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Abstract 

It turns out that for a large class of replacement models for 

stochastically deteriorating systems the optimality criteria total 

expected discounted cost and long run (expected) average cost per 

unit time have a common structure. In the present paper a formal 

description of this structure is given and the optimal rule is 

determined. A socalled "A.-minimization technique" is applied. This 

method is discussed in general terms. 

REPLACEMENT; AVERAGE COST; EXPECTED DISCOUNTED COST; 

STOPPING TIME; OPTIMIZATION; A.-PROBLEMS 

Introduction 

Lately there has been a large research activity in the area 

of optimal replacement/maintenance of stochastically deteriorating 

system. In particular the interest has been focused on the problem 

of optimal replacement when there is information available about the 

underlying condition of the system. A stochastic process is usually 

assumed to describe this information. 

Some examples on works in this direction are Taylor (1975), 

Zuckerman (1978a,b, 1979), Bergman (1978), Nummelin (1980), Yamada 

(1980), and Aven (1981). 

Usually the optimal replacement rule is determined by minimizing the 

total expected discounted cost or the long run (expected) average 

cost per unit time. With exception of Yamade (1980) this is done in 

all the articles above. 

Now these optimality criteria often, see e.g. the above mentioned 

papers, can be written in the common form 

( l . l ) 

T 
E[f 0a(t)h(t)dt+c(O)] 

E[f~h(t)dt+p(O)] 

'..vhere T is a stopping time based on the information about the 

condition of the system (and the results of some randomizing 

experiments), {a(t)} a non-decreasing stochastic process, {h(t)} a 

non-negative stochastic process and c(O) and p(O) non-negative 

random variables; all variables are adapted to the information about 

the condition of the system. 
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This means that T is the only control variable and that each 

replacement rule is identified by a stopping time T. A T mini

mizing (1 .1) therefore determines the optimal rule. 

It should be noted that if the optimality criterion is the total 

expected discounted cost, then the numerator in (1 .1) represents the 

expected discounted cost associated with one replacement cycle and 
-CI't 

the denominator equals E[1-e TJ, where a is a positive discount 

factor and 'tT the stochastic time to replacement. On the other 

hand if the long run (expected) average cost criterion is consi

dered, then the numerator in (1 .1) represents the expected cost 

associated with one replacement cycle and the denominator the 

stochastic time to replacement. 

It should also be noted that criteria of the form (1 .1) may 

arise in other types of regenerative stopping problems (i.e. 

stopping problems which recommence from the initial state upon 

stopping) than those which are considered in standard 

replacement/maintenance models, see e.g. Ross (1971) Section 4. 

In most of the models it is given or assumed that the 

denominator in (1 .1) is bounded in T, i.e. 

( 1 • 2) E[f~h(t)dt+p(O)] < ~ 

this is clearly the case if the optimality criterion is the total 

expected discounted cost. We remark that (1 .2) does not hold for 

the model of Aven (1982). 

In our set-up we do not assume (1 .2). The following assumption is 

made, however, 

T 
E[f0 Ah(t)dt+p(o)] < ~ , 

where TA=inf{t>O; a(t)>A}, AE(-oo,oo). 

(Only stopping times for which the denominator in (l . 1 ) is finite 

are considered.) 

In Section 2 of this paper we study the problem of minimizing 

(1.1). 

Although this problem has been investigated in special cases before, 

we think it is important, also having future work in this area in 

mind, to have at hand a general set-up where the conditions and 

assumptions are formulated independently of particular models. We 

also strongly feel the necessity of a more thorough analysis of the 

minimizing problem (1 .1) than those given in special cases up to 

now. 
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The minimization problem (1 .1) is solved by minimizing 

A.-functions 

C~ = E[f~a(t)h(t)dt+c(O)]-A.E[f~h(t)dt+p(O)] 

= E[f~(a(t)-A.)h(t)dt+c(O)-A.p(O)] 

(since a(•) is non-decreasing and h is non-negative, it follows 
T 

that TA. minimizes CA.). 

A similar indirect approach has been used earlier in special cases, 

see e.g. Ross (1971), Taylor (1975), Zuckerman (1978a,b, 1979), 

Bergman (1980) and Aven (1980), Section 4. 

In the appendix we study in general terms how the minimization of a 

function BT = MT/ST, T element of some set, can be carried out by 
T T T 

first minimizing A.-functions CA. = M -A.S . Our analysis here is much 

inspired by Bergman (1980). Using the results obtained in the 

appendix we can conclude that there always exists a A.* such that 

TA.* minimizes (1 .1). 

The A.-minimization technique is very suitable in situations where 

it is easy to find solutions to A.-problems; in replacements/main

tenance applications this is often the case. 

Nummelin (1980) uses a different technique than the A.-tech

nique in order to solve a minimizing problem of the form (1 .1). His 

analysis is quite general, but is based on the assumption that (1 .2) 

holds. 

In Section 3 a discrete version of the minimization problem 

(1 .1) is considered. 

In a coming work we shall present some replacement models where the 

optimality criterion has the form described in Section 3. 

2. Continuous time 

2.1. The set-up. Let (Q,E,P) be a complete probability space and 

let {Ft ,tE[O,oo)} be a non-decreasing family of sub-a-fields of E 

which satisfies the usual condition, i.e. {Ft} is right-continuous 

( F = n F } and F 0 contains all the negligable sets of E. (The 
t s>t s 

a-field Ft represents the information about the condition of the 

system at timet.) 
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F the sm<1l lest_ o- field con t a i rd.tHJ I r,n_· ~til 
l 

Let T' be the set of stopping times relative to { F t} • (A random 

variable T taking values in [O,oo] is called a stopping time 

relative to { Ft} if the event {T~t}EFt.) 

Assume that the following random variables and stochastic processes 

are given: 

c(O) and p(O), F0 -measurable non-negative random variables: 

{a(t),tE[O,oo)}, a progressively measurable stochastic process 

adapted to {Ft} taking values in (-oo,oo] , i.e. the map 

(t,w) 7 a(t,w) from [o,s]xQ to (-00 1 00 ] is B[o,s]xF -measurable 
s 

for all s < oo (B[o,s] is the a-field of Borel sets on [o,s]): 

{h(t),tE[O,oo)}; a progressively measurable process adapted to {Ft} 

taking values in [o,oo]. 

Define the stopping times relative to {Ft}, TA , A E (-oo,oo) by 

( 2 • l ) 

(by convention T =oo if a(t)<A for all t>O) 
A 

and for each w E Q the measure -~ by 

~(B,w) = fBh(t,w)dt 1 B E B[O,oo) 

(formally d~(t) = h(t)dt). 

Vle now make up a list of basic assumptions: 

Basic assumptions: 

( 2. 2) 

(2.3) 

( 2. 4) 

( 2. 5) 

(2.6) 

( 2 • 7) 

0 < Ec ( 0) < oo 

0 ~ Ep { 0) < oo 

~([O,s],w) > 0 , s > 0 for all w , 

a(•,w) is non-decreasing for all w , 

T 
E f O O a ( t ) d ~ { t) > -co 

TA. 
E J O d ~ ( t) < 00 1 A E { -oo 1 oo } 0 

(In (2.4) and (2.5) the statement "for all w" can i:>e replaced by 

"for dl:u1ost all w ".) 
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Let now for each T E T' , 

MT T 
= El/ 0a(t)d~(t)+c(O)) 

ST = E[/~d]l(t)+p(O)] . 
Consider the subclass T of T' defined by 

T = {TET': 
T M (oo and 

T 
S (oo} ' 

and let 

(2.8) 
T T T 

B = M /S , T E T . 

vve observe that TA E T by (2.2), (2.3), the definition of TA and 

(2.7). 
• 

The problem is to find a T E T minimizing B . 

2.2. The optimal stopping time. We will show that the minimization 

problem (2.8) is a special case of the minimization problem 

discussed in the appendix. 

Using the assumptions (2.2)-(2.6) it is easily seen that 

(2.9) -a> < for all T E T , 

(2.10) 
T 0 ~ s < (]) for all T E T , 

(2.11) ST = 0 => T = 0 almost surely (a.s.) 
T 

=> M > 0 , 

(2.12) A > inf{ess inf a(t)} ~ P{T >0} > 0 • 
t>O A 

It follows form (2.9)-(2.12) that the conditions (a)-(d) stated in 

the appendix hold. 

Let now 

C~ = MT-AST = E[/~(a(t)-A)d]l(t)+c(O)-Ap(O)), TE T, AE(-m,m). 

We assert that TA (defined by (2.1) minimize~ 

is seen by observing that 

a ( t) < A 

a(t) ) A 

if 

if 

and 

T E T . This 
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It follows that we here have a special case of the minimization 

problem discussed in the appendix. Besides, we have 
def T 

A* = inf B > -oo. We sketch the proof of this assertion. Using 

the extended monotone convergence theorem, see Ash (1972) page 47 
T 

limE J0 Aa(t)dJ.l(t) = 0 and thus. 
A-l>-oo 

(remember (2.6)), we find that 

T TA 
M A= E f0 a(t)dJ.l(t)+Ec(O)~O for less than some finite A' by 

(2.2). It follows from A.4. of the appendix that A* > -co Now A. 6 

and A.7 of the appendix give us the following results. 

Theorem 2.1. The stopping time 

T A.*, v1here * . f T A = 1.n B , minimizes 
T 

B , T E T 
TET 

given as the unique solution of the equation 

Moreover, 

if A > A* , then A > B(A) whereas 

if A < A* , then A < B ( A ) . 

The value A.* 

d_<=>f BTA A = B(A.) ""' 

Proposition 2.2. (See the appendix: Some final remarks, (iii)) 
T 

Choose any A1 such ~hat S Al > 0 and set iteratively 

Then 

2.3 

A =B(A) n=1,2, ..• 
n+l n 

lim A = A* 
n n-j>oo 

Some further properties of the function 

Proposition 2.3. B(•) is left-continuous. 

B(A) 

is 

Proof. Let A tA . 
n 

Then if we can prove that TA tTA 
T n 

, it follows 

A T 
from the monotone convergence theorem that s nts A 

TA T 
(if A,.;;O, then M n+M A whereas 

Consider a fixed w E Q. 

T A ty , 
n 

find an 

say, and we have 

E: > 0 such that 

Clearly 

if A)A > 0 then 
n 

TA .;; TA 
n n+1 

Suppose · y < T A. 

It follows that 

TA TA 
M n -l> M 

TA T 
ntM A). 

Hence 

Then we can 

a ( y+E) < A. 
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On the other hand we have by (2.5) and the definition of TA , 
n 

a ( y+ E ) > a ( T A + E ) > An 
n 

for each n. Letting n + oo we get a(y+E) > A and a contra

diction is abstained. Thus y = TA and the proposition is proved. 

Proposition 2.4. The function 

A ~ A* and non-decreasing in 

B(A) is non-increasing in 

A for A > A* • 

for 

Proof. Let A2 ( A1 < A*. Then 

T 
that B(A 1 ) < B(A2 ). If S A2 = 

TA ' TA ~ TA*. We shall prove 
2 1 

0, then clearly 
T 

B ( A 1 ) ( B ( A ) by 
2 

T 
(2.11). Assume therefore that 

writing 

S A2 > 0 (which implies S A1 > 0). 

T 
S A2(B(A2)-B(A1)} = 

T T 
+ B(A1 } (S Al_s A2} 

and noting that 

T T T T 
M A2-B(A1 }S A2 = M A2_M Al 

T 
= E fTAl (B(A 1 }-a(t}dll(t} 

A2 

a(t} < f... ' B(A } for 
1 1 

by the definition of TA and Theorem 2.1, it is seen that 
1 

B(A) < B(A ). 
1 2 

Now let A* < A < A2. 
T 1 

We shall prove that B(A 1 ) 'B(A 2 }. 

First note that s Ai > 0, i 
TA* Tf.... 

= 1,2 since 0 < S ' S 1 i=1,2. 

The inequality 

Theorem 2 . 1 . 

Theorem 2.1 

T * 
0 < S A is easily seen to hold by (2.11} and 

As a consequence of the definition of T (2.5} 

we have 

a(t} > A ~ B(A } 
1 1 

and it follows that 

T 
S A2(B(A 2 }-B(A 1 )} = 

if T < t , 
Al 

T 

~ 

E jTA2(a(t)-:-B(A 1 )}dll(t) ) 0. 

Al 

Hence B(A 2 ) ~ B(A 1 ). This completes the proof. 

and 
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3. "Discrete time" 

Let (Q,L,P) be a complete probability space, and let 

such be a non-decreasing sequence of sub-a-fields of L 

includes all the negligable sets of L. Denote by F the 

smallest a-field containing F for all n. 
n 

Let N1 be the set of stopping times relative to { F } 
n 

called a stopping time relative to { F } if the event 
n 

( N is 

{N=n} E F 
n 

n = 1,2, ..• ). Assume the following random variables and sequences 

of random variables are given: 

c 0 and p 0 , F0 -measurable non-negative random variables; 

a sequence of random variables adapted to {F } 
n 

measurable) with values in (-oo,oo] ; 

(i.e. a 
n 

{an}:=O' 
is F -

n 

{hn}, a sequence of random variables adapted to {Fn} with values 
in [O,oo]. 

Define the stopping times relative to {Fn}, 

NA = inf{n>0 1 an>A}, A E (-oo,oo) 

and make the following assumptions: 

o < Ec 0 < a> 

o ~ Ep0 < oo 

h 0 (w) > 0 for all (almost all) w 1 

a (w) is non-decreasing for all (almost all) w 1 n 

N -1 
E I 0 a h > -oo , 

n=O n n 

N -1 
E L A h < a> 1 A E {-oo,oo) • 

n=O n 

The problem is to find an 

where 

and 

N 1 EN d~f { NEN 1 : MN <oo and SN <oo} , 

N 
M = E rl ) N- 01 a h +c 0 J 

'"'n= n n 

such that N1 minimizes 

BN MN 
= SN . 
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Let 
NA. 

B(A.) = B . 

By proceeding in the same manner as in Section 2 we can prove the 

following theorem. 

Theorem 3.1 

( i) The stopping time NA.* 

N E N • The value A.* 

the equation A. = B(A.). 

1 where A.* = inf BN1 minimizes 
NEN 

is given as the unique solution 

N 
B I 

of 

(ii) If A. > A.* I then A. > B(A.) whereas if A.<A.*I then A.<B(A.). 

(iii) 
N;,_ 

Let "-, be such that s 1 > 0 and set iteratively 

(iv) 

( v) 

(vi) 

Then 

B ( • ) 

B(A.) 

B(A.) 

is 

is 

is 
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left-continuous. 
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A. for A. .. A.* 

The author is grateful to Bent Natvig for valuable comments. 

AEEendix. 

Let T be a set and M and s functions 

such that 

(a) 
T 

-oo < M < (D for all T E T 

(b) 0 ~ ST < CD for all T E T 

(c) ST = 0 =>' MT > 0 I 

(d) there exists a T E T such that s T 
> 

Define the function B from T to (-ro ,"'] by 

BT MT 
= 

ST 
and let 

A.* 
T 

= inf B 
TE T 

Clearly -ro ~ A.* < ro. If there exists a T E T 
we say that T is optimal. 

defined on T 

0 . 

T 
such that B = A.* 1 



- 10 -

Let the 'A-functions 
T 

C A 1 A E (-co 1 co ) from T to (-co 1 co) be 

defined by 

We shall see haw the problem of minimizing BT can be solved by 
• 

minimizing the A.-functions C t...• A result which has been used by 

e.g. Brender (see Barlow and Proschan (1965) page 115-116), Ross 

(1971) and Taylor (1975) in special cases is the following: 

A. 1 • If Tf... E T minimizes c· and 
Tf... 

0, then Tf... minimizes Cf... = 
TA. 

A. 

B (and A. = B = t...* ) . 
(The proof of this result is left to the reader.) 

It should be noted that if there exists a T which is optimal, then 
• T 

T minimizes CA.* and CA.* = 0. 

We now make the following assumption. 
• (e) There exists a TA. E T 

A. E ( -o:> I CD) • 

such that TA. minimizes CA. for each 

We shall deduce some consequences of this assumption. The main 

result we prove is the following: 
T A.* 

CA.* 
if (a)-(e) hold and ~ 
If A.* > -oo, then = 0, (cf- A.1). Thus we can conclude that 

it follows that T * 
A. * T E T since then A. 

> -oo, then TA.* is optimal. 

is optimal if (a)-(e) hold and 

) 0. 

Denote by 

and observe that 
T 

B(A.) ~A. C A. < 
f... ) 0. 

We now prove the following results. 

A. 2. --
( i) For each A. such that A.* < f... we have 

T 

Cf... 
A. 

< 0 or equivalently B(A.) < A. • 

( ii) For each A. such that A. < A.* we have 
TA. 

0 equivalently B(A.) A.. CA. > or > 

(iii) 
Tf... 

CA. is a non-increasing function in A.. 

In particular 
T 

0 <: M < oo, 
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Proof 

( i) Let T be such that t..* T 

" B < 
" 0 

Then we get 
TA 

CT MT-BTST 0, which ( i) 0 CA " " = proves A 

(ii) The result follows by noting that B(A) ;> A* > A . 

(iii) By (e) we have 
TA T>,_ 

= M l_A S l 
2 

and so since we get 

and ~he statement follows. 

A. 3. 

( i) Let A* < A " Al < A2. Then we have 

TA 
c 2 

TA A.2 
s < -

A 2- xl 
T 

(ii) H 0 
" 

MT for all T E T 

Proof 

(i) By (e), the fact that A ~ Al and A.2 (i) we get 

T TA TA TA TA 
CA~2 "CA2 = M -AlS -(A2-Al)S 

T T T 
A A A 

~ CA - (A 2- A 1 ) s < - ( A 2-A 1 ) s I 

and (i) follaws. 

(ii) The result is an immidiate consequence of assumption (e) 

(let A = 0) • 

A. 4. A* = -co if and only if 

T 
M A < 0 for A <; 0 

T 
and S A ~ 0 as 

Proof. "only if" follows from A.2 (i) and A.3 (i). "If" is 

trivial. 

A. 5. If t..* > -oo then (or equivalently B(A*)=A*). 
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Proof. Let 0 < E < h. 'I'hen from A.2 (i} we have> 

B(\) < >...*+t for "ll \ s ll c h t h ;l t 

'l' T TA. 
This gives M "-A*s A < ES and it follows that 

T A.* T TA. C A. ;\*<;\<;\*+E. CA.* ~ A.* < ES , 

Since is bounded by 
TA.*+2h 

A.* <A.<A.*+h (A.3(i)), -CA.*+2h /h < CX> for 

we obtain by letting E ~ 0 that 
TA.* 

CA.* ~ 0. But from the definition 

0, 
TA.* 

0 and the proof is ~ so CA.* = of A.* we have that 

completed. 

We summarize. 

A.6. If (a)-(e) hold and A.* > -oo, then TA.* is optimal and A.* 

is given as the unique solution of the equation B(A.) =A.. 

Horeover, if A. > A.* , then A. > B(A.) whereas 

if A. < A.* , then A. < B(A.). 

Now we give an algorithm which always produces a sequence 

converging to A.* (cf. Bergman (1980)}. 

A.7. Algorithm. Choose any A. 1 
iteratively 

Then 

A. = B( A. ) 
n-t 1 n 

lim A. = A.* 
n 

n~oo 

T 
such that S Al > 0, and set 

n = 1,2,3, .•• 

Proof. Since 00 > "2 = B( A. 1 ) ) A.* we have from A.6 that A.*< A. 

B(A.2)< "2· So by induction A.* .. A. = B(A. ) .. A. < oo, n ) 2. 
n+l n n 

Hence there exists a A.' ) A.* such that lim A. = A I o 

n 

3 

We must show that A.' = A.* . Assume first that A.* > -co. It then 

sufficies to prove that A.' ~ B(A.') or equivalently 
since then A.' =A.* by A.2(i). Now writing 

T 
A. 

= (A. -A. ) S n+l n 

= 

and noting that s n is bounded {A.3(i)) and A. -A. n+l n 
~ 0, we see 

TA. TA.' TA. 
that CA. n ~ 0 as n ~ co. Since c"' ~ CA. n ( A. 2 ( iii ) ) we can 

n 
TA I 

n 
conclude that CA., ~ 0. This proves the convergence if A.* > -co • 

Assume now that A.* = -oo We must show 
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that \I = -ro Suppose A I > -l"l.l. Then by the proof il.bove '.'/(~ h<1VC 

T AI 
CA. I 

;;. 0 0 From A. 2 (i) we can conclude that il.* = A I o But this is 

a contradiction since A.* = -co • Thus A.' = -co • The proof is now 

complete. 

Observation: It is easily seen from the above proof that 'A < f... 
n+1 n 

unless A. = /,* . 
n 

Some final remarks 

(i) Suppose that assumption (e) is replaced by 

• 
(e 1 ) T..,._ E T minimizes c..,._ for A. E [u,v)n(-oo,oo), 

where -oo < u ~ 'A* < v ~ co, Then the results, A.1-A.7 (A.3(ii) if 

u < 0 and A.7 if "A 2 = B("A 1 ) < v) are still valid if we restrict 

the A.-analysis to [u,v)n(-oo,co), 

(ii) 

and 

T 
Suppose that (a)-(d) hold, S ..: r < co for all T E T , 'A* >-co 

• E T minimizes 

T"A* 
we can prove that c..,._* 

c..,._* (the assumption (e) is dropped). Then 

= 0, i.e. T..,._* is optimal. Let E > 0 

given and choose T E T 
T A.* T T 

o ~ cA.* ..: c..,._* < ES ..; Er. 

such that BT < "A*+E. Then we have 
T"A* 

It follows that C"A* = 0. 

be 

(iii) Standard numerical iterative methods, for example the 

bisection method or modified regula falsi (see e.g. Conte and de 

Boor (1972) Section 2) can in addition to A.7 be used to locate ..,._* 

We must then start with "a " "Ab 

A.b ~ B( "Ab) (then "a ..; 'A* " "Ab). 
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