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Summary. We consider the Uzawa method to solve the stationary Stokes
equations discretized with stable finite elements. An iteration step consists
of a velocity update un+1 involving the (augmented Lagrangian) operator
−ν� − ρ∇div with ρ ≥ 0, followed by the pressure update pn+1 = pn −
ανdiv un+1, the so-called Richardson update. We prove that the inf-sup con-
stant β satisfies β ≤ 1 and that, if σ = 1 + ρν−1, the iteration converges
linearly with a contraction factor β2ασ−1

(
2σ − α

)
provided 0 < α < 2σ .

This yields the optimal value α = σ regardless of β.

Mathematics Subject Classification (1991): 65N12, 65N15

1 Introduction

Given an open bounded polygon � in R
d , with d ≥ 2, we consider the

stationary Stokes equations, namely the simplest model for incompressible
viscous flows:

−ν�u + ∇p = f, in �,(1.1)

div u = 0, in �,(1.2)

with vanishing Dirichlet boundary condition u = 0 on ∂� and pressure
mean-value

∫
�

p = 0. Here the unknowns are the (vector) velocity field
u ∈ H1

0(�) and the (scalar) pressure p ∈ L2
0(�); the forcing function sat-

isfies f ∈ L2(�) and ν = Re−1 is the reciprocal of the Reynolds number.
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In view of the incompressibility constraint (1.2), the momentum equation
(1.1) is equivalent to the augmented Lagrangian formulation with ρ ≥ 0

−ν�u − ρ∇div u + ∇p = f, in �.

This equivalence is no longer true at the discrete level, where the additional
operator −ρ∇div may improve the convergence of iterative methods [3].
We provide a quantitative measure of such improvement in this paper.

The following (infinite-dimensional) Uzawa algorithm to solve the Stokes
system is known to converge for appropriate values of the relaxation param-
eter α [2–6].

Algorithm 1 (Uzawa Method) Given a suitable relaxation parameter
α > 0 and initial guess p0:

Step 1: Find un+1 ∈ H1
0(�) as the solution of

−ν�un+1 − ρ∇div un+1 + ∇pn = f, in �;
Step 2: Find pn+1 ∈ L2

0(�) from the Richardson update

pn+1 = pn − ανdiv un+1.

Convergence of Algorithm 1 for ρ = 0 is proved via boundedness and
coercivity of the Schur complement operator S = −div (−�−1)∇ with suf-
ficiently small α < 1 in [2,4]. In [6] Temam shows the convergence range
0 < α < 2 also for ρ = 0, but does not quite prove that Algorithm 1 is a
contraction and thus cannot find the optimal value of α. For the case ρ > 0,
Fortin and Glowinski prove convergence for 0 < α ≤ 2ρ/ν using a spectral
analysis [3].

The choice of relaxation parameter α > 0 is crucial for the convergence
of Uzawa method because a small value of α yields a large contraction factor
whereas a large value may lead to divergence. It is the purpose of this note
to show convergence for all 0 < α < 2(1 + ρ/ν) and that α = 1 + ρ/ν

is an optimal choice. This has been already instrumental in [1] for ρ = 0.
Our analysis is in the spirit of that in [6] for ρ = 0, but it gives rise to more
precise bounds.

We consider now a finite element discretization. Let T = {K} be a shape-
regular partition of � of local meshsize h into closed elements K; T can be
highly graded though. The finite element spaces to be used for approximating
the velocity space H1

0(�) and pressure space L2
0(�) are:

Vh := {vh ∈ H1
0(�) : vh|K ∈ P(K), for all K ∈ T},

Ph := {vh ∈ L2(�) : ph|K ∈ Q(K), for all K ∈ T},
where P(K) and Q(K) are spaces of polynomials with degree bounded uni-
formly with respect to K ∈ T [2,4]. These spaces are compatible, namely
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they satisfy the following discrete inf-sup condition: There exists a constant
β > 0 such that [2,4]

inf
ph∈Ph

sup
vh∈Vh

〈div vh , ph〉
‖∇vh‖‖ph‖ ≥ β;(1.3)

hereafter ‖·‖ indicates the L2-norm in �. Hence, there is a unique solution
(uh, ph) ∈ Vh × Ph to the following discrete Stokes problem [2,4]:

ν 〈∇uh , ∇wh〉 − 〈ph , div wh〉 = 〈f , wh〉 , ∀wh ∈ Vh,

〈div uh , qh〉 = 0, ∀qh ∈ Ph.
(1.4)

Proposition 1 (Inf-Sup Constant) Let β be the inf-sup constant of (1.3).
Then we have

β ≤ 1.(1.5)

The discrete Uzawa method, a discrete version of Algorithm 1, is known
to be an effective iteration to compute (uh, ph), and reads as follows [2,4].

Algorithm 2 (Discrete Uzawa Method) For a suitable α > 0 and initial
guess p0

h ∈ Ph:

Step 1: Find un+1
h ∈ Vh as the solution of

ν
〈∇un+1

h , ∇wh

〉 + ρ
〈
div un+1

h , div wh

〉− 〈
pn

h , div wh

〉

= 〈f , wh〉 , ∀wh ∈ Vh;(1.6)

Step 2: Find pn+1
h ∈ Ph from the Richardson update

〈
pn+1

h , qh

〉 = 〈
pn

h , qh

〉− αν
〈
div un+1

h , qh

〉
.(1.7)

In §§3 and 4, we prove the following sharp decay estimates.

Theorem 1 (Convergence Rate for Pressure) If 0 < α < 2σ , then
Algorithm 2 satisfies

∥∥ph − pn+1
h

∥∥ ≤ (
1 − αβ2σ−2 (2σ − α)

)1/2 ‖ph − pn
h‖,(1.8)

where σ := 1 + ρ

ν
. The same estimate is valid for Algorithm 1.

Corollary 1 (Convergence Rate for Velocity) Both Algorithms 1 and
2 satisfy

∥∥∇(uh − un+1
h )

∥
∥ ≤ ν−1 (1 − αβ2σ−2 (2σ − α)

)n/2 ∥∥ph − p0
h

∥∥.(1.9)
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Remark 1.1 (Optimal relaxation Parameter) Consider now the function
f (α) = (

1− αβ2

σ 2 (2σ −α)
)
. We see that Algorithm 2 converges linearly with

contraction factor 0 < f (α) < 1 provided 0 < α < 2σ . Since the minimum
of f (α) is 1 − β2 at α = σ , we conclude that the optimal value of α is

α = 1 + ρ

ν
.

We observe that this result is independent of the domain �, and valid for
both Algorithms 1 and 2, whereas the eigenvalues of the Schur complement
operator, the discrete version of S := div (� + ρν−1∇div )−1∇, depend on
�. It is plausible that for a given � and finite element pair (Vh, Ph), a special
analysis would yield a better value for α since Uzawa is simply a Richardson
iteration for the Schur complement. It is also plausible that for a rectangular
domain with high aspect ratio, α = σ is the only choice valid for all aspect
ratios. This deserves further investigation.

We also point out that (1.9) improves upon [6], where un is shown to
converge weakly in H1

0(�).

2 Proof of Proposition 1

In this section, we prove a couple of crucial properties of the divergence oper-
ator, in particular an upper bound for the inf-sup constant β of (1.3). Since
the following known result plays a pivotal role in our subsequent discussion,
we present its elementary proof; we refer to [6, p.140].

Lemma 2.1 (Div-Grad Relation) For all v ∈ H1
0(�), we have

‖div v‖ ≤ ‖∇v‖.(2.1)

Proof Given v = (vi)
d
i=1 ∈ H1

0(�), there exists a sequence {vn} ∈ C∞
0 (�)

such that

∥
∥∇(vn − v)

∥∥ → 0 as n → ∞.(2.2)

Since vn ∈ C∞
0 (�), integration by parts implies

∥∥div vn
∥∥2 =

∫

�

(
d∑

i=1

∂xi
vn

i

)2

dx

=
∫

�

d∑

i=1

d∑

j=1

∂xi
vn

i ∂xj
vn

j dx
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=
∫

�

d∑

i=1

d∑

j=1

∂xi
vn

j ∂xj
vn

i dx

≤
∫

�

d∑

i=1

d∑

j=1

(∂xi
vn

j )
2dx = ∥∥∇vn

∥∥2
.

The assertion (2.1) follows from (2.2) upon passing to the limit n → ∞. �
Applying Lemma 2.1, we can find an upper bound of the inf-sup constant

β of (1.3).
.

Proof of Proposition 1 Let qh ∈ Ph be an arbitrary function. Then, the dis-
crete inf-sup condition (1.3) is equivalent to the existence of a function vh ∈
Vh such that [2,4]

〈div vh , qh〉 = ‖qh‖2 and ‖∇vh‖ ≤ 1

β
‖qh‖.(2.3)

Then, by virtue of (2.3) and Lemma 2.1, we obtain

‖qh‖2 = 〈div vh , qh〉 ≤ ‖div vh‖ ‖qh‖ ≤ ‖∇vh‖ ‖qh‖ ≤ 1

β
‖qh‖2,

which implies the asserted estimate (1.5). �

3 Proof of Theorem 1: Case ρ = 0

In this section we prove Theorem 1 for ρ = 0. To this end, we use the
following error functions:

En+1
h = uh − un+1

h , en+1
h = ph − pn+1

h .

We proceed in several steps. Upon subtracting (1.6) (with ρ = 0) from (1.4),
we have

ν
〈∇En+1

h , ∇wh

〉− 〈
en
h , div wh

〉 = 0, ∀wh ∈ Vh.(3.1)

Since uh is a discrete divergence free function, (1.7) can be written by
〈
en+1
h , qh

〉 = 〈
en
h , qh

〉− αν
〈
div En+1

h , qh

〉
, ∀qh ∈ Ph.(3.2)

If we choose wh = En+1
h , then (3.1) becomes

ν
∥∥∇En+1

h

∥
∥2 − 〈

en
h , div En+1

h

〉 = 0.(3.3)
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In light of (3.2) and (3.3), we obtain

ν
∥∥∇En+1

h

∥∥2 = − 1

αν

〈
en
h , en+1

h − en
h

〉

= − 1

2αν

(∥∥en+1
h

∥∥2 − ∥∥en
h

∥∥2 − ∥∥en+1
h − en

h

∥∥2
)

.

(3.4)

Consequently, we arrive at

2αν2
∥∥∇En+1

h

∥∥2 + ∥∥en+1
h

∥∥2 = ∥∥en
h

∥∥2 + ∥∥en+1
h − en

h

∥∥2
.(3.5)

The next step is to estimate
∥∥en+1

h − en
h

∥∥2
. Choosing qh = en+1

h − en
h in

(3.2) gives

‖en+1
h − en

h‖2 = −αν
〈
div En+1

h , en+1
h − en

h

〉 ≤ αν‖div En+1
h ‖ ‖en+1

h − en
h‖,

whence
∥∥en+1

h − en
h

∥∥ ≤ αν
∥∥div En+1

h

∥∥ ≤ αν
∥∥∇En+1

h

∥∥.(3.6)

Replacing (3.6) into (3.5) immediately leads to

ν2α(2 − α)
∥∥∇En+1

h

∥∥2 + ∥∥en+1
h

∥∥2 ≤ ∥∥en
h

∥∥2
.(3.7)

We finally prove (1.8) for ρ = 0. Since en
h ∈ Ph, there exists a function

vh ∈ Vh such that

〈
div vh , en

h

〉 = ‖en
h‖2 and ‖∇vh‖ ≤ 1

β
‖en

h‖,(3.8)

which is equivalent to (1.3) [2,4]. In view of (3.1) and (3.8), we get

‖en
h‖2 = 〈

div vh , en
h

〉

= ν
〈∇En+1

h , ∇vh

〉

≤ ν‖∇En+1
h ‖‖∇vh‖

≤ ν

β
‖∇En+1

h ‖‖en
h‖.

Consequently,

β
∥∥en

h

∥
∥ ≤ ν

∥
∥∇En+1

h

∥
∥.(3.9)

In light of (3.7) and (3.9), we easily obtain

β2α(2 − α)
∥
∥en

h

∥
∥2 + ∥

∥en+1
h

∥
∥2 ≤ ∥

∥en
h

∥
∥2

,

which implies (1.8) for ρ = 0, and thus completes the proof of Theorem 1.
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On the other hand, Corollary 1 follows from (3.3) together with Proposi-
tion 1 and Theorem 1.

4 Proof of Theorem 1: Case ρ > 0

In this section, we prove Theorem 1 for ρ > 0. We note that both (3.2) and
(3.6) are still valid for ρ > 0, because they are solely based on the Richardson
update (1.7). Upon subtracting (1.6) (with ρ > 0) from (1.4), we have

ν
〈∇En+1

h , ∇wh

〉+ ρ
〈
div En+1

h , div wh

〉− 〈
en
h , div wh

〉 = 0, ∀wh ∈ Vh.

(4.1)

Choosing wh = En+1
h and applying (3.2), (4.1) becomes

ν
∥∥∇En+1

h

∥∥2 + ρ
∥∥div En+1

h

∥∥2 = 〈
en
h , div Eh

〉

= − 1

αν

〈
en
h , en+1

h − en
h

〉

= − 1

2αν

(∥∥en+1
h

∥∥2−∥∥en
h

∥∥2−∥∥en+1
h − en

h

∥∥2
)

,

instead of (3.4). In light of (3.6), we thus obtain

2αν2
(∥∥∇En+1

h

∥∥2 + ρ

ν

∥∥div En+1
h

∥∥2 − α

2

∥∥div En+1
h

∥∥2
)

+ ∥∥en+1
h

∥∥2 ≤ ∥∥en
h

∥∥2
.

(4.2)

Replacing now

−α

2

∥∥div En+1
h

∥∥2 = −αν

2ρ

(∥∥∇En+1
h

∥∥2 + ρ

ν

∥∥div En+1
h

∥∥2
)

+ αν

2ρ

∥∥∇En+1
h

∥∥2
,

into (4.2), we end up with

2αν2

(
1 − αν

2ρ

)(∥
∥∇En+1

h

∥∥2 + ρ

ν

∥
∥div En+1

h

∥∥2
)

+ α2ν3

ρ

∥
∥∇En+1

h

∥∥2

+∥∥en+1
h

∥∥2 ≤ ∥∥en
h

∥∥2
.(4.3)

Using inf-sup property (3.8), we deduce

‖en
h‖2 = 〈

div vh , en
h

〉

= ν
〈∇En+1

h , ∇vh

〉+ ρ
〈
div En+1

h , div vh

〉

≤ ν
∥
∥∇En+1

h

∥∥‖∇vh‖ + ρ
∥∥div En+1

h

∥∥‖div vh‖
≤ (

ν‖∇vh‖2 + ρ‖div vh‖2) 1
2
(
ν
∥∥∇En+1

h

∥∥2 + ρ
∥∥div En+1

h

∥∥2) 1
2

≤ ν
√

σ

β

∥∥∇en
h

∥∥
(∥∥∇En+1

h

∥∥2 + ρ

ν

∥∥div En+1
h

∥∥2
) 1

2
,
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where we have used (2.1) for v = vh and σ = 1 + ρ

ν
. Consequently, we infer

that

‖en
h‖2 ≤ ν2σ

β2

(∥∥∇En+1
h

∥∥2 + ρ

ν

∥∥div En+1
h

∥∥2
)

and, making use of (2.1) again for v = En+1
h , that

‖en
h‖2 ≤ ν2σ 2

β2

∥∥∇En+1
h

∥∥2
.

Replacing these two inequalities into (4.3), we obtain
(

2αβ2

σ

(
1 − αν

2ρ

)
+ α2β2ν

ρσ 2

)
‖en

h‖2 + ∥∥en+1
h

∥∥2 ≤ ∥∥en
h

∥∥2
,

or equivalently,

∥∥en+1
h

∥∥2 ≤
(

1 − αβ2

σ 2

(
2σ − αν

ρ
(σ − 1)

))
‖en

h‖2

=
(

1 − αβ2

σ 2
(2σ − α)

)
‖en

h‖2.

This is the asserted estimate (1.8). The proof of Theorem 1 for ρ > 0 is thus
complete. Finally, the proof of Corollary 1 for ρ > 0 is identical to the case
ρ = 0.
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