¢ R there exists a solution on [t,T] with

x(t) = b and x(T) = 0. So

v 3 : 0, . (t,T)p., = b
be R" pTaiRn 12 T

Hence the matrix OIZ(T,T) is regular. Now consider the nonlinear system as

a final value problem. The solution has the form
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x(t,%p,pp) = 0, (6, )%, + Olz(t,T)pT + 0’([(:%’)|2)

P(tyXpsPy) = 0y, (£, Txy + 0, (£, Tpy + 'e’<l(’;g)lz>

The question is : does there exist for arbitrary b ean, !b| small, a
vector p, ¢ R® such that x(r,O,pT) = b ? Again, the implicit function

theorem can help us. Define
F(b:pT): = X(TSOSPT) - b
Then F(0,0) = 0 and FpT(O,O) = @lz(T,T). So FpT(O,O) is regular, and there

exists a neighborhood @ of the origin in R™ and a function Pyt 2 + IR" such

that

(i) py(0) =0
(ii) F(b,ET(b)) =0 forb e Q.

Hence x(T,O,~ (b)) = b for b € Q. Thus the Hamiltonian system (3.5) has a
P _

solution on [t,T] for small [b| . From the considerations of the linear system

we have

%, (t) = 24 (0)p, (£) + O(]p, (£)]%)

for t € [1,T]. The boundedness of p*(t) on {t,T] is a consequence of the

continuity of the right hand side of (3.5) on [1,T] . a

Proof of the main theorem. It is sufficient to establish the existence of a

feedback control u € Q which satisfies the functional equation (x) for

t € [1,T) and small ‘xl . Define
u*(x,t): = u*(x,p*(x,t),t)

where p*(x,t) represents the solution of (3.5) and u*(x,p,t) such as defined

in lemma 2.2. Hence

0, (60 = 5 (0B (0p, (0 + o(]x]?) =

()BT (0K (6)x + #( x D)
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for t € {1,T] . In lemma 3.4. we have seen that the solution of

X = F(x,u*(x,t),t),x(r) = b exists on [t,T] for small |b] and furthermore
x(T) = 0. Because p*(t) is bounded on [1,T] it follows that u*(x*(t),t) is
bounded on [1,T]. Hence we can conclude that u € Q. An analogous argument
as in the previous section shows us that u, satisfies the functional

equation (). ad

A method for calculating u*(x,t).

In chapter 1 we used the fact that the optimal feedback control u*(x,t)

is a solution of the following two equations:

T
F(x,u*(x,t),t) Jx(t’x’u*) + Jt(t’xgu*) + G(X’u*(x’t)st) =0

|
<
{
t
{

FU(X,U*(X,t),t)JX(t,X,U*) + Gu(x,u*(x,t),t) =0

‘It turned out to be possible to calculate u*(x,t) from these equations using

the boundary value J(T,x,u*) = L(x) to solve the partial differential equation.
This method fails here. It is true that the optimal feedback control is again
a solution of the two functional equations but we cannot solve the partial
differential equation because the only information we have about J is that
J(T,O,u*) = 0 and this is not sufficient. This is a reason for us to follow

a different method here. Consider the following free end-point problem

4
ﬁ = F(p,y,t),p(r) =c

T

min J E(p,y,t)dt
T

Note that p plays the role of state vector and y plays the role of control

vector. The functions F and G are defined as follows

]

F(P,y’t): - {FX(Yau*(y’Pst)st)p + Gx(y’u*(y’P9t)’t)}
G(p,y,t): = [F (ysu (y,pst),t)p + Gx(y,u*(y,p,t),t)JTx +

= {(F(y,u,(y,p,£),t) p + G(y,u,(¥,p,t),t))
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Here u*(x,p,t) is defined.in lemma 2.2. We shall call this control system

the dual system. It is easy to verify that

-AT(t)P - ZQ(t)y + ?(P9Yst>

F(psy’t)

and

~ 1T ~1, T, \ T ~

G(p,y,t) ZP B(t)R "(t)B (t)p + y Q(t)y + g(p,y,t).

Here the functions f and E contain the higher order terms in y and p. It is
clear that the dual system can be solved by the method described in section 2,
provided that Q(t) > 0 on [t,T] . However, what is the connection with the
original system? The two systems have one important common property; namely

they both generate the same Hamiltonian system:

W

= F(X,u*(X’P’t)’t)

D
L]

’{FX(X,U*(X,P,C).t)P + GX<X9U*(XaP,t)st)} .

The boundary values however are different. In the original case we have

x(t) = b, x(T) = 0 and in the dual case p(r) = ¢, x(T) = 0. Namely, if
y*(p,x,t) here plays the role of u*(x,p,t) in lemma 2.2. then it is easy to
vezify that y*(p,x,t) = x and furthermore -{Fp(p,y*(p,x,t),t)x +

+ Gp(p,y*(p,x,t),t)} = F(x,u*(x,p,t),t). This argument enables us to construct
the solution of the original system from the solution of the dual system. If
y*(p,t) denotes the optimal feedback control with respect to the dual problem
then it follows that x*(p,t) = y*(p,t) is the solution of the Hamiltonian
system., From this we can calculate p*(x,t) by the regular transformation
p*(x,t) = 2K*(t)x*(t) + ele*(t)lz) (see lemma 3.4.) Finally we can calculate
the optimal feedback control with respect to the original system by

u*(x,t) = u*(x,p*(x,t),t). In the case that Q(t) is not positive definite but
only positive semi definite, it does not seem to be possible to introduce a
dual system with the properties sketched above.

¢

Example X = x3 + u,x(0) = xo,x(T) = 0

1 T

L. 2 2
‘min (x~ + u)dt
L0
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Here A(t) = 0,B(t) = 1, Q(t) = 1 and R(t) = 1. Furthermore f(x,u,t) = x3

and g(x,u,t) = O. The linear system X = u is controllable and the condition
Q > 0 holds. Hence we can use the method described above.
The equation Fu(x,u,t)p + Gu(x,u,t) = 0 gives u*(x,p,t) = -%p,

so the dual system has the following form

. 2
(p = -2y - 3y p,p(0) = p.
i T
‘min J (%p2 + y2 + 2y3p)dt

The method of chapter 1 gives the result

y, (p,t) = —;p tanh(T-t) - %93 tanh ™t (T-t) + ...

Hence

x*(p,t) = '%-p tanh(T-t) - 2—13p3 tanh4(T—t) + ...

and it follows that

2x cotanh(T-t) + 2x3 + ...

p,(x,t)

Finally we find

u*(x,t) -%p*(x,t) = - x cotanh(T-t) - x3 + ...
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