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Abstract

In this paper the optimal control of nonlinear dynamical systems on a finite

time interval is considered. The free end-point problem as well as the fixed

end-point problem is studied. The existence of a solution is proved and a

power series solution of both the problems is constructed.
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1. Introduction

We consider control processes in n
IR of the form

(1.1) F(x,u,t)

and investigate the problem of finding a bounded r dimensional feedback

control u(x,t) which minimizes the integral

(1. 2) J(T,b,u)

T

L(x(T» + f G(x,u,t)dt

T

for all initial states X(T) = b ~n a neighborhood of the origin~n IR
n .

In section 2 we treat the free end-point problem and in section 3 the

fixed end-point problem. More specifically, in section 3 we require the

final value x(T) of the state to be zero.

For the situation where F is linear and Land G are quadratic the solution

of the optimal control problem is well known (e.g. see [2J section 3.21,

[3J section 2.3, [4J section 9.7 for the free end-point problem and [2J

section 3.22 for the fixed end-point prohlem).

Here we consider the situation where the states and controls remain ~n a

neighborhood of a fixed point (for which we without loss of generality take

the origin) where the functions F, G and L can be expanded in power series.

An analogous problem has been considered by D.L. Lukes [lJ (see also [5J

section 4.3) for the infinite horizon case and our treatment will follow

this paper to some extent, in particular as far as the free end-point case

is concerned. The theory is more complete than the related Hamilton-Jacobi

theory since existence and uniqueness proofs of optimal controls are given.

For the solution of the fixed end-point problem we introduce a dual problem

of (1.1) and (1.2) which we use to reduce the fixed end-point problem to a

free end-point problem. Some examples are added to illustrate the theory.

Notation

The inner product of two vectors x and y ,:e shall dencteby xTy. The length

of a vector x by [xl = /xTx and the transposed of a matrix M by MT. The notation

M>O and M~O means that M represents a (symmetric)positive definite and a
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non-negative definite matrix respectively. If f(x)
n m . .

function from ~ into IR , the follow1ng notat1on

functional matrix will be used:

af} afm--- - - - - _.---
aX

I \
aX

1
\

\

\

\

f = \
X

\

\

I
\

\

af
l

, af
m

~ - - - - - - axaxn n

2. Free end-point problem

2.1. Assumptions

denotes a vector

and definition of the

(i) F(x,u,t) = A(t)x + B(t)u + f(x,u,t). Here A(t) and B(t) are continuous

real matrix functions of dimension n x nand n x r respectively. The

function f(x,u,t) contains the higher order terms in x and u, and is

continuous with respect to t. Furthermore f(x,u,t) is given as a power

series in (x,u) which starts with second order terms and converges

about the origin, uniformly for t E [T,TJ.

(ii)

(iii

T T
G(x,u,t) = x Q(t)x + u R(t)u + g(x,u,t). Here Q(t) and R(t) are

continuous real matrix functions of dimension n x nand r x r respec­

tively. The function g(x,u,t) contains the higher order terms in x and

u, and is continous with respect to t. Furthermore g(x,u,t) is given

as a power series in (x,u) which starts with third vrder terms and

converges about the origin, uniformly for t E [T,TJ.

T
L(x) = x Mx + t(x). Here M is a real matrix of dimension n x n. The

function t(x) is given as a power series which starts with third order
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terms and converges about the origin.

(iv) Q(t) ~ 0 and R(t) > 0 for t E [T,T]; M ~ O.

We consider the class of feedback controls which are of the form

(2.1) u(x,t) = D(t)x + h(x,t)

Here D(t) is a continuous matrix function of dimension r x n. The function

h(x,t) contains the higher order terms in x and is continuous with respect

to t. Furthermore h(x,t) is given as a power series in x which starts with

second order terms and converges about the origin, uniformly for t E [T,T].

We shall denote the class of admissible feedback controls by n.

Definition of an optimal feedback control

A feedback control u* E n is called optimal if there exists an E > 0 and a

neighborhood N of the origin in ~n such that for each bEN the response
* *

x*(t) satisfies !x*(t)! ~ E and lu*(x*(t),t)! ~ E for t E [T,T], and

furthermore J(T,b,u ) ~ J(T,b,u) among all feedback controls u E n
*

generating responses x(t) with Ix(t)[ ~ E and lu(x(t),t)! ~ E for t E [T,T].

2.2. Statement of the main results

• Theorem 2.1. (Main Theorem)

For the control process in IR
n

x F(x,u,t), X(T) b

with performance index

J(T,b,u) = Lex(T» +

T

T

J G(x,u,t)dt

the~e exists a unique optimal feedback control u*(x,t). This feedback cont~ol

is the unique soZution of the functional equation

F (x,u (x,t),t)J (t,x,u ) + G (x,u (x,t),t) = 0
u * x * u *
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for smaZZ Ixl and t E Cr,T]. Furthermore

and

J(r,b,u ) = bTK (r)b + j (r,b),
* * *

~here the matrix functions D*(t) and K*(t) z 0 depend only on the

truncated problem.

Theorem 2.2. (Truncated problem)

For the special case in which f(x,u,t) = 0, g(x,u,t) = 0 and £(x) = 0

the optimal control is given by

where

Here K (t) ~ 0 is a solution of the Riccati equation on Cr,T]:
*

Ii(t) + Q(t) + K(t)A(t) + AT(t)K(t) - K(t)B(t)R-1(t)BT(t)K(t)

lK(T) = M

o

Furthermore D (t)x is a global optimal control in the sense that we can take
*

N* = IRn and E = co in the definition of optimal feedback control. FinaUy

TJ(r,b,u ) = b K (r)b.
* *

Remark. Note that for u E n the property J(T,b,u) = L(b) holds.

2.3. Construction of the optimal feedback control

Lemma 2.1.

For each feedback control u E n, u(x,t) = D(t)x + h(x,t), there exists a

neighborhood Nu of the origin in ~n in which
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J(T,b,u)

Here j(T,b) contains the higher order terms in b. The matrix function

K(T) ~ 0 depends only on the truncated problem. Furthermore, the

functional equation

. TF(x,u(x,t),t) Jx(t,x,u) + Jt(t,x,u) + G(x,u(x,t),t) = 0

holds for each x EN, t E [T,T].
u

Proof. The following differential equation holds:

[x = (A(t) + B(t)D(t)% + B(t)h(x,t) + f(x,u(x,t),t)

lX(T) = b

If we define A (t): = A(t) + B(t)D(t) and v(x,t): = B(t)h(x,t) + f(x,u(x,t),t)
*

then this equation becomes

{
X = A*(t)x + v(x,t)

X(T) = b

From the theory of ordinary differential equations it is known that there

exists a neighborhood N} of the origin such that the solution exists for each

bEN] , and furthermore

uniformly for t E [T,T]. Here ~(t) is a fundamental matrix of the linear

equation x = A (t)x (i.e. a nonsingular matrix function of dimension n x n
* •

which satisfies ~(t) = A*(t)~(t». Hence

uniformly for t E [T,T]. Furthermore
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L(x(T»

So

T.... 3
J(T,b,u) = b K(T)b + e'(lb] ),

where

K(T): 4>-T(T)4>T(T)H4>(T)4>-1 (T) +

T

(2.2) + f [4>-T(T)4>T(t){Q(t) + D(t)TR(t)D(t)}4>(t)4>-I(T)Jdt

T

It is easy to verify that K(T) ~ 0 and K(T) = M. It is known that there

exists a neighborhood N
Z

of the origin in IRn such that for each

s E [T,TJ and for each bENZ' the solution of x = F(x,u(x,t),t) with

xes) = b, exists on [s,TJ. Now let Nu : = Nt n NZ' s E [T,TJ and b E Nu '

If x(t,s,b) denotes the solution of *= F(x,u(x,t),t) with xes) = b than

we can write

J(t,x(t,s,b),u) L(x(T,sp» +

T

J G(x(~,s,b),u(x(s,s,b),~),s)ds

for t E [s,TJ. One can verify that it is allowed to differentiate this

equation with respect to t. Setting t = s afterwards we get the equation

T
F(b,u(b,s),s) Jx(s,b,u) + Jt(s,b,u) + G(b,u(b,s),s) = O.

If we finally replace band s by x and t we get the desired result.

Remark. From the proof it follows that we even have

o

JCt,x,u) TA 3
= x K(t)x + e'clxl )

uniformly for t E [T,TJ and for small [xl.

Lemm2 2.2. The equation
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F (x,u ,t)p + G (x,u ,t) = °
u * u *

has a soLution u*(x,p,t) near the origin in IR
2n

for which u*(O,O,t) = °
for t E [T,TJ. Furthermore

where h*(x,p,t) contains the higher order terms in (x,p).

Proof. For each t E [T,TJ we can use the result in [jJ,lemma 2.2.

Lemma 2.3. There exists a unique soLution K (t) on [T,TJ to the matrix
*

differentiaL equation (Riccati equation)

IJ

f~(t) + Q(t) + K(t)A(t) + AT(t)K(t)

lK(T) = M

The property K*(t) ~ ° hoLds on [T,TJ.

Proof. See [3J section 2.3.

°

IJ

Lemma 2.4. Suppose there exists a feedback controL u (x,t)
*

D (t)x + h (x,t), which satisfies the nonLinear functionaL equation
* *

F (x,u (x,t),t)J (t,x,u ) + G (x,u (x,t),t) = °u * x * u *

for smaLL Ixl and t E [T,TJ. Then u* is the unique optimaL feedback controL.

Furthermore

and

D (t)
*

-j T
- R (t)B (t)K (t)

*

TJ(T,b,u ) = b K (T)b + j*(T,b),
* *

where K*(t) is defined in Lemma 2.3. The function j*(T,b) contains the higher

terms in b.
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Proof. Consider the following real valued function defined for t E [T,TJ

and for (x,u) near the origin 1n IRn + r

(2.3) Q(t,x,u): TF(x,u,t) J (t,x,u ) + Jt(t,x,u ) + G(x,u,t)
x * *

By lemma 2.1.

Q(t,x,u*(x,t» = 0 near x = ° and for t E [T,TJ.

We have assumed that

Q (t,x,u (x,t»
u *

Furthermore the Hessian

° near x ° and for t E [T,TJ.

Q (t,O,O)uu

It follows that

2R(t) 1S positive definite for t E ["TJ.

Q (t,x,u) > 0 for Ixl small, lui small and t E [T,TJ
uu

because Q(t,x,u) is a continuous function. Hence we conclude that there

exists an E > 0 such that

for t E [T,TJ, Ix[ :S E and lUll :S E, while strict inequality holds for

ul;z:u*(x,t). So.

(2.4)
To :S F(x,u1,t) J (t,x,u ) + J (t,x,u ) + G(x,ul,t)

x * t *

Now let N* be a neighborhood of the origin in ~n such that for each b E N*

the solution x (t) of x = F(x,u (x,t),t), xC') = b, exists for t E [T,TJ,
* *

Ix*(t)] ~. E and !u*(x*(t),t)1 ~ E.

Furthermore let U1E ~ be an arbitrary feedback control such that the solution

xl(t) of x = F(x,ul(x,t),t),X(T) = b is defined on [T,TJ, and satisfies

\x1(t)! ~ E and !ul(xl(t),t)! :S E, if b E N*. Then we can write:
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T
T

{F(x1(t),u (x (t),t),t) Jx (t,x1(t),u*) +

o < f J
T

G(x I (t) ,u 1(x 1(t) ; t) , t) dt

This yields the result

T

o < J(T,x1(T),u*) - J(L,b,u*) + J G(x 1(t),u 1(x 1(t),t),t)dt

L

and thus

So u*(x,t) is the unique optimal feedback control.

By lemma 2.2. we have

uniformly for t E [L,TJ and ~n lemma 2.1. we have

So

J (t,x,u )
x *

~ 2
2K(t)x + &(Ixl )

(2.5)
-1 T ~ 2

u*(x,t) = - R (t)B (t)K(t)x + &(Ix[ ),

uniformly for t E [L,TJ. By lemma 2.1. we have

(2.6) TF(x,u (x,t),t) J (t,x,u ) + J (t,x,u ) + G(x,u (x,t),t) = 0
* x * t * *

for [xl small and t E [L,TJ. Using (2.5) collecting the quadratic terms
~

~n x we find that K(t) is a solution of the Riccati equation. We also know
~

that R(T) = M and by the uniqueness of the solution we have K(t) = K*(t) on

This yie lds the resul t
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-) T 2
- R ( t ) B ( t ) K (t) x + e'( Ix I )

*

o

Proof of theorem 2.2. Let u (x,t) = D (t)x, where D (t) = - R-1(t)BT(t)K (t)
* * * *

and the matrix K (t) satisfies the Riccati equation, hence
*

T • Tx {K (t) + Q(t) + K (t)A(t) + A (t)K (t) -
* * *

for all x E IR
n • So we can write

It folloW's that

T T·
[(A(t) + B(t)D (t))xJ 2K (t)x + x K (t)x +

* * *

This yields

By integrating this equation along the trajectory x = F(x,u*(x,t),t),

X(T) = b, where b is arbitrary in IRn , we obtain the equation

It is now easy to verify that u*(x,t) satisfies the functional equation

(*) n lemma 2.4. The global character of u (x,t) follows by examining the
*

proof of lemma 2.4. o
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Before giving the proof of the main theorem, we consider the Hamiltonian

. IR2nsystem tn :

(2.7)

{

X = F(x,u (x,p.t),t)

P = - {F ~x,u (x,p,t),t)p + G (x,u (x,p,t),t)}
x * x *

with the boundary values

{

X(T) =

p(T) =
b

L (x(T»
x

Here u (x,p,t) 1S defined tn lemma 1.2.
*

Lemma 2.5. For smatt Ibl system (2.7) has a sotution (x*(t),p*(t» on [T,T]

with the property

uniformZu for t E [T,TJ.

Proof. The Hamiltonian system has the form

[
X) [A( t)

P = - 2Q(t)

- lB(t)R-I(t)BT(t)]

- AT(t)
I:] + h<x,p. t),

where the function h(x,p,t) contains the higher order terms. First of all we

shall prove that the lemma holds for the case that h(x,p,t) = a.The solva­

bility of the linear system together with the implicit function theorem will

be used to obtain a proof for the general case. So we shall first consider

the linear Hamiltonian system

= [A(t)

l- 2Q( t)

- 1:<tlR-1<tlBT<tl]
- A (t) [:} ,

wi th x(T) band p( T) 2Mx(T). This system has a solution (x (t),p (t»
* *
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with the property p*(t) = 2K (t)x (t), which can easily be verified.
* *

Note that this solution exists for each b E IRn • If we now consider,

this linear syStem as a final value problem: x(T) = xT,p(T) = PT' then

the solution is given by

(2.8)

Here ~(t) ~s a fundamental matrix
(

!8 11 (t,T)

=l8
21

(t, T)

then (2.8) can be written as

of the problem.

8 12 (t, T) 1'
822 (t,T) _

If we parti tion

x(t,xT,PT) = 8 1 l(t,T)XT + 8 12 (t,T)PT

p(t,xT,PT) = 8 ZI (t,T)xT + 8 2Z (t,T)PT

So

We saw that for each b EIR
n there exists a solution on [T,T] with

p(T) = 2Mx(T). So

Hence the matrix

3 b

(2.9)

~s regular. We shall need this result later. Now consider the nonlinear

Hamiltonian system as a final value problem: x(T) = xT,p(T) = PT' The

solution has the form
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where v(t,xT,PT) contains the second and higher order terms ln xT and PT,

It follows that

,(t,~,PT) - 0 11 (t,T)'T + 0 12 (t,T)PT + «(1[::]1 2
)

uniformly for t E [T,TJ, The question is: does there exist for arbitrary

b E IR
n

, Ihl small, a vector xT E lRn such that x(T,xT,Lx(xT» b? Here

the implicit function theorem can help us. Define

Then F(O,O) = ° and FxT(O,O) = 8 11 (T,T) + 20 12 (T,T)M. By (2.9) we have that

F (0,0) is regular. Thus there exists a neighborhood Q of the origin in IR
n

xT
and a function xT: Q + ~n such that

~

(i) xT(O) = °
( II) F (b , ~T (b ) ) ° for b E Q

So X(T'~T(b), lX(~T(b») = b. Hence the Hamiltonian system (2.7) has a

solution on [T, TJ for small Ib I. From the considerations of the linear system

we have

uniformly for t E [T,T]

Proof of the maln theorem.. It is sufficient to establish the existence of a

feedback control u E Q which satisfies the functional equation (*). Define
*

o

(2, 10) u (x,t): = u (x,p (x,t),t),
* * *
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where ~ (x,t) represents the solution of (2.7) and u*(x,p,t) ~s defined

as ~n lemma 2.2. Then

-1 T I 12
- R (t)B (t)K (t)x + ~(x )

*

uniformly for t E [T,TJ. Thus we can conclude that u E n. Now let
*

s E [T,TJ fixed and choose y E IRn so small that the solution of

x = F(x,u*(x,t),t), with xes) = y, exists on [T,TJ, and xC') = : b is so

small that the solution of (2.7) exists. By the continuity and analyticity

of G(x,u*(x,t),t) the following differentiation of the integral is allowed:

aJ(s,y,u )
*

ay

T

f a~ G(x,u*(x,t),t)dt

s

a
+ 3Y L(x(T)) =

=
aG(x,u*(x,t),t)

ax

au
*+---ay

aG(x,u*(x,t),t) a
au }dt + 3Y L(x(T) :::

*

=
s

au
*+ ---ay

aG(x,u (x,t),t)
*au }d t +

*

a3Y L(x(T))

T

I {~; p*(x,t)}dt

s

a
+ 3Y L(x(T)) +

+ I
T au aF(x,u (x,t),t)
{-* [- ---*---_ p (x t)J __ax

ay au *' ay
*s

aF(x,u (x,t),t)
*------a-x------ p*(x,t)}dt

T

f {d~ ~; p*(x,t)}dt + a; L(x(T)) +

s s
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T

f
[~F(x,u (x,t),t)Jp (x,t)dt =

oy * *
s

= ( ) Clx(T) L (x(T~ + d L( (T» =p* y,s - dy x H dy x

So J (S,y,u ) = p*(y,s) for small Iyl and s E [T,TJ. If we now replace s by t
Y *

and y by x, and if we use lemma 2.2., we obtain

F (x,u (x,t),t)J (t,x,u ) + G (x,u (x,t),t) = 0
u * x * u *

forlxl small and t E ["TJ. SO u*(x,t) satisfies (*).

2.4 A method for calculating u (x,t) and J(t,x,u )
* *

o

•

In this section we shall use the following notation: if t(x) is a power

series in x then the k th order term will be denoted by t(k) (x) or [t(x)J(k).

u (x,t) and J (x,t): = J(t,x,u ) can be expanded in power series:
* * *

u (x,t) = u (I)(x,t) + u (2)(x,t) +
* * *

We have seen that the lowest order terms are given by

D (t)x
*

and

T
x K (t)x,

*

where

and K (t) is the solution of the Riccati equation. We indicate a method for
*

computing the higher order terms analogous to the method followed in [IJ.
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This method is based on the fact that u (x,t) is a solution of the following
*

two functional equations

~(x,u (x,t),t)TJ (t,x,u ) + J (t,x,u ) + G(x,u (x,t),t) = 01 * x * t * *

F (x,u (x,t),t)J (t,x,u ) + G (x,u (x,t),t) = 0
l..u * x * u *

In contrast to [IJ where one has to solve linear equations, the problem defined

here reduces to solving successively a set linear differential equations. We

shall now give the result in the form of two equations :

"I

(A (t)x)T[J(m)(x,t)] + [J*(m) (x,t)J
x
· =

* * x
m-)

= - I [B(t)u(m-k+I) (x,t)]T [J(k)(x t)] +
k=3 * * ' x

m-l
L f(m-k+)(x,u (x,t),t)T [J(k)(x,t)J +

* * xk=2
(A)

(m = 3,4, ••• )

U~k)(X,t) =

k-)
+ L [f (x,u (x,t),t)J(j) [J(k-j+)(x t)J
'Iu * * 'xJ=

+ [g (x,u (x,t),t)](k)}
u *

(k = 2,3, ••. )

+

+
1

(B)

Here A (t): = A(t) + B(t)D (t); [kJ denotes the integer part of k.
* *

Furthermore the term with u(!m) is to be omitted for odd values of m.
*
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With the values J(2)(x,t) and u(I)(x,t) to start with, the higher order
. * *

terms can be calculated from (A) and (B) in the sequence

(3) (2) (4) (3)J (x,t),u (x,t),J (x,t),u (x,t),
* * * *

The f { (I) u(m-3). J(2), ... , J(m-I)} determinessequence 0 terms u* , •.. , * '* *

J(m) in equation (A) by solving a partial differential equation with

b:undary value J(m)(x,T) = L(m)(x). The sequence of terms {u;I), .•• , u;k-I);

J(2), ... , J(k+l)} determines u(k) in equation (B).
* * *

Example.
r
Ix
I
~
I
Imin

L

x3 + u,x(O)

Here A(t) = O,B(t) = I,Q(t) = 1 and R(t) = I. Furthermore,f(x,u,t)

g(x,u,t) = 0 and L(x) = O. We have the Riccati equation

r.
IK + I - K

2
= °

1,K(T) = 0

and the solution ~s given by K (t) = tanh(T - t). Hence
*

3
= x ,

and

J~2)(x,t) = Tx K (t)x
*

Furthermore

-1 T
- R (t)B (t)K*(t)x -x tanh(T-t)

For m = 3 equation (A) reads as follows:

(-x tanh (T-t»)[J (3) (x,t)] +[J(3)(x,t)] t = 0
* x *
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J~3)(x,t) 3a.(t)x

then this equation becomes

or

aCt) - 3a.(t)tanh(T-t) = 0

wi th the boundary value a. (T) = o. This yields the solution a. (t) = 0 on

[1", T J. SO J}3)(x, t) = 0 and equation (B) gives for k = 2: u*(2) (x, t) = 0

For m 4 equation (A) becomes

(-x tanh(T-t»[J(4)(x,t)J
* x

4a.(t)x we have

{-4a.(t)tanh(T-t) + a(t)}x4
= -2 tanh(T-t)x4

or

aCt) -4a(t)tanh(T-t) + 2 tanh(T-t) = 0

with the boundary value a.(T)

~s

O. The solution of this differential equation

Thus

a. (t) 1 1 -4
"2 - "2(cosh(r- t »

1 1 -4 4{- - -(cosh(T-t» }x2 2
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Formula (B) gives for k = 3:

so

The higher order terms can be computed in a simular manner.

It 3. Fixed end-point problem

3.1. Assumptions

•

In this section we consider a problem similar to the problem discussed ~n

section 2. The difference being that now we require the final value of the

state to be zero : x(T) = O. As a matter of course we can take now L(x) = O.

The basic assumptions made in section 2, remain. A new assumption is the

controllability to the zero state of the linear system x = A(t)x + B(t)u.

Furthermore we restrict ourselves to feedback controls u(x,t) with the

following properties:

I. u(x,t) = D(t)x + h(x,t). Here D(t) is a continuous matrix function for

t E [T,T).The function h(x,t) contains the higher order terms in x and is

continuous with respect to t E [T,T).Furthermore h(x,t) is given as a

power series in x which starts with second order terms and converges about

the origin.

2. There exists a neighborhood N of the origin inlRn such that for bEN
u u

the solution x(t,L,b) of (1.1) is defined on [r,T] and in addition

x(T,L,b) = o.
3. u(x(t,L,b),t) is a bounded function on [r,TJ.

We shall denote again the class of admissible feedback controls by n.
If u E n then it is clear that u(x,t) has a singularity in t = T. Further-

more there exists for given u E n, s E [r,T), a neighborhood N of the
u,s

origin inlRn with the property that, if c EN, the solution of
U,s

x = F(x,u(x,t),t),x(s) = c, is defined on [s,T] and x(T) = O. It is evi-

d~nt that

(3.1) Nu,s {x(s,L,b)1 bEN}
u
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represents such a neighborhood

3.2. Statement of the ma~n results

Theorem 3.1. (Main Theorem)

For the control process in IRn

x F(x,u,t),X(T) = b,x(T) = 0

there exists a unique optimal feedback control u E 0 which minimizes the
*

.. integral

J (T,b,u)

for all initial states bin a neighborhood of the or~g~n in IR
n

• This

feedback control is the unique solution of the functional equation

•

F (x,u (x,t),t)J (t,x,u ) + G (x,u (x,t),t)
u * x * u *

for t E [T,T) and small Ixl. Furthermore

u (x,t) = D (t)x + h (x,t)
* * *

and

TJ(T,b,u ) = b K (T)b + j (T,b),
* * *

o

where the matrix functions D (t) and K (t) are defined on [r,T) and depend
* *

only on the truncated problem.

The truncated problem is the case that f(x,u,t) = 0 and g(x,u,t) = O.

R.W. Brockett has proved in [2Jthat under our hypothesis an optimal control

exists. One can easily show that his results can be written in the following

form:



(3.2)

where

u (x,t)
*

D (t)x
*
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(3.3)
-] T

D (t) = -R (t)B (t)K (t).
* *

Here K*(t) satisfies the Riccati equation on Ct,T):

• . T -] T
K(t) + Q(t) + K(t)A(t) + A (t)K(t) - K(t)B(t)R (t)B (t)K(t) = 0

If W*(t) satisfies the dual Riccati equation

(W(t) + B(t)R- 1(t)BT (t) - W(t)AT(t) - A(t)W(t) - W(t)Q(t)W(t) 0

l WeT) = 0

on CT,TJ, then we have K-](t) = W (t) for t E CT,T). Finally
* *

3.3. Construction of the optimal feedback control

•
Lemma 3.1. For each feedback control u E n, u(x,t) = D(t)x + h(x,t),

we have the property

T....
J(-r,b,u) = b K(T)b + j ('r,b)

for bEN . The matrix function K(T) depends only on the truncated problem.
u

Furthermore the functional equation

T
F(x,u(x,t),t) Jx(t,x,u) + Jt(t,x,u) + G(x,u(x,t),t) = 0

holds for t E CT,T) and x E N
u,t

Proof. The proof is analogous to the proof of lenuna 2.1. Here we have

~(T) = o. One can show that the solution of the differential equation

x = F(x,u(x,t),t) is of the form x(t) = ~(t)~-I(T)b + d(\bI 2), again

unif:.rmly for t E h,TJ. Note that K(t) may have a singularity in t = T. 0



- 22 -

Lemma 3.2. The exists a unique solution W*(t) on [T,T] to the matrix

differential equation (dual Riccati equation)

i· 1 T TWet) + B(t)R (t)B (t) - W(t)A (t) - A(t)W(t) - W(t)Q(t)W(t) = 0

WeT) = O.

The property W*(t) > 0 holds on [T,T). If K*(t)

K*(t) satisfies the Riooati equation

-1
W* (t) on [T,T] then

on [-r, T) •.

Proof. This lemma ~s a consequence of the analysis of R.W. Brockett in [2]

section 3.22.

Lemma 3.3. Suppose there exists a feedback oontrol U*E n, u*(x,t) =

= D*(t)x + h*(x,t), which satisfies the funotional equation

F (x,u (x,t),t)J (t,x,u ) + G (x,u (x,t),t) = 0
u * x * u *

o

for t E [T,T) and x EN. Then u* is the unique optimal feedback control.
u*' t

Furthermore

and

D (t)
*

-1 T
-R (t)B (t)K (t)

*

TJ(T,b,u ) = b K (T)b + j*(T,b),
* *

where K (t) is defined in lemma 3.2. The funotion j (T,b) oontains the
* *

higher order terms in b.

Proof. The method to proof that u represents the unique optimal feedback
*

control is analogous to the method followed in lemma 2.4. Now we can choose



lu (x (t),t)
* *

u (x (t),t) and
* *

we have
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~ E and lu\(x\(t),t) ~ E because we have assumed that

u\(x\(t),t) are bounded functions on [t,T]. By lemma 2.2.

u (x,t)
*

] -] T I 12
~2 (t)B (t)J (t,x,u ) + &( x )

x *

and in lemma 3.1. we have

.... 2
J (t,x,u ) = 2K(t)x + dlxl )

x *

for t E [-c,T] and x E N t' So
u* '

(3.4)

In the truncated case the corresponding formula is:

1 T ....
u*(x,t) = -R (t)B (t)K(t)x.

"Comparing this result with (3.2) and (3.3) it follows that K(t)

[t,T), where K (t) is defined in lemma 3.2.
*

Conclusion:

and

K (t) on
*

D

Before proving the ma1n theorem we consider again the Hamiltonian system in

IR
2n :

(3.5)

{

X = F(x,u (x,p,t),t)

P - -{F (:.u (x,p,t),t)p
x *

+ G (x,u (x,p,t),t)}
x *

with the boundary values
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Here u*(x,p,t) ~s defined in lemma 2.2.

Lemma 3.4. For small jbl system (3.5) has a solution (x*(t), p*(t)) with

the property

for t E: CT, T] . Furthermore p (t) is a bounded function on [T,T].
*

Proof. The Hamiltonian system has the form

(X).
\ .
'P'

[

A(t)

-ZQ(t)

1 -I T ]-ZB~t)R (t)B (t)

-A (t)
h(x,p,t)

It can easily be verified

h(x,p,t) = 0) has for each

Analogous to the proof of

that the linear system (i.e. the case that

b E: IR
n a solution of the form x (t) = ~21 (t)p (t).

. * * *
lemma 2.5. we shall use the implicit function

theorem to proof that the nonlinear system has a solution of the desired

form. We need again a property which we shall derive from the solvability of

the linear system. So consider again the linear Hamiltonian system as a final

value problem. The solution can be written as

x(t,xT,PT) = 8 11 (t,T)xT + 8 12 (t,T)PT

p(t,xT,PT) 8ZI (t,T)xT + 822 (t,T)PT

We have seen that for each b E ~n there exists a solution on [T,T] with

X(T) = band x(T) = O. So

b

Hence the matrix 8
IZ

(T,T) is regular. Now consider the nonlinear system as

a fiQal value problem. The solution has the form
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x(t,xT,PT) 0 11 (t,T)xT + 0 12 (t,T)PT + ~(I(;i)12)

p(t,xT,PT) = 0ZI (t,T)xT + 8 Z2 (t,T)PT +~(1(;~)12)

The question LS : does there exist for arbitrary b E !Rn , Ibl small, a

vector PT EO IRn such that X(T ,O,P
T

) = b ? Again, the implicit function

theorem can help us. Define

Then F(O,O) = a and FPT(O,O) = 0
IZ

(T,T). So FPT(O,O) is regular, and there

exists a neighborhood ~ of the origin in IRn and a function PT: n ~ fR
n such

that

-
Ci) PTCO) = °
Cii) F (b,P

T
(b) ) ° for b EO Q.

Hence X(T,O,PT(b» = b for bEn. Thus the Hamiltonian system (3.5) has a

solution on [T,T] for small lbl . From the considerations of the linear system

we have

for t E [T,TJ. The boundedness of P (t) on [T,TJ is a consequence of the
*

continuity of the right hand side of (3.5) on [T,TJ . 0

Proof of the main theorem. It is sufficient to establish the existence of a

feedback control u* E n which satisfies the functional equation (*) for

t E [T,T) and small Ixl • Define

u (x,t): = u (x,p (x,t),t)
* * *

where P (x,t) represents the solution of (3.5) and u (x,p,t) such as defined
* *

in lemma 2.2. Hence

J -I T I 12
u*(x,t) =~ (t)B (t)p*(x,t) + ff( x ) =
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for t E [TtTJ . In lemma 3.4. we have seen that the solution of

x = F(xtu (xtt)tt)tx(,) = b exists on ['tTJ for small Ibl and furthermore
*

x(T) = 0. Because p (t) 1S bounded on ["TJ it follows that u (x (t)tt) is
* * *

bounded on ['tTJ. Hence we can conclude that u E~. An analogous argument
*as in the previous section shows us that u satisfies the functional

*
equation (*).

3.4. A method for calculating u (x,t).
*

In chapter 1 we used the fact that the optimal feedback control u (xtt)
*

is a solution of the following two equations:

fF(XtU (xtt)tt)TJ (t,xtu ) + J (ttX,U ) + G(xtu (x,t),t) = °
I * X * t * *

4
i

I'F (x,u (x,t),t)J (t,x,u ) + G (x,u (xtt),t) =°
lU * x * u *

o

It turned out to be possible to calculate u (x,t) from these equations using
*the boundary value J(T,x,u ) = L(x) to solve the partial differential equation.

*
This method fails here. It is true that the optimal feedback control is again

a solution of the two functional equations but we cannot solve the partial

differential equation because the only information we have about J is that

J(T,O,u ) = ° and this is not sufficient. This is a reason for us to follow
*

a different method here. Consider the following free end-point problem

(

j P =

lm1n

F(ptytt),p(,)

T

J G(p,y,t)dt,

c

Note that p plays the role of state vector and y plays the role of control

vector. The functions F and G are defined as follows

F(p,y,t): =

G(Pty,t):

- {F (y,u (y,p,t),t)p + G (y,u (y,ptt)tt)}
x * x *

T[F (y,u (y,ptt)tt)p + G (y,u (y,p,t),t)J x +
x * x *

T- {F(y,u (y,p,t),t) P + G(y,u (y,p,t),t)}
* *
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Here u (x,p,t) is defined in lemma 2.2. We shall call this control system
*

the dual system. It is easy to verify that

~ T ~

F(p,y,t) = -A (t)p - 2Q(t)y + f(p,y,t)

and

G(p,y,t)
1 T -1 T T ~

= 4P B(t)R (t)B (t)p + y Q(t)y + g(p,y,t).

~

Here the functions f and g contain the higher order terms in y and p. It is

clear that the dual system can be solved by the method described in section 2,

provided that Q(t) > 0 on [T,T] . However, what is the connection with the

original system? The two systems have one important common property; namely

they both generate the same Hamiltonian system:

1
~ -F(x,u.(x,p,t),t)

P = -{F (x,u (x,p,t),t)p + G (x,u (x,p,t),t)} •
x * x *

The boundary values however are different. In the original case we have

X(T) = b, x(T) = 0 and in the dual case pel) = c, x(T) = o. Namely, if

y*(p,x,t) here plays the role of u*(x,p,t) in lemma 2.2. then it is easy to

verify that y (p,x,t) = x and furthermore -{F (p,y (p,x,t),t)x +
* P *

+ G(p,y (p,x,t),t)} = F(x,u (x,p,t),t). This argument enables us to construct
p * *

the solution of the original system from the solution of the dual system. If

y*(p,t) denotes the optimal feedback control with respect to the dual problem

then it follows that x*(p,t) = y*(p,t) is the solution of the Hamiltonian

system. From this we can calculate p (x,t) by the regular transformation
2 *

p (x,t) = 2K (t)x (t) + &(Ix (t)! ) (see lemma 3.4.) Finally we can calculate
* * * *

the optimal feedback control with respect to the original system by

u (x,t) = u (x,p (x,t),t). In the case that Q(t) is not positive definite but
* * *

only positive semi definite, it does not seem to be possible to introduce a

dual system with the properties sketched above.

Example
(, .
iX =

1
I •'min

l.

3
x + u,x(O) = xO,x(T)

T

J (x
2

+ u
2
)dt

o

o
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3
Here A(t) = O,B(t) = 1, Q(t) = 1 and R(t) = 1. Furthermore f(x,u,t) = x

and g(x,u,t) =O. The linear system x= u is controllable and the condition

Q > 0 holds. Hence we can use the method described above.
I

The equation Fu(x,u,t)p + Gu(x,u,t) • 0 gives u*(x,p,t) = -zP'
so the dual system has the following form

(p = -2y - 3y2p,p(O) = p.

The method of chapter

2 3
+ Y + 2y p)dt

gives the result

1 1 3 4zP tanh(T-t) - BP tanh (T-t) + •••

Hence

1 1 3 4
= 2P tanh(T-t) - BP tanh (T-t) + •••

and it follows that

P (x,t)
*

Finally we find

3
= 2x cotanh(T-t) + 2x + •••

u (x,t)
*

REFERENCES

3
= - x cotanh(T-t) - x + ••.

[ 1 J D. 1. Lukes, "Optimal regulation of nonlinear dynamical sys tems" ,

Siam J. Control, Vol. 7, No.1, February 1969.

[2 JR.W. Brockett, "Finite dimensional linear systems",

Wiley, New York, 1970.

[3 JB.D.O. Anderson, J.B. Hoore, "Linear optimal control",

Prentice-Hall, New Jersey, 1971.



- 29 -

[4J M. Athans, P.L. Falb, "Optimal control",

McGraw-Hill, New York, 1966.

[5J E.B. Lee, L. Markus, "Foundations of optimal control theory",

Wiley, New York, 1967.


