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• ”Top down” approach to investment: estimate in-

vestment function that is based on variables that

are aggregated within industries, such as aggregate

capital, aggregate investment.

• ”Bottoms up” approach to investment: estimate a

disaggregated investment behavior.

• ”Structural estimation”: estimate the structural pa-

rameters of a model: parameters of the utility func-

tion, cost function, etc.
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• Harold Zurcher: superintendent of maintenance at

the Madison Metropolitan Bus company.

• Makes engine replacement decision.

• Model: he tries to minimize the overall cost. He

compares the current replacement cost with the fu-

ture maintenance cost, cost of consumer disutility

from sudden engine failure.
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• Data: monthly data over 10 years on Mileage and
engine replacement records for a subsample of 104
buses.

Model:

• State variable:
xt: mileage of a bus
it: replacement record of a bus: 1 if replace, 0 if
otherwise.

• c(xt, θ1): operating costs
These cost items are not separately identifiable,
since there are no cost data.
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m(x1, θ11): Maintenance, fuel and insurance costs.
µ(x, θ12)b(x, θ13): Potential cost of engine breakdown.

c(xt, θ1) = m(x1, θ11) + µ(x, θ12)b(x, θ13)

Per period deterministic utility function:

u(xt, it, θ1) =

{
−c(xt, θ1) if it = 0

− [RC + c(0, θ1)] if it = 1

RC: replacement cost.

Per period utility function:

u(xt, it, θ1) + εt(it)
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Transition probability function:

• If not replaced, (it = 0) mileage piles up.

• If replaced, (it = 1) mileage goes back to 0.

p(xt+1 | xt, it, θ2) =


θ2exp[θ2(xt+1 − xt)] if it = 0and xt+1 ≥ xt

θ2exp[θ2xt+1] if it = 1and xt+1 ≥ 0
0 otherwise

Harold Zurcher maximized the following utility function.
Discounted sum of present and future utility functions.

V (xt, εt, θ) = max {u(xt, it, θ1) + εt(it)

+ E

 ∞∑
j=t+1

βj−t
[
u(xj, ij, θ1) + εj(ij)

]
| xt


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where the choice is over whether to replace or not, i.e.{
it, it+1, ...

}

One can express the above problem as the following

dynamic programming format.

V (xt, εt, θ) = maxit {u(xt, it, θ1) + εt(it)

+ β
∫
ε′,y

V (y, ε′)q(dε′)p(dy | xt, it, θ2)

}
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How to solve for the above optimization problem.

Suppose for now, θ1 is given.

1. Last period: iteration 1: For every x and every ε,

calculate

V (1)(x, ε, θ) = max {u(x, i, θ1) + ε(i); i ∈ {r,mr}}

2. One period before the last period: iteration 2.

For every x and every i ∈ {r,mr}, derive the integral∫
ε′,y

V (1)(y, ε′)q(dε′)p(dy | x, i, θ2)
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Then, for every x, ε, derive the value function as fol-

lows.

V (2)(x, ε, θ) = maxx;i∈{r,nr} {u(x, i, θ1) + ε(i)

+ β
∫
ε′,y

V (1)(y, ε′)q(dε′)p(dy | x, i, θ2)

}

3. n periods before the last period: iteration n+ 1.

Suppose as above, value function of iteration has

been computed. That is, for every x and ε, V (n)(x, ε, θ)

is known. For every x and every i ∈ {r,mr}, derive

the integral∫
ε′,y

V (n)(y, ε′)q(dε′)p(dy | x, i, θ2)
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Then, for every x, ε, derive the value function as fol-

lows.

V (n+1)(x, ε, θ) = maxx;i∈{r,nr} {u(x, i, θ1) + ε(i)

+ β
∫
ε′,y

V (n)(y, ε′)q(dε′)p(dy | x, i, θ2)

}
If for every x, ε∣∣∣V (n+1)(x, ε, θ)− V (n)(x, ε, θ)

∣∣∣ ≤ δ
for a small δ (for example, δ = 0.000001), then, we

stop the algorithm and we let the value function as

follows:

V (x, ε, θ) = V (n+1)(x, ε, θ)
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Likelihood Increment:

• Likelihood increment for mileage:

p(xt+1 | xt, it, θ2) = θ2exp
{
θ2(xt+1 − xt)

}
if it = 0

p(xt+1 | xt, it, θ2) = θ2exp
{
θ2xt+1

}
if it = 1

• Engine replacement probability: Replace if

u(x, r, θ1) + βV (y, ε′)q(dε′)p(dy | x, r, θ2) + ε(r)

≥ u(x, nr, θ1) + βV (y, ε′)q(dε′)p(dy | x, nr, θ2) + ε(nr)

That is, the replacement probability is

Pr(replace|x, θ)

= Pr (ε(nr)− ε(r) ≤ u(x, r, θ1)− u(x, nr, θ1)

+ βV (y, ε′)q(dε′)p(dy | x, r, θ2)− βV (y, ε′)q(dε′)p(dy | x, nr, θ2)
)
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Pr(no replace | x, θ) = 1− Pr(replace | x, θ)

Log likelihood increment for bus i, time t: data is xit
,iit

lit = logp(xi,t+1 | xit, iit, θ2)

+logP (r|xit, θ)iit + log[1− P (r | xit, θ)](1− iit)

Log likelihood:

N∑
i=1

T∑
t=1

lit
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Difficulty with Estimation

• Value function has to be solved at each state space

point x, ε.

• While doing that,
∫
ε′,y V

(n)(y, ε′)q(dε′)p(dy | x, i, θ2)

has to be integrated with respect to y and ε.

• For each bus, at each period t

Pr(replace|x, θ)

= Pr (ε(nr)− ε(r) ≤ u(x, r, θ1)− u(x, nr, θ1)

+ βV (y, ε′)q(dε′)p(dy | x, r, θ2)− βV (y, ε′)q(dε′)p(dy | x, nr, θ2)
)
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• has to be computed, which is an integral over

ε(nr)− ε(r).

• The above computation has to be repeated for ev-

ery candidate θ that comes up during the ML rou-

tine.

Simplifications of the Solution/Estimation

Algorithm

Assume ε(r),ε(nr) are i.i.d. extreme value distributed.

Then, let

V (n)(x, i, θ) = u(x, i, θ1)+β
∫
ε′,y

V (n−1)(y, ε′)q(dε′)p(dy | xt, it, θ2)
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That is, V (n)(x, i, θ) is the deterministic value of choice

i. Then,∫
ε′
V (x, ε′, θ)q(dε′) = log

∑
i

exp
(
V (x, i, θ)

)
Hence, the integration over ε has the closed form.

Also,

Pr (r | x, θ) =
exp

[
V (x, r, θ)

]
exp

[
V (x, r, θ)

]
+ exp

[
V (x, nr, θ)

]

Do not calculate the expected value function for every

x. Only calculate it for a finite grid points of x.
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Nested fixed point algorithm for structural

estimation.

• Outer algorithm: Maximum likelihood calculation

Use Newton routine to seach for the parameters

maximizing the likelihood.

• Inner algorithm: Dynamic Programming algorithm:

Given parameter values, compute the expected value

function V (x, ε, θ) and the likelihood.
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Estimation steps.

1) First estimate parameters of the transition proba-

bility densities of mileage: does not require solving

for the value function.

2) Then, estimate the rest of the parameters: requires

solving the value function.

Discretized transition probability distribution: 90 equally

spaced grid points x0 = 0, x1 = 5,000, x90 = 450,000.

p
(
xj | x = xj

)
= θ31, p

(
xj+1 | x = xj

)
= θ32

,p
(
x′ ≥ xj+2 | x = xj

)
= θ33 and p

(
xj+l | x = xj

)
= 0

for l < 0.
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Restriction: within group mileage is the same.
Log likelihood

θ31 θ32 θ33 Restricted Unrestr.
1:83 Grumman 0.197 0.789 0.014 -203.99 -187.81
2:81 Chance 0.391 0.599 0.010 -138.57 -136.77
3:79 GMC 0.307 0.683 0.010 -2219.58 -2167.04
4:75 GMC 0.392 0.595 0.013 -3140.57 -3094.38
5:74 GMC (V8) 0.489 0.507 0.005 -1079.18 -1068.45
6:74 GMC (V6) 0.618 0.382 0.000 -831.05 -826.32
7:82 GMC (V8) 0.600 0.397 0.003 -1550.32 -1523.49
8:72 GMC (V6) 0.722 0.278 0.000 -1330.35 -1317.69
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Restricted Unrestr. L ratio df significance
1,2,3 -2575.98 -2491.51 168.93 198 0.934
1,2,3,4 -5755.00 -5585.89 338.21 309 0.121
4,5 -4243.73 -4162.83 161.80 144 0.147
6,7 -2384.50 -2349.81 69.39 81 0.818
6,7,8 -3757.76 -3668.50 180.52 135 0.005
5,6,7,8 -4904.41 -4735.95 336.93 171 1.5E-17
Full sample -11,237.68 -10,321.84 1,831.67 483 7.7E-10

Pool groups 1,2,3 and 6,7.
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Parameter Estimates:

G1,2,3 G4 LR Sign.
β = 0.9999

RC 11.7270 10.0750 9.7558 85.46 1.2E-17
θ11 4.8259 2.2930 2.6275
θ30 0.3010 0.3919 0.3489
θ31 0.6884 0.5953 0.6394
LL -2708.366 -3304.155 -6055.250

β = 0.0
RC 8.2985 7.6358 7.3055 89.73 1.5E-18
θ11 109.9031 71.5133 70.2769
θ30 0.3010 0.3919 0.3488
θ31 0.6884 0.5953 0.6394
LL -2710.746 -3306.028 -6061.641
LL 4.760 3.746 12.782
Sign. 0.0292 0.0529 0.0035
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• Myopic model is rejected.

• Homogeneity between two groups is rejected.

• In a myopic model, in order to justify frequent re-

placement, small replacement cost and large main-

tenance cost increase with mileage is necessary.

• Even though the likelihood is bigger in the non-

parametric case, one cannot reject the parametric

functional form.
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Maintenance Cost Specification.
G1,2,3 G4

Linear c(x, θ1) = 0.001θ11x
β = 0.9999 -132.389 -163.584 -300.250
β = 0.0 -134.747 -165.458 -306.641

nonparametric
β = 0.9999 -110.832 -138.556 -261.642
β = 0.0 -110.832 -138.556 -261.642

Fundamental nonidentification problem of the dynamic

discrete choice models: If you do not put any paramet-

ric restrictions to your model, you cannot know whether

the individual is myopic or not.
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Implied Demand for Machine Replacement.

1. Change the value of the replacement cost RC: price
of replacement.

2. Given the replacement cost and other parameters
that are estimated, solve for the Dynamic program-
ming problem and derive the value function.

V (x, ε, θ) = V (n+1)(x, ε, θ)

3. Derive the replacement probability.

Pr(replace|x, θ)

= Pr (ε(nr)− ε(r) ≤ u(x, r, θ1)− u(x, nr, θ1)

+ βV (y, ε′)q(dε′)p(dy | x, r, θ2)− βV (y, ε′)q(dε′)p(dy | x, nr, θ2)
)
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Derive the mileage density.

p(xt+1 = xj | xt = xi, it, θ2) =


θj−i if it = 0and xt+1 ≥ xt
θj if it = 1and xt+1 ≥ 0
0 otherwise

They together are the transition probability of a

Markov Chain from xt to xt+1.

4. Derive the stationary distribution of the Markov Chain

of x:π(x).

5. 5. Stationary replacement probability:∫
Pr(replace | x, θ)π(x)dx
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Notice that the replacement cost is not even observ-

able. But if we solve and estimate the Dynamic Dis-

crete choice models, we can derive the implied replace-

ment demand function. Even though we have only two

groups of buses with only two replacement cost possibil-

ities, we can use the actual replacement data (sample

for this is large) and derive the replacement demand

function.
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