

Optimal relaxation parameter for the Uzawa Method

Ricardo H. Nochetto^{1,*}, Jae-Hong Pyo^{2,**}

- ¹ Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; e-mail: rhn@math.umd.edu
- ² Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA; e-mail: pjh@math.purdue.edu

Received December 10, 2002 / Revised version received September 30, 2003 / Published online August 18, 2004 – © Springer-Verlag 2004

Summary. We consider the Uzawa method to solve the stationary Stokes equations discretized with stable finite elements. An iteration step consists of a velocity update \mathbf{u}^{n+1} involving the (augmented Lagrangian) operator $-\nu\Delta - \rho\nabla \text{div}$ with $\rho \ge 0$, followed by the pressure update $p^{n+1} = p^n - \alpha\nu \text{div} \mathbf{u}^{n+1}$, the so-called Richardson update. We prove that the inf-sup constant β satisfies $\beta \le 1$ and that, if $\sigma = 1 + \rho\nu^{-1}$, the iteration converges linearly with a contraction factor $\beta^2 \alpha \sigma^{-1} (2\sigma - \alpha)$ provided $0 < \alpha < 2\sigma$. This yields the optimal value $\alpha = \sigma$ regardless of β .

Mathematics Subject Classification (1991): 65N12, 65N15

1 Introduction

Given an open bounded polygon Ω in \mathbb{R}^d , with $d \ge 2$, we consider the stationary Stokes equations, namely the simplest model for incompressible viscous flows:

(1.1)
$$-\nu \Delta \mathbf{u} + \nabla p = \mathbf{f}, \quad \text{in } \Omega,$$

(1.2)
$$\operatorname{div} \mathbf{u} = 0, \quad \operatorname{in} \Omega,$$

with vanishing Dirichlet boundary condition $\mathbf{u} = \mathbf{0}$ on $\partial \Omega$ and pressure mean-value $\int_{\Omega} p = 0$. Here the unknowns are the (vector) velocity field $\mathbf{u} \in \mathbf{H}_0^1(\Omega)$ and the (scalar) pressure $p \in L_0^2(\Omega)$; the forcing function satisfies $\mathbf{f} \in \mathbf{L}^2(\Omega)$ and $\nu = Re^{-1}$ is the reciprocal of the Reynolds number.

^{*} Partially supported by NSF Grant DMS-9971450

^{**} Partially supported by NSF Grants DMS-9971450 and DMS-0204670 *Correspondence to*: J.-H. Pyo

In view of the incompressibility constraint (1.2), the momentum equation (1.1) is equivalent to the *augmented Lagrangian* formulation with $\rho \ge 0$

$$-\nu \Delta \mathbf{u} - \rho \nabla \operatorname{div} \mathbf{u} + \nabla p = \mathbf{f}, \quad \text{in } \Omega.$$

This equivalence is no longer true at the discrete level, where the additional operator $-\rho \nabla div$ may improve the convergence of iterative methods [3]. We provide a quantitative measure of such improvement in this paper.

The following (infinite-dimensional) Uzawa algorithm to solve the Stokes system is known to converge for appropriate values of the *relaxation parameter* α [2–6].

Algorithm 1 (Uzawa Method) Given a suitable relaxation parameter $\alpha > 0$ and initial guess p^0 :

Step 1: Find $\mathbf{u}^{n+1} \in \mathbf{H}_0^1(\Omega)$ *as the solution of*

$$-\nu \Delta \mathbf{u}^{n+1} - \rho \nabla \operatorname{div} \mathbf{u}^{n+1} + \nabla p^n = \mathbf{f}, \quad in \ \Omega;$$

Step 2: Find $p^{n+1} \in L^2_0(\Omega)$ from the Richardson update

$$p^{n+1} = p^n - \alpha \nu \operatorname{div} \mathbf{u}^{n+1}.$$

Convergence of Algorithm 1 for $\rho = 0$ is proved via boundedness and coercivity of the Schur complement operator $S = -\text{div} (-\Delta^{-1})\nabla$ with sufficiently small $\alpha < 1$ in [2,4]. In [6] Temam shows the convergence range $0 < \alpha < 2$ also for $\rho = 0$, but does not quite prove that Algorithm 1 is a contraction and thus cannot find the optimal value of α . For the case $\rho > 0$, Fortin and Glowinski prove convergence for $0 < \alpha \le 2\rho/\nu$ using a spectral analysis [3].

The choice of relaxation parameter $\alpha > 0$ is crucial for the convergence of Uzawa method because a small value of α yields a large contraction factor whereas a large value may lead to divergence. It is the purpose of this note to show convergence for all $0 < \alpha < 2(1 + \rho/\nu)$ and that $\alpha = 1 + \rho/\nu$ is an optimal choice. This has been already instrumental in [1] for $\rho = 0$. Our analysis is in the spirit of that in [6] for $\rho = 0$, but it gives rise to more precise bounds.

We consider now a finite element discretization. Let $\mathfrak{T} = \{K\}$ be a shaperegular partition of Ω of local meshsize *h* into closed elements *K*; \mathfrak{T} can be highly graded though. The finite element spaces to be used for approximating the velocity space $\mathbf{H}_0^1(\Omega)$ and pressure space $L_0^2(\Omega)$ are:

$$\mathbb{V}_h := \{ \mathbf{v}_h \in \mathbf{H}_0^1(\Omega) : \mathbf{v}_h |_K \in \mathcal{P}(K), \text{ for all } K \in \mathfrak{T} \}, \\ \mathbb{P}_h := \{ \mathbf{v}_h \in L^2(\Omega) : p_h |_K \in \mathcal{Q}(K), \text{ for all } K \in \mathfrak{T} \}, \end{cases}$$

where $\mathcal{P}(K)$ and $\mathcal{Q}(K)$ are spaces of polynomials with degree bounded uniformly with respect to $K \in \mathfrak{T}$ [2,4]. These spaces are compatible, namely

they satisfy the following discrete *inf-sup condition: There exists a constant* $\beta > 0$ such that [2,4]

(1.3)
$$\inf_{p_h \in \mathbb{P}_h} \sup_{\mathbf{v}_h \in \mathbb{V}_h} \frac{\langle \operatorname{div} \mathbf{v}_h , p_h \rangle}{\|\nabla \mathbf{v}_h\| \|p_h\|} \ge \beta;$$

hereafter $\|\cdot\|$ indicates the L^2 -norm in Ω . Hence, there is a unique solution $(\mathbf{u}_h, p_h) \in \mathbb{V}_h \times \mathbb{P}_h$ to the following discrete Stokes problem [2,4]:

(1.4)
$$\begin{array}{c} \nu \left\langle \nabla \mathbf{u}_h , \nabla \mathbf{w}_h \right\rangle - \left\langle p_h , \operatorname{div} \mathbf{w}_h \right\rangle = \left\langle \mathbf{f} , \mathbf{w}_h \right\rangle, & \forall \mathbf{w}_h \in \mathbb{V}_h, \\ \left\langle \operatorname{div} \mathbf{u}_h , q_h \right\rangle = 0, & \forall q_h \in \mathbb{P}_h. \end{array}$$

Proposition 1 (Inf-Sup Constant) Let β be the inf-sup constant of (1.3). *Then we have*

$$(1.5) \qquad \qquad \beta \le 1$$

The discrete Uzawa method, a discrete version of Algorithm 1, is known to be an effective iteration to compute (\mathbf{u}_h, p_h) , and reads as follows [2,4].

Algorithm 2 (Discrete Uzawa Method) For a suitable $\alpha > 0$ and initial guess $p_h^0 \in \mathbb{P}_h$:

Step 1: Find $\mathbf{u}_h^{n+1} \in \mathbb{V}_h$ as the solution of

(1.6)
$$\nu \left\langle \nabla \mathbf{u}_{h}^{n+1}, \nabla \mathbf{w}_{h} \right\rangle + \rho \left\langle \operatorname{div} \mathbf{u}_{h}^{n+1}, \operatorname{div} \mathbf{w}_{h} \right\rangle - \left\langle p_{h}^{n}, \operatorname{div} \mathbf{w}_{h} \right\rangle$$
$$= \left\langle \mathbf{f}, \mathbf{w}_{h} \right\rangle, \quad \forall \mathbf{w}_{h} \in \mathbb{V}_{h};$$

Step 2: Find $p_h^{n+1} \in \mathbb{P}_h$ from the Richardson update

(1.7)
$$\langle p_h^{n+1}, q_h \rangle = \langle p_h^n, q_h \rangle - \alpha \nu \langle \operatorname{div} \mathbf{u}_h^{n+1}, q_h \rangle.$$

In §§3 and 4, we prove the following sharp decay estimates.

Theorem 1 (Convergence Rate for Pressure) If $0 < \alpha < 2\sigma$, then Algorithm 2 satisfies

(1.8)
$$||p_h - p_h^{n+1}|| \le (1 - \alpha \beta^2 \sigma^{-2} (2\sigma - \alpha))^{1/2} ||p_h - p_h^n||,$$

where $\sigma := 1 + \frac{\rho}{v}$. The same estimate is valid for Algorithm 1.

Corollary 1 (Convergence Rate for Velocity) Both Algorithms 1 and 2 satisfy

(1.9)
$$\|\nabla(\mathbf{u}_h - \mathbf{u}_h^{n+1})\| \le \nu^{-1} (1 - \alpha \beta^2 \sigma^{-2} (2\sigma - \alpha))^{n/2} \|p_h - p_h^0\|.$$

Remark 1.1 (Optimal relaxation Parameter) Consider now the function $f(\alpha) = (1 - \frac{\alpha\beta^2}{\sigma^2}(2\sigma - \alpha))$. We see that Algorithm 2 converges *linearly* with contraction factor $0 < f(\alpha) < 1$ provided $0 < \alpha < 2\sigma$. Since the minimum of $f(\alpha)$ is $1 - \beta^2$ at $\alpha = \sigma$, we conclude that the *optimal* value of α is

$$\alpha = 1 + \frac{\rho}{\nu}.$$

We observe that this result is independent of the domain Ω , and valid for both Algorithms 1 and 2, whereas the eigenvalues of the Schur complement operator, the discrete version of $S := \operatorname{div} (\Delta + \rho \nu^{-1} \nabla \operatorname{div})^{-1} \nabla$, depend on Ω . It is plausible that for a given Ω and finite element pair $(\mathbb{V}_h, \mathbb{P}_h)$, a special analysis would yield a better value for α since Uzawa is simply a Richardson iteration for the Schur complement. It is also plausible that for a rectangular domain with high aspect ratio, $\alpha = \sigma$ is the only choice valid for all aspect ratios. This deserves further investigation.

We also point out that (1.9) improves upon [6], where \mathbf{u}^n is shown to converge weakly in $\mathbf{H}_0^1(\Omega)$.

2 Proof of Proposition 1

In this section, we prove a couple of crucial properties of the divergence operator, in particular an upper bound for the inf-sup constant β of (1.3). Since the following known result plays a pivotal role in our subsequent discussion, we present its elementary proof; we refer to [6, p.140].

Lemma 2.1 (Div-Grad Relation) For all $\mathbf{v} \in \mathbf{H}_0^1(\Omega)$, we have

$$\|\operatorname{div} \mathbf{v}\| \le \|\nabla \mathbf{v}\|.$$

Proof Given $\mathbf{v} = (v_i)_{i=1}^d \in \mathbf{H}_0^1(\Omega)$, there exists a sequence $\{\mathbf{v}^n\} \in \mathbf{C}_0^\infty(\Omega)$ such that

(2.2)
$$\|\nabla(\mathbf{v}^n - \mathbf{v})\| \to 0$$
 as $n \to \infty$.

Since $\mathbf{v}^n \in \mathbf{C}_0^{\infty}(\Omega)$, integration by parts implies

$$\|\operatorname{div} \mathbf{v}^{n}\|^{2} = \int_{\Omega} \left(\sum_{i=1}^{d} \partial_{x_{i}} v_{i}^{n} \right)^{2} d\mathbf{x}$$
$$= \int_{\Omega} \sum_{i=1}^{d} \sum_{j=1}^{d} \partial_{x_{i}} v_{i}^{n} \partial_{x_{j}} v_{j}^{n} d\mathbf{x}$$

$$= \int_{\Omega} \sum_{i=1}^{d} \sum_{j=1}^{d} \partial_{x_i} v_j^n \partial_{x_j} v_i^n d\mathbf{x}$$
$$\leq \int_{\Omega} \sum_{i=1}^{d} \sum_{j=1}^{d} (\partial_{x_i} v_j^n)^2 d\mathbf{x} = \|\nabla \mathbf{v}^n\|^2.$$

The assertion (2.1) follows from (2.2) upon passing to the limit $n \to \infty$. \Box

Applying Lemma 2.1, we can find an upper bound of the inf-sup constant β of (1.3).

Proof of Proposition 1 Let $q_h \in \mathbb{P}_h$ be an arbitrary function. Then, the discrete inf-sup condition (1.3) is equivalent to the existence of a function $\mathbf{v}_h \in \mathbb{V}_h$ such that [2,4]

(2.3)
$$\langle \operatorname{div} \mathbf{v}_h, q_h \rangle = \|q_h\|^2$$
 and $\|\nabla \mathbf{v}_h\| \le \frac{1}{\beta} \|q_h\|.$

Then, by virtue of (2.3) and Lemma 2.1, we obtain

$$\|q_h\|^2 = \langle \operatorname{div} \mathbf{v}_h, q_h \rangle \le \|\operatorname{div} \mathbf{v}_h\| \|q_h\| \le \|\nabla \mathbf{v}_h\| \|q_h\| \le \frac{1}{\beta} \|q_h\|^2,$$

which implies the asserted estimate (1.5).

3 Proof of Theorem 1: Case $\rho = 0$

In this section we prove Theorem 1 for $\rho = 0$. To this end, we use the following error functions:

$$\mathbf{E}_{h}^{n+1} = \mathbf{u}_{h} - \mathbf{u}_{h}^{n+1}, \qquad e_{h}^{n+1} = p_{h} - p_{h}^{n+1}.$$

We proceed in several steps. Upon subtracting (1.6) (with $\rho = 0$) from (1.4), we have

(3.1)
$$\nu \langle \nabla \mathbf{E}_h^{n+1}, \nabla \mathbf{w}_h \rangle - \langle e_h^n, \operatorname{div} \mathbf{w}_h \rangle = 0, \quad \forall \mathbf{w}_h \in \mathbb{V}_h.$$

Since \mathbf{u}_h is a discrete divergence free function, (1.7) can be written by

(3.2)
$$\langle e_h^{n+1}, q_h \rangle = \langle e_h^n, q_h \rangle - \alpha \nu \langle \operatorname{div} \mathbf{E}_h^{n+1}, q_h \rangle, \quad \forall q_h \in \mathbb{P}_h.$$

If we choose $\mathbf{w}_h = \mathbf{E}_h^{n+1}$, then (3.1) becomes

(3.3)
$$\nu \left\| \nabla \mathbf{E}_{h}^{n+1} \right\|^{2} - \left\langle e_{h}^{n}, \operatorname{div} \mathbf{E}_{h}^{n+1} \right\rangle = 0.$$

In light of (3.2) and (3.3), we obtain

(3.4)
$$\nu \|\nabla \mathbf{E}_{h}^{n+1}\|^{2} = -\frac{1}{\alpha\nu} \langle e_{h}^{n}, e_{h}^{n+1} - e_{h}^{n} \rangle$$
$$= -\frac{1}{2\alpha\nu} \left(\|e_{h}^{n+1}\|^{2} - \|e_{h}^{n}\|^{2} - \|e_{h}^{n+1} - e_{h}^{n}\|^{2} \right).$$

Consequently, we arrive at

(3.5)
$$2\alpha\nu^{2} \|\nabla \mathbf{E}_{h}^{n+1}\|^{2} + \|e_{h}^{n+1}\|^{2} = \|e_{h}^{n}\|^{2} + \|e_{h}^{n+1} - e_{h}^{n}\|^{2}.$$

The next step is to estimate $||e_h^{n+1} - e_h^n||^2$. Choosing $q_h = e_h^{n+1} - e_h^n$ in (3.2) gives

$$\|e_{h}^{n+1} - e_{h}^{n}\|^{2} = -\alpha\nu \left\langle \text{div } \mathbf{E}_{h}^{n+1}, e_{h}^{n+1} - e_{h}^{n} \right\rangle \le \alpha\nu \|\text{div } \mathbf{E}_{h}^{n+1}\| \|e_{h}^{n+1} - e_{h}^{n}\|,$$

whence

(3.6)
$$\left\|e_{h}^{n+1}-e_{h}^{n}\right\|\leq\alpha\nu\left\|\operatorname{div}\mathbf{E}_{h}^{n+1}\right\|\leq\alpha\nu\left\|\nabla\mathbf{E}_{h}^{n+1}\right\|$$

Replacing (3.6) into (3.5) immediately leads to

(3.7)
$$v^{2}\alpha(2-\alpha) \left\| \nabla \mathbf{E}_{h}^{n+1} \right\|^{2} + \left\| e_{h}^{n+1} \right\|^{2} \leq \left\| e_{h}^{n} \right\|^{2}.$$

We finally prove (1.8) for $\rho = 0$. Since $e_h^n \in \mathbb{P}_h$, there exists a function $\mathbf{v}_h \in \mathbb{V}_h$ such that

(3.8)
$$\langle \operatorname{div} \mathbf{v}_h, e_h^n \rangle = \|e_h^n\|^2$$
 and $\|\nabla \mathbf{v}_h\| \leq \frac{1}{\beta} \|e_h^n\|,$

which is equivalent to (1.3) [2,4]. In view of (3.1) and (3.8), we get

$$\begin{split} \|\boldsymbol{e}_{h}^{n}\|^{2} &= \left\langle \operatorname{div} \mathbf{v}_{h} , \, \boldsymbol{e}_{h}^{n} \right\rangle \\ &= \nu \left\langle \nabla \mathbf{E}_{h}^{n+1} , \, \nabla \mathbf{v}_{h} \right\rangle \\ &\leq \nu \|\nabla \mathbf{E}_{h}^{n+1}\| \|\nabla \mathbf{v}_{h}\| \\ &\leq \frac{\nu}{\beta} \|\nabla \mathbf{E}_{h}^{n+1}\| \|\boldsymbol{e}_{h}^{n}\|. \end{split}$$

Consequently,

(3.9)
$$\beta \left\| e_h^n \right\| \le \nu \left\| \nabla \mathbf{E}_h^{n+1} \right\|$$

In light of (3.7) and (3.9), we easily obtain

$$\beta^{2}\alpha(2-\alpha) \|e_{h}^{n}\|^{2} + \|e_{h}^{n+1}\|^{2} \le \|e_{h}^{n}\|^{2},$$

which implies (1.8) for $\rho = 0$, and thus completes the proof of Theorem 1.

On the other hand, Corollary 1 follows from (3.3) together with Proposition 1 and Theorem 1.

4 Proof of Theorem 1: Case $\rho > 0$

In this section, we prove Theorem 1 for $\rho > 0$. We note that both (3.2) and (3.6) are still valid for $\rho > 0$, because they are solely based on the Richardson update (1.7). Upon subtracting (1.6) (with $\rho > 0$) from (1.4), we have

(4.1)

$$\nu \langle \nabla \mathbf{E}_{h}^{n+1}, \nabla \mathbf{w}_{h} \rangle + \rho \langle \operatorname{div} \mathbf{E}_{h}^{n+1}, \operatorname{div} \mathbf{w}_{h} \rangle - \langle e_{h}^{n}, \operatorname{div} \mathbf{w}_{h} \rangle = 0, \quad \forall \mathbf{w}_{h} \in \mathbb{V}_{h}.$$

Choosing $\mathbf{w}_h = \mathbf{E}_h^{n+1}$ and applying (3.2), (4.1) becomes

$$\begin{split} \nu \| \nabla \mathbf{E}_{h}^{n+1} \|^{2} + \rho \| \operatorname{div} \mathbf{E}_{h}^{n+1} \|^{2} &= \langle e_{h}^{n}, \operatorname{div} \mathbf{E}_{h} \rangle \\ &= -\frac{1}{\alpha \nu} \langle e_{h}^{n}, e_{h}^{n+1} - e_{h}^{n} \rangle \\ &= -\frac{1}{2\alpha \nu} \left(\| e_{h}^{n+1} \|^{2} - \| e_{h}^{n} \|^{2} - \| e_{h}^{n+1} - e_{h}^{n} \|^{2} \right), \end{split}$$

instead of (3.4). In light of (3.6), we thus obtain

(4.2)

$$2\alpha\nu^{2}\left(\left\|\nabla\mathbf{E}_{h}^{n+1}\right\|^{2}+\frac{\rho}{\nu}\left\|\operatorname{div}\,\mathbf{E}_{h}^{n+1}\right\|^{2}-\frac{\alpha}{2}\left\|\operatorname{div}\,\mathbf{E}_{h}^{n+1}\right\|^{2}\right)+\left\|e_{h}^{n+1}\right\|^{2}\leq\left\|e_{h}^{n}\right\|^{2}.$$

Replacing now

$$-\frac{\alpha}{2} \|\operatorname{div} \mathbf{E}_{h}^{n+1}\|^{2} = -\frac{\alpha\nu}{2\rho} \left(\|\nabla \mathbf{E}_{h}^{n+1}\|^{2} + \frac{\rho}{\nu} \|\operatorname{div} \mathbf{E}_{h}^{n+1}\|^{2} \right) + \frac{\alpha\nu}{2\rho} \|\nabla \mathbf{E}_{h}^{n+1}\|^{2},$$

into (4.2), we end up with

$$2\alpha\nu^{2}\left(1-\frac{\alpha\nu}{2\rho}\right)\left(\left\|\nabla\mathbf{E}_{h}^{n+1}\right\|^{2}+\frac{\rho}{\nu}\left\|\operatorname{div}\mathbf{E}_{h}^{n+1}\right\|^{2}\right)+\frac{\alpha^{2}\nu^{3}}{\rho}\left\|\nabla\mathbf{E}_{h}^{n+1}\right\|^{2} +\left\|e_{h}^{n+1}\right\|^{2} \leq \left\|e_{h}^{n}\right\|^{2}.$$
(4.3)

Using inf-sup property (3.8), we deduce

$$\begin{split} \|\boldsymbol{e}_{h}^{n}\|^{2} &= \langle \operatorname{div} \mathbf{v}_{h}, \, \boldsymbol{e}_{h}^{n} \rangle \\ &= \nu \left\langle \nabla \mathbf{E}_{h}^{n+1}, \, \nabla \mathbf{v}_{h} \right\rangle + \rho \left\langle \operatorname{div} \mathbf{E}_{h}^{n+1}, \, \operatorname{div} \mathbf{v}_{h} \right\rangle \\ &\leq \nu \|\nabla \mathbf{E}_{h}^{n+1}\| \|\nabla \mathbf{v}_{h}\| + \rho \|\operatorname{div} \mathbf{E}_{h}^{n+1}\| \|\operatorname{div} \mathbf{v}_{h}\| \\ &\leq \left(\nu \|\nabla \mathbf{v}_{h}\|^{2} + \rho \|\operatorname{div} \mathbf{v}_{h}\|^{2}\right)^{\frac{1}{2}} \left(\nu \|\nabla \mathbf{E}_{h}^{n+1}\|^{2} + \rho \|\operatorname{div} \mathbf{E}_{h}^{n+1}\|^{2}\right)^{\frac{1}{2}} \\ &\leq \frac{\nu \sqrt{\sigma}}{\beta} \|\nabla \boldsymbol{e}_{h}^{n}\| \left(\|\nabla \mathbf{E}_{h}^{n+1}\|^{2} + \frac{\rho}{\nu} \|\operatorname{div} \mathbf{E}_{h}^{n+1}\|^{2} \right)^{\frac{1}{2}}, \end{split}$$

where we have used (2.1) for $\mathbf{v} = \mathbf{v}_h$ and $\sigma = 1 + \frac{\rho}{\nu}$. Consequently, we infer that

$$\|\boldsymbol{e}_{h}^{n}\|^{2} \leq \frac{\nu^{2}\sigma}{\beta^{2}} \left(\left\| \nabla \mathbf{E}_{h}^{n+1} \right\|^{2} + \frac{\rho}{\nu} \left\| \operatorname{div} \mathbf{E}_{h}^{n+1} \right\|^{2} \right)$$

and, making use of (2.1) again for $\mathbf{v} = \mathbf{E}_h^{n+1}$, that

$$\|\boldsymbol{e}_h^n\|^2 \leq \frac{\nu^2 \sigma^2}{\beta^2} \|\nabla \mathbf{E}_h^{n+1}\|^2.$$

Replacing these two inequalities into (4.3), we obtain

$$\left(\frac{2\alpha\beta^2}{\sigma}\left(1-\frac{\alpha\nu}{2\rho}\right)+\frac{\alpha^2\beta^2\nu}{\rho\sigma^2}\right)\|e_h^n\|^2+\|e_h^{n+1}\|^2\leq \|e_h^n\|^2,$$

or equivalently,

$$\begin{split} \left\| e_h^{n+1} \right\|^2 &\leq \left(1 - \frac{\alpha \beta^2}{\sigma^2} \left(2\sigma - \frac{\alpha \nu}{\rho} (\sigma - 1) \right) \right) \| e_h^n \|^2 \\ &= \left(1 - \frac{\alpha \beta^2}{\sigma^2} (2\sigma - \alpha) \right) \| e_h^n \|^2. \end{split}$$

This is the asserted estimate (1.8). The proof of Theorem 1 for $\rho > 0$ is thus complete. Finally, the proof of Corollary 1 for $\rho > 0$ is identical to the case $\rho = 0$.

Acknowledgements. We would like to thank F. Brezzi and M. Fortin for several comments and suggestions.

References

- Bänsch, E., Morin, P., Nochetto, R.H.: An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition. SIAM J. Numer. Anal. 40 (4), 1207– 1229 (2002)
- [2] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, (1991)
- [3] Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the numerical solution of boundary value problems, Studies in Mathematics and Applications, Vol 15, North-Holland (1983)
- [4] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations, Springer-Verlag (1986)
- [5] Pyo, J.-H.: The Gauge-Uzawa and related projection finite element methods for the evolution Navier-Stokes equations. Ph.D dissertation, University of Maryland, (2002)
- [6] Temam, R.: Navier-Stokes Equations North-Holland (1984)