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"Top down' approach to investment: estimate in-
vestment function that is based on variables that
are aggregated within industries, such as aggregate
capital, aggregate investment.

"Bottoms up’’ approach to investment: estimate a
disaggregated investment behavior.

"Structural estimation” : estimate the structural pa-
rameters of a model: parameters of the utility func-
tion, cost function, etc.



e Harold Zurcher: superintendent of maintenance at
the Madison Metropolitan Bus company.

e Makes engine replacement decision.

e Model: he tries to minimize the overall cost. He
compares the current replacement cost with the fu-
ture maintenance cost, cost of consumer disutility

from sudden engine failure.



e Data: monthly data over 10 years on Mileage and
engine replacement records for a subsample of 104
buses.

Model:

e State variable:
x¢. Mileage of a bus
1t. replacement record of a bus: 1 if replace, O if
otherwise.

e c(x4,01): operating costs
These cost items are not separately identifiable,
since there are no cost data.



m(x1,011): Maintenance, fuel and insurance costs.
w(x,01-)b(x,013): Potential cost of engine breakdown.

c(zt,01) = m(x1,011) + p(x, 012)b(x, 613)

Per period deterministic utility function:

. _ —c(xt,01) iTig =0
’U,(mt,zt,gl) - { _ [RC’ —I— 6(0701)] if ’it =1

RC': replacement cost.

Per period utility function:

u(x, it, 01) + e(it)



Transition probability function:
e If not replaced, (i+ = 0) mileage piles up.

e If replaced, (i = 1) mileage goes back to 0.

OzexplOo(xyq1 — x¢)] iFig = 0and xy4q > x4
P(Tig1 | x4, 8¢, 02) = O2exp|Orxi 1] ifig=1and xy41 >0
0 otherwise

Harold Zurcher maximized the following utility function.
Discounted sum of present and future utility functions.

V(zt,€e,0) = max{ulxy, iy, 01) + e (3¢)

+ E L Sooprt [U(ﬂfj,ijﬁl) + 63’(%’)} | fL‘t] }
=1



where the choice is over whether to replace or not, i.e.

{it i1,

One can express the above problem as the following
dynamic programming format.

V(xt,e,0) = max;, {u(w, it,01) + e(it)

+ B/E/ ’ V(y7 EI)Q<d€/)p(dy | L, ita 92)}



How to solve for the above optimization problem.
Suppose for now, 64 is given.

1. Last period: iteration 1: For every x and every e,
calculate

V(l)(:v, €,0) = max {u(x,i,01) +€(i); i € {r,mr}}

2. One period before the last period: iteration 2.
For every x and every i € {r,mr}, derive the integral

// vV (y, )q(de")p(dy | ,4,02)
¢y



Then, for every x, ¢, derive the value function as fol-
lows.

V@ (@,6,0) = mazyicipnry {ulz,,01) + (i)

+ /6, , v (y, )q(de)p(dy | .1, 92)}

3. n periods before the last period: iteration n+ 1.
Suppose as above, value function of iteration has
been computed. That is, for every = and ¢, V(™ (z, ¢, §)

is known. For every = and every i € {r,mr}, derive
the integral

/e’ yv(n)(y’ ¢')q(de)p(dy | z,1,02)



Then, for every x, €, derive the value function as fol-
lows.

vt (g e 0) = Maz i frnry {u(z, 4,01) + €(7)
+ /e, , v (y, )q(de)p(dy | =, 1, 92)}
If for every z, €

VD (2,6,0) = VI (2,¢,0)| < 6

for a small § (for example, § = 0.000001), then, we
stop the algorithm and we let the value function as
follows:

V(z,e,0) = VT (z € 6)



Likelihood Increment:

e Likelihood increment for mileage:

p(xt—I—l | xtait792)
p(xt—I—l | xt7it>92)

Orexp {02(xpqq — a:'t)} ifi, =0
Orexp 9237t—|—1} ifi =1

e Engine replacement probability: Replace if
u(x,r,01) + BV (y,€)q(de)p(dy | z,r,02) + (r)
> u(x,nr,01) + BV (y,€)q(de)p(dy | z,nr,02) + e(nr)
That is, the replacement probability is
Pr(replace|x, )
= Pr(e(nr) —e(r) <u(z,r,07) — u(x,nr,0q1)
+ BV (y, €)alde)p(dy | z,7,02) — BV (y,€)q(de")p(dy | z,nr, 02))
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Pr(no replace| x,0) =1 — Pr(replace| x,0)

Log likelihood increment for bus i, time t. data is x;

it = logp(x; 441 | Tit, i3, 02)
+logP(r|xi, 0)iy + log[l — P(r | @y, 0)](1 — i)
Log likelihood:
N T
> D Lt

1=1¢=1
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Difficulty with Estimation

e Value function has to be solved at each state space
point x, e.

e While doing that, [, , V(" (y,e)q(de)p(dy | x,i,02)
has to be integrated with respect to y and e.

e For each bus, at each period ¢

Pr(replace|x, 0)
= Pr (6(7’1/7‘) T G(T) S U(.CC, T, 91) T ’U,(ZC, nr, 01)
+ BV (y,)g(de)p(dy | x,7,02) — BV (y, ¢ )g(de)p(dy | z,nr,65))
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e has to be computed, which is an integral over

e(nr) —e(r).

e [ he above computation has to be repeated for ev-
ery candidate 6 that comes up during the ML rou-
tine.

Simplifications of the Solution/Estimation
Algorithm

Assume e(r),e(nr) are i.i.d. extreme value distributed.
Then, let

V) (2,4,0) = u(z,i,01)+0 /6/ y VD (y, ) q(de)p(dy | w4, it, 02)
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That is, V(") (z,i,0) is the deterministic value of choice
1. T hen,

/6/ V(z,€,0)q(de’) = log {Z exp (V(az, i, 9))]

Hence, the integration over ¢ has the closed form.
AlsoO,

exp [V(ax, T, 0)}
exp [V(aj, T, 9)} + exp [V(m, nr, 0)}

Pr(r|x,0) =

Do not calculate the expected value function for every
x. Only calculate it for a finite grid points of z.

14



Nested fixed point algorithm for structural
estimation.

e Outer algorithm: Maximum likelihood calculation
Use Newton routine to seach for the parameters
maximizing the likelihood.

e Inner algorithm: Dynamic Programming algorithm:
Given parameter values, compute the expected value
function V(x,¢,0) and the likelihood.
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Estimation steps.

1) First estimate parameters of the transition proba-
bility densities of mileage: does not require solving
for the value function.

2) Then, estimate the rest of the parameters: requires
solving the value function.

Discretized transition probability distribution: 90 equally
spaced grid points zg = 0, 1 = 5,000, xg9g = 450, 000.
p(zjlz=um;) =031, p(zjq1 | = =13;) = 032
D (az’ > Tigo | T = wj) = 633 and p(a:j_H |z = £13j> = 0
for [ < O.
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Restriction: within group mileage is the same.

Log likelihood

031 035 033 Restricted | Unrestr.
1:83 Grumman | 0.197 | 0.789 | 0.014 | -203.99 -187.81
2:81 Chance 0.391 | 0.599 | 0.010 | -138.57 -136.77
3:79 GMC 0.307 | 0.683 | 0.010 | -2219.58 | -2167.04
4:75 GMC 0.392 | 0.595 | 0.013 | -3140.57 | -3094.38
5:74 GMC (V8) | 0.489 | 0.507 | 0.005 | -1079.18 | -1068.45
6:74 GMC (V6) | 0.618 | 0.382 | 0.000 | -831.05 -826.32
7:82 GMC (V8) | 0.600 | 0.397 | 0.003 | -1550.32 | -1523.49
8:72 GMC (V6) | 0.722 | 0.278 | 0.000 | -1330.35 | -1317.69
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Restricted Unrestr. L ratio | df significanc
1,2,3 -2575.98 -2491.51 168.93 | 198 | 0.934
1,2,3,4 -5755.00 -5585.89 338.21 | 309 | 0.121
4,5 -4243.73 -4162.83 161.80 | 144 | 0.147
6,7 -2384.50 -2349.81 69.39 81 0.818
6,7,3 -3757.76 -3668.50 180.52 | 135 | 0.005
5,6,7,8 -4904.41 -4735.95 336.93 | 171 | 1.5E-17
Full sample | -11,237.68 | -10,321.84 | 1,831.67 | 483 | 7.7E-10

Pool groups 1,2,3 and 6,7.
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Parameter Estimates:

G1,2,3 G4 LR Sign.
B = 0.9999

RC 11.7270 10.0750 9.7558 85.46 | 1.2E-17
011 4.8259 2.2930 2.6275

030 0.3010 0.3919 0.3489

031 0.6884 0.5953 0.6394

LL -2708.366 | -3304.155 | -6055.250

68 =0.0

RC 8.2985 7.6358 7.3055 89.73 | 1.5E-18
011 109.9031 71.5133 70.2769

030 0.3010 0.3919 0.3488

031 0.6884 0.5953 0.6394

LL -2710.746 | -3306.028 | -6061.641

LL 4.760 3.746 12.782

Sign. 0.0292 0.0529 0.0035
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Myopic model is rejected.

Homogeneity between two groups is rejected.

In a myopic model, in order to justify frequent re-
placement, small replacement cost and large main-
tenance cost increase with mileage is necessary.

Even though the likelihood is bigger in the non-
parametric case, one cannot reject the parametric
functional form.
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Maintenance Cost Specification.
G1,2,3 G4
Linear C(:B,Ql) = 0.0016041x

B =0.9999 | -132.389 | -163.584 | -300.250
B =0.0 -134.747 | -165.458 | -306.641
nonparametric
B =0.9999 | -110.832 | -138.556 | -261.642
B =0.0 -110.832 | -138.556 | -261.642

Fundamental nonidentification problem of the dynamic
discrete choice models: If you do not put any paramet-
ric restrictions to your model, you cannot know whether
the individual is myopic or not.
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Implied Demand for Machine Replacement.

1. Change the value of the replacement cost RC': price
of replacement.

2. Given the replacement cost and other parameters
that are estimated, solve for the Dynamic program-
ming problem and derive the value function.

V(z,e,0) = VT (g ¢ 0)

3. Derive the replacement probability.
Pr(replace|z, 0)
= Pr (e(nr) o G(T) S U(QZ‘, r, 91) o ’U,(.CU, nr, 81)
+ BV (y, )a(de)p(dy | z,7,02) — BV (y, € )q(de")p(dy | z,nr, 02))
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Derive the mileage density.

9]'_@' if i+ = 0and T41 > x4
p(mt—l—l =X, | Tt = ZCi,it,QQ) = Hj if .+ = land Ti41 >0
0 otherwise

They together are the transition probability of a
Markov Chain from z; to x4 1.

4. Derive the stationary distribution of the Markov Chain
of z:w(x).

5. 5. Stationary replacement probability:

/Pr(replace | x,0)7(x)dx
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Notice that the replacement cost is not even observ-
able. But if we solve and estimate the Dynamic Dis-
crete choice models, we can derive the implied replace-
ment demand function. Even though we have only two
groups of buses with only two replacement cost possibil-
ities, we can use the actual replacement data (sample
for this is large) and derive the replacement demand
function.
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1031

value of mean mileage given that replacement hasn’t yet occurred is 159,305
which is also within half a standard deviation of the actual value of 134,862.
Thus, use of a stationary distribution to compute replacement demand does not
appear to be greatly at odds with the data.

By parametrically varying replacement costs, I can trace out the equilibrium
distribution 7, as a function of RC. In particular, using formula (6.3) I can
compute the expected demand curve for replacement investment. Figure 7 presents
the expected demand function d(RC) for model 11 for a fleet containing a single
bus, M = 1. For comparison, I also present the implied demand curve for the
static model with 8 =0. We can see significant differences in the predictions of
the two models. As one might expect, the demand curve for the myopic model
is much more sensitive to the cost of replacement bus engines, overpredicting
demand at low prices, underpredicting demand at high prices. Notice, however,
that the maximum likelihood procedure insures that both models generate the
same predictions at the actual replacement cost of $4343.

Figure 7 summarizes the value of the “bottom-up” approach to replacement
investment. Since engine replacement costs have not varied much in the past,
estimating replacement demand by a “reduced-form” approach which, for
example, regresses engine replacements on replacement costs, is incapable of
producing reliable estimates of the replacement demand function. In terms of
Figure 7, all the data would be clustered in a small ball about the intersection
of the two demand curves: obviously many different demand functions would

Expected Replacement Demand Function
Annual Replacement Demand for Model 11
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