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Optimal  Rejection of Persistent  Bounded 
Disturbances 

MATHUKUMALLI  VIDYASAGAR, FELLOW, IEEE 

Abstruct-In tbis paper,  we formulate the problem of optimal 
disturbance rejection in  the case where the disturbance is generated as the 
output of a stable system in response to an input which is assumed to be 
of unit amplitude, but  is otherwise arbitrary. The objective is  to  choose a 
controller that minimizes the maximum amplitude of the plant output in 
response to such a disturbance. Mathematically, this corresponds to 
requiring uniformly good disturbance rejection over all time. Since the 
problem of optimal tracking  is equivalent to that of optimal disturbance 
rejection if a feedback controller is used (see [7, sect. 5.6]), the  theory 
presented  here can also be used to design optimal controllers that achieve 
uniformly good tracking over all time rather  than a tracking  error whose 
L2-norm is small, as  is the case with the currently popular H E  theory. The 
present  theory is a natural  counterpart to the existing theory of optimal 
disturbance rejection (the so-called HE theory) which  is  based on the 
assumption that the disturbance to be rejected  is  generated by a stable 
system whose input is  square-integrable  and has unit  energy. It is shown 
that the problem studied here has quite different features from its 
predecessor. Complete solutions to the problem  are given in several 
important cases, including those where the plant  is  minimum  phase or 
when  it has only a single unstable zero. In other cases, procedures  are 
given for obtaining bounds on the solution and for obtaining suboptimal 
controllers. 

I. INTRODUCTION 

I N this paper, we study the following problem. Suppose one is 
given a (possibly unstable) plant P, which is being subjected to a 

disturbance d at its output. I Suppose, in addition, that the 
disturbance d can be thought of as the output of a system W,  
which is in turn driven by an input u that is bounded  in time by 1, 
but is otherwise arbitrary.  The objective is to design a controller C 
that stabilizes the plant P and at the same time optimally rejects 
the disturbance; in other words, C stabilizes P, and results in the 
smallest possible maximum output amplitude in response to the 
disturbance. 

The problem under study here differs in important respects 
from those previously investigated in the literature. The classes of 
problems previously explored can be placed into two categories. 
In the first, it is assumed that d is a known disturbance, e.g., a 
step, a sinusoid, white noise, etc. This problem is one of 
regulation or filtering, and has been treated by a large number of 
researchers over the years. In the second, it is assumed that u is a 
square-integrable signal of unit energy but  is otherwise arbitrary, 
and that W is a stable transfer matrix. The objective is to minimize 
the maximum energy of the resulting output signal y. Conceptu- 
ally, this problem represents an important advance beyond that of 
regulation mentioned above, since one is attempting to minimize 
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I It is really not necessary to assume that the disturbance enters additively 

at the output; this is simply for ease of exposition. 

the worst possible adverse impact of a class of disturbances, 
rather than just a single fixed disturbance. Mathematically, the 
resulting problem is the so-called Hm-norm minimization. Results 
from the theory of functions analytic on the unit disk of the 
complex plane (the theory of Hardy spaces) can he used to good 
advantage in solving this proplem; see [1]-[6], [7, ch. 61 for a 
discussion of these results. 

As mentioned above, the idea of minimax optimization, i.e., of 
minimizing the worst possible impact of a class of disturbances, 
represents an important conceptual advance. A mathematical 
framework for studying such problems is given in [ 11,  in t e r n  of 
multiplicative seminorms. In addition, in [ 13 explicit solutions are 
given for the case where the disturbance input is square-integrable 
(i.e., is an L2-function), and the plant is scalar and has a single 
simple zero in the open right half-plane. Using the results of [2], 
[3] on minimax interpolation, it is possible to obtain explicit 
solutions for the case of L2-disturbances and scalar plants with 
multiple RHP zeros. The studies in [4]-[6] enable one to tackle 
the case of multivariable plants and L2-disturbances. In each case, 
the type of cost function that can be minimized using +e methods 
of  [1]-[6] is 

J =  max 11~112. (1.1) 

If Hd denotes the transfer matrix from d to z ,  then, as is well 
known [9, ch. 31, 

112112= IIHzdIlm. (1.2) 

Suppose, in contrast, that one is interested in minimizing the 

dEL2,lldl2S1 

Ildll2'I 

L,-norm  of z,  i.e., 

J=maxIIzIlm. (1.3) 

This means that one is interested in uniformly good disturbance 
rejection at all instants of time. If d varies over the unit ball of L2 ,  
then 

d 

Ilzll-=IInzd112- (1.4) 
Ildl2'l 

Thus, the problem of minimizing the maximum Lm-norm of z in 
response to a set of L2-norm bounded disturbances can be solved 
using  Wiener-Hopf methods [ 1 11, [ 171. If, on the other hand, one 
assumes that the disturbances themselves are L,-norm bounded, 
then the cost function to be minimized becomes 

max 11 z 11 m. (1 5 )  

While this problem can be considered to belong to the general 
class of problems posed  in [l], the contents of  [1]-[6] are of no 
help in obtaining the minimum of such a cost function. 

The present paper is devoted precisely to the minimization of 
cost functions of the type above. Complete solutions are given to 
the problems of optimal controller synthesis in several important 
situations, including those where the plant is minimum phase or 
has a single unstable zero. In the general case, methods are given 

lldllm' 1 
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for estimating the optimal performance. It turns out that the Lm- 
optimal controller is in general not the same as the L2-optimal 
controller resulting from the methods  of [1]-[7]. Even in cases 
where the optimal achievable performances are the same, the 
methods used to arrive at the end results are quite different. The 
result is a theory that complements the Hm-optimization theory 
and draws on it in  many ways, but  is fundamentally different. 

II. PREUMINMES AND PROBLEM STATEMENT 

In this section, we introduce the various norms that are used  in 
the paper, and define precisely the problem at hand. As there are 
several norms that arise naturally in connection with the problem 
studied here, it is worthwhile to study these in some detail. For 
further details concerning the various norm properties given 
below, good references are [9], [IO]. 

Let (R denote the field of real numbers, and suppose f :  (R -+C is 
Lebesgue measurable. Two norms that  can  be defined are 

I l f  I Im= a s .  SUP If(t)l. (2.2) 
rE(-m,m) 

Let L2 (respectively, L,) denote the set of a l l f (* )  such  that ) I f  ( I 2  
is finite (respectively, such that 11 f is finite). 

Now suppose h is a distribution with support in the inverval [0, 
m) of the form 

m 

h ( t ) = C  hi6(t-ti)+h,(t) (2.3) 
i = O  

where 0 5 to < tl < * * a ,  6 denotes the unit impulse distribution, 
and ha(* )  is Lebesgue measurable. The set A consists of all 
distributions h of the form (2.3) such that 

i = O  
” ”  

is finite. Note that A is precisely the set of impulse responses of 
BIB0 stable systems. 

Every h E A is Laplace transformable, and the region of 
convergence of the Laplace transform includes the closed right 
half-plane C; = {s:Re s 2 0). Thus, if h E A ,  then the 
quantity 

m m 

h(s)= so f ~ ( t ) e - ~ ‘  d t = C  1 ho(t)e-sr dt (2.5) 
W 

i = O  
0 

is well-defined whenever Re s 2 0. Moreover, it is easy to see 
that 

I/i(s)ls IlhllA for aII s E C , .  (2.6) 

Let A denote $e set of Laplace transforms of distributions in A .  
Then-clearly A is a linea: space. We can define two distinct norms 
on A .  Suppose F E A and let f denote the inverse Laplace 
transform of F. Then we define 

IIFlla= IlfIla. (2.7) 

llFllm= SUP l F (b~ ) l *  (2.8) 
wE(-m.m) 

Note  that 11 Film 5 11 F l l ~  for all F E a. Also, note that the usage 
11 Film to denote the norm of a function of “frequency” is quite 
consistent with the definition (2.2) of the norm of a function of 
“time.” 

Suppose H E A ,  so that H is the transfer function of a 
distribution h in A .  We can associate with H an operator from Lw 
into L, (which is also denoted by H), defined by Hf = h*f. Then 

On the other hand, H also maps L2 into L2 by the association Hf 
= h*f. The gain of this map is given by 

(2.10) 

To summarize, given a transfer function H E A,  corresponding 
to a stable system, one can associate with it two distinct “gains.” 
The quantity 11 H is the gain of the system viewed as a map 
between  bounded  input-output pairs, while 11 H l l m  is the gain of 
the system viewed as a map  behvveen finite energy input-output 
pairs. 

Since the interest in this paper is purely in jumped systems, it is 
understood that hereafter all elements of A are rational unless 
explicitly stated to the contrary. 

In other work, e.g., [7] the symbol S is  used to denote the set of 
all proper stable rational functions, equipped with the norm (2.9). 
With the convention above that A consists oply  of rational 
functions unless specified otherwise, we see that A and S are both 
normed spaces whose underlying linear vector spaces are the 
same, but whose norms are different. 

Next, consider the discrete-time analogs of the various norms 
described above. Given a sequence {fi ), we can define three 
norms on it,  as follows: 

(2.11) 

(2.12) 

(2.13) 

We define the sequence spaces I I  , 1 2 ,  I,, respectively, to consist 
of those sequences (fi) such that 11 f 11 (1 f \ I 2 ,  (1 f l l m  is finite. It is 
easily shown that I I  is a commutative Banach algebra with 
identity. 

It is  known [9] that a linear time-invariant discrete-time system 
with unit pulse response { h i )  is  BIBO-stable if and only if h E I I  . 
Given such a sequence, we can associate with  it its z-transform 

F ( 2 )  = m fiz‘. 
i = O  

(2.14) 

Note  that  we use z‘ instead of z -’ as is customary. The effect of 
this is that a z-transform represents a stable system if-all of its 
poles are ourside the unit disk rather than inside_ it. Let A d  denote 
the set of 4-transforms of I ,  sequences. Then A d  is precisely the 
set of digital transfer functions of  BIBO-stable discrete-time 
systems. 

As before, it is possible to define hvo distinct norms  on A d .  
Given H E A d ,  let { h i )  denote its inverse z-transform, and 
define 

m 

(2.15) 

(2.16) 
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Note  that 11 HII, 5 1 1  H l l , ~ ~  for all H E a,._The interpretation of 
these two norms is as follows. Given H E A d ,  one can associate 
with it an operator, which maps a sequence if,) into its 
convolution with { h i ) .  Then 

(2.17) 

(2.18) 

As is the case with  continuous-time systems, it  is understood 
hereafter that all elements of A d  are rational unless explicitly 
stated to the contrary. 

In some papers, e.g., [4], [5], the symbol RH, is used  to 
denote the set of rational functions that are analytic on the closed 
unit disk, equipped with the norm (2,18). In analogy with  the 
continuous-time case, we see that A d  and RH,  are distinct 
normed spaces whose underlying linear vector spaces are the 
same. 

We  are now  in a position to state precisely the problem studied 
in this paper. Suppose a plant P is given, together with two stable 
transfer matrices T and W. Let S ( P )  denote the set of all 
controllers that stabilize P ;  then the objective is to find a 
controller in S( P )  that minimizes the cost function 

J= I( T(Z+PC)-'W(IA or J =  1) T(Z+PC)-'WllAd (2.19) 

where the first functional pertains to continuous-time systems 
while the second is for discrete-time systems. 

The problem to be solved can be restated in a more convenient 
form using the results of [ 1 I], [ 121 that give a simple parametriza- 
tion  of  all controllers that stabilize a given plant, together with  an 
expression for all the resulting stable transfer matrices. In fact, the 
problem of minimizing J of (2.19) with respect to C E S( P )  is 
equivalent to that of minimizing a functional of the form 

by a suitable choice of a matrix R with elements in A or A d .  The 
interpretation of the cost function (2.19), as well as the reformu- 
lation of the problem in the form (2.20), is discussed in [7, sect. 
6.1, 6.21. 

This section is concluded with some observa_tions.-First, note 
that there is no norm  preserving map between A and Ad.  Thus, it 
is necessary to treat continuous-time and discrete-time systems 
separately. This is  in contrast to the case of H,-norm optimiza- 
tion, where the two cases can be treated in a common framework 
by employing a bilinear transform (see [7, sect. 6.41). &other 
casualty of switching from the H,-norm criterion to the A-norm 
criterion is the ability to discard inner factors; the  reason is that 
multiplication by an inner function does not Cn general  preserve 
A-norms. In fact, the only inner funstions in A with  unit  norm are 
f 1; the  only inner functions in A d  with  unit  norm are -+ zm, 
where m is a nonnegative integer. One can easily compute that 

III. SIMPLE CASES 

In this section, we first consider the minimization of functions 
of the type Ilf - rg 11 A in the special case where g has no zeros in 
the open right half-plane and has possibly some zeros on the j w -  
axis. It is shown that the infimum of the above norm as r varies 
equals zero. Since these facts are well  known  in the case where the 
norm in question is the H,-norm, these results are perhaps not 
surprising. However, the path towards the solution in the current 
situation is quite different from that in H,-norm minimization. 
Specifically, in the latter theory one uses the notion of an outer 
function to show that various H,-norms can be made arbitrarily 
small. In contrast, in the case of the norm 11 11 A ,  one is required to 
estimate the time domain norms of various quantities, which 
necessitates rather different reasoning. Next, it is shown that, if g 
has only a single simple zero in the extended RHP,2 then I l f  - 
rg 11, and Ilf - rg have the same minima, and that  in fact the 
same choice of r achieves each minimum. Finally, it is shown that 
a simplifying argume_nt  used  in H,-norm minimization does not 
work  in the case of A-norm  qinimizatign. 

Theorem 3. 1: Let f, g E A ,  and suppose that two conditions 
are satisfied: i) the only C ,  -zeros of g are on the jw-axis, and ii) 
whenever g(  j w )  = 0, we have thatf( j w )  = 0; if in addition g(m) 
= 0, then f (a) = 0. Under these conditions, we have 

The proof of this theorem is @sed on several lemmas. 
Lemma 3.1: Suppose a E A and that a(0) = 0. Then 

for each integer k 2 1. 
In the above equation, we have been slightly sloppy in writing, 

e.g., 1 l d . s  + Ea(s)llA for the norm of the function s ~--t &a(s). 
This sloppiness should prove harmless and saves us from 
Pedantry. 

Proof: The result is first established for k = 1. By partial 
fraction expansion, 

where -pI,  * ,  -Pk are the distinct poles of a@), of 
multiplicities mi, - * . , mk (and none of these is zero). Now the 
constants cij(e) are easily shown to be O(E) ,  so the norm of these 
terms goes to zero as E + 0. Finally, noting that the n o m  of ( d s  
+ E )  is one for all E, we get 

= ( a ( - ~ ) l + O  as E + O  (3.4) 

since a(0) = 0. 
Next, if k 2 1 ~ then we have that 

(2.21) 

Thus, in computing the minimum of the function I l f  - rg (1 A ,  it  is 
not possible to discard any common inner factors off and g. This 
too is in contrast with H,-norm minimization, where multiplica- 
tion by inner functions preserves norms, so that iff = fi h, g = 
g ,  h ,  and h is inner, then the problem of minimizing Ilf - rg I l m  is 
equivalent to that of minimizing l l f ,  - rg, 11 , . 

(3.5) 

which goes to zero as E + 0. This concludes the proof. 

* The extended RHP consists of the closed RHP plus the point  at infinity. 
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Lemma 3.2: Suppose a( jw , )  = 0 for some mi. Then 
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also that 

for each integer k.  

3.1 above. 
The proof is omitted as it is entirely similar to that of Lemma 

Lemma 3.3: Suppose a(m) = 0. Then 

for each integer k.  
Proof: As before, by partial fraction expansion, we have 

Esa(s) -a( - 1 / ~ )  
ES+1 ES+l 
-- - +cc- (3.8) 

where pi are the distinct poles of a@). It can once again be verified 
that the constants cij are O(E); the reason is that the pole at - 1 / ~  
contribute9 a term that becomes smaller and smaller as E --+ 0. 
Hence, the norm of all terms except the first is O(E) .  Now the 
norm of the first term is I a( - 1/~)1, which  is also O(E). 
Therefore, 

For k 2 1 ,  we note that 

(3.9) 

(3.10) 

Hence, the norm of this function in a equals two. Thus, for k 2 
2, 

= 2 k - 1 / ~ ~ a ( s ) ~ ~  ES+l A -+O as PO. (3.11) 

Proof of Theorem 3.1: Let k j w ; ,  i = 1, e ,  k denote the 
distinct jw-axis zeros of g ,  other than at the origin, and let mi 
denote the multiplicity ofjwi as a zero of g. Let mo,  m, denote the 
multiplicities of zero and infinity as zeros of g ;  if g does not 
vanish at either point, simply set the corresponding multiplicity to 
zero. Then g can be expressed in the form 

(3.12) 

where u is a unit of a. Now define 

Then u, is a  unit o f a  for each E > 0,-i.e., I lu ,  E a for all E > 0. 
Now define r, = f / u f .  Then r, E A for all E > 0. The claim is 
that 11 f - r,gllA .+ 0 as E .+ 0. 

To establish the claim, note that f - r,g = f(1 - g lue ) .  Note 

S E 

S + €  S+E 
-= 1 - - ,  

1 -- - 1 -- ES 

E S + l  ES+1 ' 

S2+ 0; ES 

S 2 + E S + W f  S 2 + E S + U f  

2 
= I -  

(3.14a) 

(3.14b) 

(3.14~) 

If we substitute the above into (3.13) and expand the various 
powers using the binomial expansion, we get 

Now by Lemmas 3.1-3.3 and the hypotheses on f, it follows that 

Theorem  3.2: Suppose f ,  g E a, and suppose g has only one 
f ( 1  - g/u,) --+ 0 as E + 0. 

simple zero in the extended closed RHP, at s = u. Then 

r E  A 
f i n  I l f - rg l lA=f in  I l f - e l l m =  If(4 (3.16) 

rE.4 

and the unique choice of r that attains each minimum is 

(3.17) 

Proof: Since I l f  - rgll, 5 11 f - rgllA for each r E a, it 
follows that 

(3.18) 

Now  it  is known [2] ,  [3] that the choice r in (3.17) achieves the 
minimum on the left side of (3.18), and that, with-this choice of r, 
f - rg equals the constant function f (a). whose A-norm and Ha-  
norm are each equal to If (a) I. 

The discrete-time analogs of Theorems 3.1 and 3.2 are easy and 
left to the reader. 

Next  it is shown that a simplifying argument $at is very useful 
in Ha-norm minimization is  not applicable in A-norm minimiza- 
tion. For purposes of discussion, we recall the following known 
result. It should be noted that Lemma 3.4 below is not the most 
general result of its kind; but  it is adequate for the purposes of 
illustrating the point we wish  to make here. 

Lemma 3.4 [ I j ,  [7, Lemma (6.4.10)j: Suppse f, g E A, and 
factor g as a product uub, where u is a unit of A ,  the zeros of u are 
all on the jw-axis or at infinity, and the zeros of b are all in the 
open right half-plane. Finally, suppose f ( j w )  = 0 whenever 
u(  j w )  = 0, and that f(m) = 0 if u(m) = 0. Under these 
conditions, 

inf. Ilf-rgIl,=inf Ilf-rblI,. (3.19) 

Thus, Lemma 3.4 allows one to replace the problem of 
minimizing 11 f - rgll, by the simpler one of minimizing 1) f - 
rb 11,; this minimization problem is easily solved using interpola- 
tion theory [2], [3]. It is thqrefore worthwhile to ask whether an 
analogous result holds for  A-norm minimization. The discussion 
below, while it does not settle the question, does show that the 
method of proof used in the case of H ,  breaks down in the case of 
a. 

Suppose ro achieves the minimum on the right side of (3.19). In 
proving Lemma 3.4, one modifies u to u, as in (3.13), and sets re 
= ro/uu,. Then 

r E A  r E A  

f-r,g=f-r,uub=f-robL. (3.20) 
", 
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We now show  by example that such an approach fails in general in 
the case of A .  

Example 3.  I: Let 
m- I 

(4.5) 
i = O  

f ( s ) = - ,  g(s)=-  
S s(s- 1) 

s+ 1 (s+ 1)2 ' The inverse z-transform of the first term vanishes at all time 
instants beyond the mth, while the inverse 2-transform of the 

S s- 1 S+E second term vanishes at all time instants before the mth. Hence, 
u ( s ) = l ,  u(s )= - ,  b(s)=- 

s+ 1 s+ 9 u e ( s ) = s + l  - (3-22) from the definition (2.15), it follows that 

Then, since b has only a simple RHP zero, the minimum of I l f  - 
rb \ ( A  is readily computed using the results of [2] ,  [3] to be 0.5, 
achieved by the choice ro(s) = 0.5. Now let 

(3.23) =%' i = O  \ f , l + l l  [h.=] 1-az / /  . (4.6) 

Then Now from the discrete-time _analog of Theorem 3.2, we know that 

f(s)-re(s)g(s)=0.5+0.5E 
s- 1 the unique choice of r E A d  that minimizes the second term is 

(s+ l)(s+ E )  given by (4.4), and  that the minimum value is I h(a)l. The result 
follows. 

€/( 1 - E )  E (  1 + €)/2(1 - E )  
=0.5+-- 

Example 4.1: Consider the problem of minimizing the cost 
s+ 1 S+E * (3.24) functional 

As E + 0, the middle term looks like E / ( S  + l),  which  is O(E) ,  J =  llf-rgllAd9 
while the last term looks like - E / ~ ( s  + E ) .  Hence, rsymptotically 

where 

f ( s ) - r f ( s ) g ( s ) - 0 . 5 - -  
E 

2(S+€) ' (3.25) 

lirn /If- reg ( I A  = 0.5 + 0.5 = 1 ,  (3.26) 
e-0 

which  is larger than 0.5 = I l f  - r,bllA. 

IV. GENERAL CASE 

In this section, the problem of minimizing I l f  - rg 11 A is  studied 
without  any simplifying assumptions on g .  It turns out that an 
exact solution to the optimization problem is available only in one 
particular case, namely  in the discrete-time case where g has one 
or more zeros at the origin and possibly one other simple zero 
inside the closed unit disk. In all other cases, a technique is 
presented for obtaining bounds on the optimal performance. A 
general conclusion that emerges is that the choice of r that 
minimizes the function I l f  - rgll, does not  in general minimize [ I f  - rgllA, in contrast to the situation in Theorem 3.2. 

Theorem 4.1 below represents the only complete solution 
available in the general case. 

Theorem 4.  I: Supposef E A d ,  and suppose g E A d  is  of the 
form 

k t  Lo Az' denote the power series off, and define 

Then 
m- I 

(4.2) 

(4.3) 

Z-0.5 z + O S  f = -  
1 -0.5z , g=z2---. 1 + 0.52 (4.7) 

Sincefis already an inner function, it follows from [15, pp. 136- 
1391 that the optimal choice of r if one wishes to minimize I l f  - 
gr 11, is r = 0, which gives an  H,-optimal value for J o f  l l f l l  = 
1 .  On the other hand, applying the results of Theorem 4.1, we 
first observe that 

f ( ~ ) = - 0 . 5 + 0 . 7 5 ~ + . . .  (4.8) 

h(z) = 
f ( z )  + 0.5 -0.752 0.375 

Z* 1 - 0 . 5 ~  
=-* (4.9) 

Hence, the optimal value of J as defined above is 0.5 + 0.75 + 
) h( - 0.5)) = 1.54. Moreover, the optimizing choice of r is given 
by 

Hence, in this case the minimum value of I l f  - rg 11 A is 55 percent 
larger than the minimum value of I l f  - rg 11 ,, and is achieved for 
a different choice of r. 

Since there exist sequences { hi(z)} of functions such that 1) hi 1)- 
= 1 but 11 htII i i d  + 03, it is easy enough to construct examples 
where the mmmum value of \If - rgllA is arbitrarily larger than 
the minimum value of I l f  - rgll,. This is left to the reader. 

Now  we  study the general case, without assuming anything 
about the form of g .  In this case, no closed form solution is 
available, but a method is presented for obtaining an upper bound 
on the minimum value off - rg 11 A .  Since the minimum of I l f  - 
rgll, is a lower bound for the minimum value of (If - rg ) ) A ,  it is 
in fact possible to bracket the latter minimum. 

To provide the motivation for the discussion below, we f i s t  
briefly review the philosophy behind the H,-optimal solution, as 
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exemplified by the discussion in [ 161 of the problem of 
Nevanlinna-Pick interpolation. Tc keep matters simple, we focus 
on the discrete-time case, and restrict attention to the case where 
the function g has two distinct simple zeros in the closed  unit disk, 
each lying in the open unit disk. That is, we assume that g(z) has 
the form 

(4.11) 

where la!, I @ (  < 1 .  Let  a, b denote the values of fa t  a and 6, 
respectively. Thus, the Ha-optimization problem is  to find a 
function of minimum H ,  norm such that its value at CY is a and its 
value at /3 is b .  Now, if a = 0 and a = 0, then by the Schwarz 
lemma, the optimal interpolating function is easily shown to be 
bz /@.  Suppose it is not the case that a = 0 and a = 0. Then the 
idea is to map the closed unit disk into itself  by  means of a bilinear 
transformation of the form 

Z - a  z+- , x+- 
x -  a 

1 - a z  1-ax’  
(4.12) 

These transformations map a into 0, b into (b  - ~ ) / ( 1  - ab), CY 

into 0, and /3 into (/3 - a)/( 1 - a@). This transforms the original 
interpolation problem into another one where one of the values of 
z lies at the origin, and where the value at the origin of the 
function to be interpolated is also 0. The optimal interpolating 
function is  now  (in the new coordinates) 

(4.13) 

By carrying out the inverse of the transformations (4.12), it  is now 
possible to recover the optimal interpolating function in the 
original coordinates. 

The main fact used repeatedly in the above argument is the fact 
that the bilinear transformation (4.12) maps the closed  unit disk 
into itself, so that the H,-optimal value of the original interpola- 
tion problem is less than or equal to one if and  only if the optimal 
value of the  modified problem is less than or equal to one, i.e., if 
and only  if 

(4.14) 

This is indeed the same as the result obtained  by  testing the 
nonnegative definiteness of th_e so-called Pick matrix. Now, when 
one wishes  to minimize the A d  norm, it is quite feasible to carry 
out a transformation of the independent variable (i.e., z ) ,  but  it  is 
not possible to transform the dependent variable without affecting 
norms. Rather than attempting to give a general theory, we 
illustrate the technique by means of an example. 

Example 4.2: Consider the problem of minimizing 

J =  Ilf-grllJ,, (4. IS) 
where 

Since f is already inner and has one fewer zero than g ,  it follows 
by Lemma 4.1 that the choice of r that achieves the Ha-minimum 
is r = 0, which corresponds to I l f  - grllm = 1 .  Hence, this is 
also a lower bound for J,  i.e., J 1 1 irrespective of  how r is 
chosen. If the “naive” choice of r = 0 is applied to the 
optimization problem at hand, the resulting value of J is l l f l l  = 
2.6. On the other hand, it is possible to  do better by employing the 
transformation of variables described in the preceding paragraph. 

A=- , z = -  (4.17) 

Let 
2-0.4 h+ 0.4 
1-0.42 1 +0.4A * 

Then, sincef(0.4) = - 10/17, we can write 

f=-- ;;+A . _ -  9 1 -0.42 
17 1-0.82 

Let 

9 1-0.42  z+0.8 
17 1-0.82 ’ g,=- 1 + O . ~ Z  

h = -  

(4.18) 

(4.19) 

Then 

f -gr=   - -+h(h- rg l ) .  10 
17 (4.20) 

Now, by Theorem 3.2, we know that we can make 11 h - rg, [lad 
equal I h( - 0.8)1 by an appropriate choice of r,  namely 

h ( z ) - h ( - 0 . 8 )  1 + 0.87 
r ( z )=   gkz )  

=0.1291 ~ 

1 - 0 . 8 ~  
. (4.21) 

With choice of r,  we get 

f - g r =  - -++(-0.8)h= -0.5882+0.4261h. (4.22) 

Ilf-grll,d~0.5882+0.426111h11a,= 1.3552. (4.23) 

It is of course possible to compute I l f  - gr 11 J~ precisely by taking 
inverse z-transforms; in this case it turns out that the upper bound 
in (4.23) is exact. Compare the number 1.3552 obtained above to 
2.6, which corresponds to using the H,-optimal choice of r. At 
this stage, we still do not  know the optimal value of J,  but  we do 
know that it is somewhere between 1 and 1.3552. 

It should be clear that there is nothing special in the fact that the 
function g in each of the above examples has only two unstable 
zeros; in fact, the iterative procedure is applicable to functions 
having an arbitrary number of unstable zeros. Moreover, it has an 
obvious discrete-time analog. 

10 
17 

V. DISTURBANCE REJECTION 

In this section, the various minimization results presented in 
earlier sections are interpreted in terms of disturbance rejection. 

Theorem 5.1: Suppose a plant p is of the form gp,  , where g E a has zeros only on the jw-axis or at infinity, and p ,  has no zeros 
in the extended RHP (but  it can have poles there). Finally, 
suppose that w is a multiple of g in a. Under these conditions, 

Proof: The theorem is first proved under the assumption that 
p is stable in addition to satisfying the above hyeotheses. In this 
case, the assumptions imply  that p ,  is a unit of A .  Moreover, as 
shown  in [7, sect. 6.41, the problem can be reformulated as one of 
minimizing 

with respect to r E a. Now let q = rpl denote another free 
parameter. Then 

Since w is a multiple of g, it follows from Theorem 5.1 that 

inf J=O. (5.4) 
9 

This establishes the theorem in the case where p is stable. 
To establish the theorem for the case where p is unstable, note 
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first of all that the plant p is strongly stabilizable, i.e., there exists and  of course the same is true of Hm-norms as well. Let us first 
a stable controller co that stabilizes p ;  the reason is  that p satisfies examine the H ,  optimum. It is routine to show using the methods 
the parity interlacing property of [ 131. Accordingly, choose a of [ 2 ] ,  [3 ]  that the optimal choice of r is 
stable co that stabilizes p, and let po denote p / ( l  + cop). Then,  as 
shown in [7,  sect. 5.31, the RHP zeros ofp,  are precisely the same 
as those ofp, since co is stable; in other words, po = gu, where u 

rdz )  = ~ (5.14) 

is a unit  of A .  Next, observe [ l ,  p. 3071, [7,  Theorem (5.3.10)], 
[ 14, Theorem (8.4.8)] that, if c is any controller that stabilizes po, which results in !I( Y - nro)dllm = 2 .  The corresponding optimal 
then the controller c + co stabilizes the original plant p .  Also, controller is 

1 
1 - 0 . 5 ~  

1 1  1 --. - 
1 +p(c+co)- 1 +poc 1 +PC, . 

e=-= x + dro 
Y - nro 

- 0.75. ( 5 . 1 5 )  

Hence, if the controller c + co is applied to the original plant p, When one attempts to minimize /I( y - nr)dllAdr it is not 
the resulting cost functional of (5 .1 )  becomes possible to discard the inner factor of d. In fact, the cholce of ro in 

(5.14) results in 

J =  I/ l+p(c+co) W 11 A = / l L  1 +poc . --!--I1 1 +PC0 /i 2 ( ~ - 0 . 5 )  y-nro= - ~ ,  
1-0.52 

(5 .6 )  

However, by the earlier discussion of the stable plant case, it 
follows that the first quantity on the right side can be made 
arbitrarily small by a suitable choice of c E S( po). This 
concludes the proof. 

Next, we interpret Theorem 3.2 in terms of optimal disturbance 
rejection. 

Theorem 5.2: Suppose p is a stable scalar plant, and suppose p 
has only one RHP zero, -namely a simple one at s = 0. Suppose 
also that w is a unit of A .  Under these conditions, 

Moreover, the unique controller that achieves each minimum is c 
= r / (  1 - p r ) ,  where 

Note that if p is an unstable scalar plant with  only one RHP 
zero, then it  is no longer true in general that 

The reason is that, if p is unstable, then the cost function on the 
left side of (5.7) becomes 

II W(Y - nr)dllA (5.10) 

where p = n / d  is a coprime factorization and xn + yd = 1 .  
However, in this case, it is not in general possible to discard the 
inner factor of wd, as in the case of H,-norm minimization. This 
is illustrated by example. 

Example 5. I: Let 

P ( 2 )  == I 

Z 
w(2) = 1 .  (5.11) 

11 y -  - = 4 .  
Ad 

(5 .15)  

Using the results of Theorem 4.1, it can be shown that 

corresponding to the choice r = 0,  and the ad-optimal controller 
i s c  = x / y  = - 1 .  

We present one last result. 
Theorem 5.2: Consider the discrete-time case, and suppose the 

scalar plant p has two properties: i) the only poles of p inside the 
closed unit disk are at the origin; and ii) p has only one zero inside 
the closed unit disk, namely a simple zero at z = a. Finally, 
suppose w is a unit of A d .  Under these conditions, 

Moreover, both minima are attained by the same controller. 

the function zn where n is some integer preserves A ,norms. 
The proof is easy and is based on the fact that multiplication by 

VI. MULTIVAIUABLE SYSTEMS 

In this section, we present a simple extension of Theorem 5 .1  to 
multivariable minimum phase systems. At present this is the only 
result that is available. A preliminary lemma which facjlitates the 
proof is presented fist .  Note that, in this section, M ( A  ) denotes 
the set of matrices, of whatever dimensions, with elements in A .  

Lemma 6.1: Suppose F, G, H E M ( A  ), and suppose G, H 

are unit matrices in M ( A  ), and Dgr Dh are diagonal matnces. 
Further, if 

have the following forms: ,G = Dg U,, H = UhDh, where Ug., uh 

then each dgir dhj has its zeros only on the jw-axis or at infinity. 
Finally, suppose F( jw) = 0 whenever dgi( jw)  or dh, ( jw) equals 
zero. Under these conditions, 

Then a coprime factorization n / d of p and a particular solution x ,  Theorem 6. I: Suppose a plant is of the form gp l  , where E 
y of the Aryabhatta identity xn + yd = 1 are given by 2 has zeros only on the jw-axis or at infinity, and P I  has fu l l  row 

rank at all s in the extended RHP. Suppose T, W E MJA),  and n ( z ) = z ,  d ( z ) = z - 0 * 5 ,   x ( z ) = 2 ,   r ( z ) = - 2 '  (5'12)  either Tor  Wis  ofthe  formgMfor  someM E M ( A ) .  Under 
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The proof  of Lemma 6.1 and Theorem 6.1 are very similar to 
their scalar counterparts and are therefore omitted. 

VII. CONCLUSIONS 

In this paper, we have formulated the problem of optimal 
disturbance rejection in the case where the disturbance is 
generated as the output of a stable system in response to an input 
which is assumed to be  of unit amplitude, but  is otherwise 
arbitrary. The objective is to choose a controller that minimizes 
the maximum amplitude of the plant output in response to  such a 
disturbance. Mathematically, this corresponds to requiring uni- 
formly good disturbance rejection over all time. Since the 
problem of optimal tracking is equivalent to that of optimal 
disturbance rejection if a feedback controller is  used (see [7, sect. 
5.6]), the theory presented here can also be used to design optimal 
controllers that achieve uniformly good tracking over all time 
rather than a tracking error whose L2-norm is small, as is the case 
with the currently popular H ,  theory. 

It has been shown that some results from the H ,  theory carry 
over to the present setting, but a great many do not. Specifically, 
it has been shown that arbitrarily good disturbance rejection is 
possible in the case of minimum phase plants, subject to certain 
technical assumptions; this result is analogous to that in the H ,  
theory. Similarly, it has been shown that  in the case of stable 
scalar plants with exactly one unstable zero, the optimal achieva- 
ble performance in the case of  bounded disturbances is exactly the 
same as that achievable with square-integrable disturbances, and 
is in fact achieved with the same controller. In other situations, it 
has been shown by example that the optimal performance 
achievable in the case of  bounded disturbances can be worse than 
in the case of disturbances with finite energy, and can require a 
different choice of optimal controller. Closed form optimal 
solutions have been obtained for some special cases of scalar 
plants, and a method has been presented for estimating the 
optimum in the general case as well as for generating suboptimal 
controllers. 

To the best  of the author’s knowledge, this is the first paper on 
this subject, which stands as a complement to the theory of H,- 
n o m  minimization. It is  hoped  that further research will  shed 
light on most  of the questions left unanswered here. 
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