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Customers and downstream supply chain partners often place, or can be induced to
place, orders in advance of future requirements. We show how to optimally incorporate
advance demand information into periodic-review, multiechelon, inventory systems in series.
While the state space for series systems appears to be formidably large, we decompose the
problem across locations, as in Clark and Scarf (1960), and reduce the state space at each
location by using modified echelon inventory positions (that nets known requirements). We
prove the optimality of state-dependent, echelon base-stock policies for finite and infinite
horizon problems. We also show that myopic policies are optimal and very easy to compute
when costs and demands are stationary. We provide managerial insights into the value of
advance demand information through a numerical study.

(Multiechelon; Stochastic Inventory System; Facilities-in-Series; Advance Demand Information)

1. Introduction

There is a growing consensus that a portfolio of cus-
tomers with different demand leadtimes, see Gressens
and Brousseau (1999), can lead to higher, more reg-
ular revenues and better capacity utilization. Cus-
tomers with positive demand leadtimes place orders
in advance of their needs resulting in advance demand
information. This gives rise to the problem of find-
ing effective inventory control policies under advance
demand information. Sellers may elicit advance
demand information from buyers by providing incen-
tives for early bookings. In this paper we take the
incentive system as given and study the seller’s oper-
ational problem of minimizing the discounted hold-
ing and penalty costs of managing a series system
over a finite or infinite horizon, proving the optimal-
ity of state-dependent, echelon base-stock policies. We
also show that myopic policies are optimal and very
easy to compute when costs and demands are station-
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ary. Our results can then be used to evaluate strategies
to obtain advance demand information.

In particular, we analyze a periodic-review, single-
item series system that incorporates advance demand
information. Under advance demand information the
demand seen during period ¢ is of the form

» Dy, i) @)

where D, ; is the demand realized in period t for
delivery in period s € {t, ... ,t+ N}, and where N < o0
is the information horizon beyond which we do not col-
lect advance demand information. Notice that N =0
represents the classical case of no advance demand
information. D, becomes known with certainty at the
end of period t.

As mentioned before, advance demand information
may arise as buyers’ response to price incentives. Buy-
ers may be given a choice of demand leadtimes, | €
{0, ..., N}, at decreasing unit costs c;. In this case D,
is the sum of the demands from buyers with demand

D,=(D;, ...
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Figure 1 Serial System
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leadtime s —t € {0, 1, ..., N}. Alternatively, the seller
may offer buyers a menu of prices ¢; with delivery
leadtime [ € {0, ..., N}. Each buyer needs to decide
how many units to order at each price. This inter-
esting problem was first studied by Fukuda (1964)
for the case N = 1. For a stationary demand pro-
cess, Fukuda’s results can be interpreted as follows:
If X, is the demand process seen by a buyer, then
D, = ((X;—A)", min(A, X,)) where A is a constant that
increases with the price discount c, —c¢;. Thus up to
A units of the buyer’s demand is purchased at c; and
only the excess over A is purchased at c,. If there
is more than one buyer, then the advance demand
information should be aggregated across the buyers.
Notice that in both cases the components of D, may
be dependent, but the vectors D, are time independent
if the buyer’s demands are time independent.

The series system consists of | locations as illus-
trated in Figure 1. Location | satisfies the demands of
one or more buyers with different demand leadtimes
that collectively give rise to the advance demand
information vector D,. Each location satisfies its
requirement from its immediate predecessor. Location
1 orders from an outside supplier with ample stock.
Replenishment decisions are centralized and based
on systemwide information. Orders from the out-
side supplier and shipments between locations arrive
after fixed, location specific, leadtimes L. Unsatis-
fied demand at each location is fully backordered. A
penalty cost is charged on backorders at location |
only. Holding costs are charged on ending invento-
ries at each location as well as on inventories in-
transit to the downstream stage. The cost parameters
and demands are allowed to be time dependent. We
assume stationary cost and demands for the infinite
horizon problem.

There is an extensive literature on stationary® series
systems with independent demands without advance

1 We refer to an inventory problem as stationary when the demand
is stationary and the cost parameters are constant over time.

demand information. This literature starts with the
seminal paper of Clark and Scarf (1960). They show
that the problem decomposes into single location
problems and that echelon base-stock policies are
optimal. This model was extended to the infinite hori-
zon stationary case by Federgruen and Zipkin (1984).
They show that base-stock policies are optimal for
both the discounted and the average cost criterion.
For a review of this literature we refer the reader to
Federgruen (1993).

Chen and Song (2001) wrote the only paper, that
we are aware of, to study infinite horizon average
cost series system with a nonstationary demand pro-
cess modulated by a finite state exogenous Markov
chain. Markov modulated demand processes were
first addressed by Song and Zipkin (1993) and Sethi
and Cheng (1997) in the context of single location
problems. Similar to the proofs of Chen and Zheng
(1994), Chen and Song (2001) establish lower bounds
on the cost of managing the average cost infinite hori-
zon inventory problem in series. They construct feasi-
ble state-dependent policies that achieve these lower
bounds, thereby proving their optimality. Later in the
paper we discuss how a Markov modulated demand
process can be combined with advance demand infor-
mation for a finite horizon problem. The papers by
Erkip et al. (1990), Song and Zipkin (1992, 1996), and
Chen et al. (2000) also address nonstationary demand
processes but for the one-warehouse multiretailer set-
ting. Unlike Chen and Song (2001) and our paper,
these papers focus on the performance of the system
under a given policy or optimize within a given set
of policies.

In contrast to multilocation, periodic-review inven-
tory problems, a fair amount of research has been
done on the analysis of single location inventory
problems that incorporate the dynamic nature of
demand updates. There are mainly four groups:
those who make use of Bayesian updates (Scarf 1960
and Azuory 1985), those who incorporate time-series
models (Johnson and Thompson 1975, Miller 1989,
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and Lovejoy 1990), those who are concerned with
forecast revisions (Heath and Jackson 1994, Gilli
1996, Toktay and Wein 2001), and those who deal with
state-dependent policies where the demand is gov-
erned by either an external process or updated by
advance demand information (Song and Zipkin 1993,
Sethi and Cheng 1997, Schwarz et al. 1998, Scheller-
Wolf and Tayur 2001, Kapuscinski and Tayur 1998,
Gallego and Ozer 2001).

We end this review by noting that series systems
are fundamental to the study of more general supply
networks, including assembly systems as discussed in
Rosling (1989) and distribution systems as in Feder-
gruen (1993) and Ozer (2003), who addresses a ware-
house multiretailer distribution system with advance
demand information.

In this paper we prove the optimality of state-
dependent, echelon base-stock policies for both finite
and infinite horizon a-discounted problems with
advance demand information. To do this we show
that the problem decomposes into single location
periodic-review problems. We further reduce the
dimension of each location’s dynamic program by
using, at each stage, the modified inventory position*
concept introduced in Gallego and Ozer (2001). To
obtain the state-dependent, echelon base-stock levels
for each location, we first solve the dynamic pro-
gram for location |, which is a single location problem
with advance demand information and linear order-
ing costs. We then use the optimal cost function for
location | to obtain an implicit penalty cost function
that measures the inability of location | —1 to respond
to the requirements of location J. This implicit penalty
cost function, together with location ] —1 holding and
ordering costs form the basis for the single period
cost function of location | —1 and the single location
dynamic-programming formulation. The solution to
this DP provides an optimal echelon base-stock level
for location | —1. We repeat this procedure and solve
for locations ] -2, ..., 2 and end by solving the prob-
lem corresponding to location 1.

We also show that myopic base-stock policies are
optimal for finite and infinite horizon problems when

2The modified inventory position is the inventory on hand plus
on order minus backorders minus the observed demand over the
leadtime.

demands and cost parameters are stationary. For
the myopic result to hold with or without advance
demand information, we require carefully set termi-
nal conditions for finite horizon problems. See Veinott
(1965) and the references therein for the optimal-
ity of myopic policies for single location problems.
When the myopic policy is optimal, there is no need
to incorporate advance demand information beyond
each location’s leadtime plus a review period.

The rest of the paper is organized as follows: In §2,
we introduce the demand model. In §3, we analyze
the single location model that is fundamental to the
analysis of series systems. In §4, we carry out the anal-
ysis for the series system and provide an algorithm to
compute the optimal policies. In §5, we establish the
optimality of myopic policies for stationary problems.
In §6, we extend the results to infinite horizon prob-
lems. In §7, we provide insights through a numerical
study. We conclude in §8 and point out directions for
future research.

2. The Demand Model

The demand model given by Equation (1) can incor-
porate several elements of randomness that are likely
to arise in practice. In particular, the number of cus-
tomers that arrive in a period, the order sizes, and the
desired delivery dates can be all random. To see this,
let N, be the random number of customers that arrive
during period t. Assume that customer j demands
a random quantity X, ; to be delivered at a ran-
dom fulfillment date s, ; € {t,... ,t+N}. Then D, , =
Z;\’:‘l Xy, iI(s;,; = s) where I() is an indicator function.
Hariharan and Zipkin (1995) call s, ; —t the demand,
or customer, leadtime and study a single location
continuous-review model with constant customer
leadtimes. Our model can be viewed as periodic-
review generalization of Hariharan and Zipkin (1995)
to the case of random demand leadtimes.

Given the advance demand information process
D, =(D,;;,...,D; ;n), we can decompose the total
demand }7;_. \ D, , for period s at the beginning of
period t € {s— N, ..., s} into the observed and unob-
served parts:

Ot,s =

t—1
r=s—

Z Dr,s/

S
U,,=3D,.
N r=t
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Notice that O, ; is known while U, , is random at the
beginning of period t. Notice also that O,,;, ;= O, ,+
D, cand U, = U, ,—D, , at the beginning of period
t+1 after D, is realized.

AssumPTION 1. We assume that the advance demand
information process D, is time independent. The compo-
nents of the demand vector D, ,,; and D, ,; are, however,
allowed to be dependent.

This implies that U,  is independent of O, ,. How-
ever, the fotal demand for period s clearly depends
on O, ;. Indeed, the best estimate of the demand for
period s at the beginning of period t is given by O, ,+
>, E[D, ;]. As discussed in the introduction, there
are important cases where U, ; is independent of O, ..
While it may be desirable to generalize the model to
allow U, , to depend on O, ,, this requires an enlarge-
ment of the state space as discussed at the end of §3.

Notice that under this information structure at the
beginning of period ¢, we know the N dimensional
vector 6t =(0; 4,0t 141, -+, O; tyn_1)- We use the (51
notation to emphasize that we are including all the
components O, ,, s € {t,...,t+ N}. Later, we will
subsume the information contained in the first L+1
components of O, and use the notation O, to refer
to the resulting vector of reduced dimension. For
convenience, we define O, ;=0 for s > t+ N. For
easy reference we provide a glossary of notation in
Appendix A.

2.1. MRP Serial Systems

Our model also bridges a gap between the classical
stochastic inventory literature and MRP serial sys-
tems. The classical inventory system corresponds to
the case N =0 where there is no advance demand
information. On the other hand, MRP logic assumes
future requirements are known with certainty. In
practice, however, MRP is applied on a rolling hori-
zon basis and forecasts for future requirements are
updated in every period. Our model makes the fore-
cast updates explicit. In particular, if we let F, ; be
the forecast at the beginning of period t for period s
demand, then

Ft+l,S=E,s+Dt,s_Et[Dt,s]' (2)

Notice that D, ,—E,[D; ] is a mean zero random vari-
able, so the forecast updates form a martingale. See
Graves et al. (1986) and Heath and Jackson (1994)
for an elegant exposition of the Martingale method
of forecast evolution (MMFE). Graves et al. (1998)
use the MMFE model to smooth production by mak-
ing production updates a linear function of forecast
updates while keeping safety stocks constant. Their
paper provides a sensible heuristic for our model
where the forecast updates may arise from factors
other than advance demand information. The state-
dependent base-stock policies obtained in this paper
provide an optimal solution for a series MRP system
where forecast updates arise from advance demand
information, leadtimes are constant, and the objec-
tive is to minimize expected holding and backorder
costs. To our knowledge, no other model has this
capability.

2.2. Markov Modulated Demand and
Advance Demand Information

The demand model can be extended to incorporate
a fluctuating demand environment governed by an
exogenous parameter, such as season and economic
condition. In particular, it is possible to model the
demand vector D, as a state-dependent process that is
governed by a discrete time-finite state Markov chain
{6,,t > 0} as in Song and Zipkin (1993). In this case
the distribution of the demand vector depends on
the realization of 6,. This generalization requires aug-
menting the state space of the dynamic programs to
include the state of the Markov chain. The results and
proofs for this case would follow the generalizations
of the proofs in the paper.

We end this section by clarifying a few differ-
ences between MMD and ADI systems. For MMD
systems, 6, is an exogenous parameter that is inde-
pendent of past demands and governs the distribu-
tion of D,,;. For ADI systems, O, is an endogenous
vector that depends on the demand history but does
not influence D, ;. One can envision a richer class of
MMD systems with endogenous Markov chains and a
richer class of ADI systems where O, influences future
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demands. To our knowledge, such systems have not
been studied in detail.

3. Single Location Systems
We start by considering the dynamics of the single
location, periodic-review inventory system. This prob-
lem is addressed in our earlier paper (Gallego and
Ozer 2001). Here we summarize the results that are
necessary to study the series system. At the beginning
of the period, the order placed a leadtime earlier, L
periods ago, arrives. Based on the available informa-
tion, the inventory manager decides the order quan-
tity z, > 0 and incurs a linear cost of ¢,z,. Demands
over the period are satisfied, giving priority to exist-
ing backorders (if any). Excess demand is backlogged.
Inventory holding and penalty costs are charged to
the inventory level at the end of the period. The objec-
tive is to minimize the expected discounted cost of
managing the system over a finite or infinite horizon.

The information available to the manager at the
beginning of period t is given by I,, the inventory
on hand; B,, the number of backorders; z, for s €
{t—L+1,...,t—1}, the pipeline inventory and O, =
(O ¢r-v s O 1yn-1) the vector of observed demands.
Let %, =, + Y2} ;,,z — B, the inventory position
before the ordering decision is made.

Let #, = ¥, +z,. The net inventory at the end of
period t+L is given by

t+L t+L

gt _Zot,s _Z ut,s'
s=t s=t
The single period cost charged to period ¢ is the dis-
counted expected holding and penalty cost at the end
of period t+L, and it is given by

t+L t+L t+L
G, <gt -2 Ot,s) =a'Eg, <]?t =2.0,—> ut,s) ,
s=t s=t s=t
where a <1 is the discount factor® and g,(-) is the
holding and penalty cost function based on the net
inventory at the end of period t. The expectation is
taken with respect to the unobserved part of the lead-
time demand.

3 We require a < 1 for infinite horizon problems.

AssUMPTION 2. We assume the cost function G, is
well defined, e.g., §,(x) < c(1+|x|) and ED{, < oo for
some p > 1 (reqularity condition), that g, is convex and
limy,_, ., §:(x) = oo (coercive) for all t. This assumption is
satisfied, for example, when holding and penalty costs are
linear and imply that G, is convex and coercive for all t.

AssuMPTION 3. We assume that inventory (respec-
tively backlogs) at the end of the planning horizon are sal-
vaged (respectively purchased) at a unit rate cr.

The dynamic programming formulation of this
problem is given by

‘Z(fu 6t) = —,%, +r£1%n ﬁt(]// 5t)/ 3)

- - t+L
Ay, ) = cy+G, (y -y O)

s=t

+aEV, 1 (Xi11, Oip1) 4)
Vi1 (Xri, ) = —CrXrgq-

We propose the reduced state space (x,, O,) where

x,: modified inventory position before the ordering
decision, =%, —Y!* O, |,

O,: vector of observed demands beyond the lead-
time, that is beyond period t+L, = (O, 141, ---,
Oy x-1)-

The dimension of the reduced state space is (N —
L—1)*+1. In terms of the reduced state space, the
dynamic program is given by

Vilx,, O)) = —ctxt—i—ryréixr}Ht(y, 0)), (5)
Hi(y, O) = ey +Gi(y) + @EV,1 (X111, Opa), - (6)
Vi (Xrga,0) = —CrpaXry.
We define

gt(ﬁt): smallest minimizer of PNIt(-, 5t) defined in
Equation (4),

¥,(O,): smallest minimizer of H,(-, O,) defined in
Equation (6),

y;': smallest minimizer of (¢, — ac, 1)y + G,(y),

y™: smallest minimizer of (1 — a)cy+ G(y).
All of the above minimizers exist under Assump-
tion 2. Notice that the definition of y™ assumes sta-
tionary demand and costs. Both y;* and y™ ignore
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observed demand information and the cost incurred
in upcoming periods. We refer to policies that order
up to y}" or ¥y as myopic.

The following Lemma shows that the reduced state
space comes at no loss of optimality. Theorem 1 sum-
marizes some of the results in Gallego and Ozer
(2001). We refer the reader to this paper and to the
Appendix for the rest of the proofs.

LemmAa 1. For any given vector 6t, (i) \Z(J?,,ﬁt) =
Vi(x;, Op), (i) H, (¥, O) = Hi(y:, O)) + ¢ D O, s/
where y, = y, + Zith 0,5 (i) 7,(0;) = y:(O,) +
YO, ..

s=t

TueoRrEM 1. If Assumption 2 holds, then for any given
vector O, we have

(1) Finite Horizon Problem:

(i) H(x, O,) is convex.

(ii) The state-dependent base-stock policy given by
y:(O,) is an optimal solution to the dynamic program given
in Equation (5).

(iif) V,(x, O,) + c,x is nondecreasing convex in x.

(2) Infinite Horizon Problem Under Stationary Costs
and Demands:

(i) limy, Vi(-, O,) exists and converges uni-
formly to a convex function V(-,O,). Furthermore,
lim,_  V(x, O,) = .

(i) limg_, . H,(-, O,) exists and converges uni-
formly to a convex function H(-, O,). Let y(O,) be a min-
imizer.

(iii) y(O,) =y™ is an optimal policy for the infinite
horizon problem.

(3) Myopic Policies: If y;" is nondecreasing in t, then
the myopic policy y;" is optimal for finite horizon problems.
In particular, under stationary costs and demand distribu-
tions the myopic policy is optimal for finite as well as for
infinite horizon problems.

We remark that it is also possible to establish The-
orem 1 in terms of the original state space of func-
tional Equation (3). This allows us to compare the
costs under the original and the reduced state space.
This is also used for the decomposition proof of mul-
tilocation series system.

We now argue that the state space reduction dis-
cussed above is not plausible for a number of models

that make the unobserved part of the demand depen-
dent on the observed part. Consider first the autore-
gressive model D, ;, =a, ,+p, ;D; | ;+¢€;. Here O, ;
is not a sufficient statistic to compute the distribution
of U, ; because it hides the value of D, ; . Therefore
a larger state space is required. Consider now a par-
simonious model where U, ; depends directly on the
observed part O, , = Y"'" /D, .. This imposes strong
distributional assumptions on D, , for r € {t,..., s}
because U, ,=)";_, D, .. Finally, as discussed in §2.2,
modeling D, as a state-dependent Markov chain
would make the unobserved part dependent on the
observed part. Note that in this case the state depen-
dency of the policy would be due to both O, and the
state of the Markov chain.

4. Series Systems

We analyze a series multilocation, periodic-review
inventory system under advance demand informa-
tion. At the beginning of each period, after receiving
previously placed orders and/or scheduled ship-
ments, the inventory manager decides how much to
order, z; > 0, from the outside supplier and how much
to ship, zj >0, to location j € {2,..., ]} from loca-
tion j—1 in light of the advance demand information.
A linear ordering/shipping cost Z]]-=1 cj;z; is charged
to period ¢t. This cost should be interpreted with care.
cy; is the acquisition cost from the external supplier,
while Cits j =2, are echelon, or value added, costs from
shipping or transforming units from one stage to the
next. We assume that an order from the outside sup-
plier placed at the beginning of period t arrives at
location 1 at the beginning of period t+L,. Similarly,
a shipment to location j € {2, ..., J} arrives L; periods
later.

At the beginning of period ¢, the inventory man-
ager knows the number of on-hand inventory I;, at
each location j, the backorders B, at location |, and
trans-shipments z; = (zj,...,2;;) to each location
j, where z;; is the shipment dispatched from loca-
tion j —1 to location j at the beginning of period
t—sand L;=L;—1. We assume without loss of gen-
erality that the on-hand inventory includes shipments
placed a leadtime earlier and received at the begin-
ning of the period. Under this convention, th is
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irrelevant whenever L; € {0, 1}. In addition to these
variables, the inventory manager also knows O, =

(Ot,t/ R Ot, t+N—1)'
Let us define
t+L;
Rp=2 Li+> > z.—B,
i>j i>j s=t

echelon net inventory at location j,
t+L}
Jzjt = J?jt—‘f_ Z Zjss
s=t
echelon inventory position at location j,

tHL;

Xjp = Xjp — Z Oy,
s=t

modified echelon inventory position at
location 7,

for each location j € {1, ..., J}. Notice that £, = I, - B,
and X =Xy, +1; forje{l,...]-1}.

The holding and penalty costs are based on the
inventory levels at the end of the period. We assume
that the echelon holding costs are strictly positive.
This is consistent with the idea that value is added as
the item goes through the locations. The holding and
penalty cost for period ¢ is given by

J-1
Z h}t[x,\j, 1T 32]‘+1, 1]+ h,[t[x,\], il” +pt[£1, 1l
j=1
]
=3 k) v P+ HIIR el
=1

where [x]" = max(x,0) and [x]” = max(—x,0), p, is
the penalty cost at location ], I}, is the local inventory
holding cost and hj, = I, — h_; , (hy, =0) is the ech-
elon holding cost at location j. Notice that shipments
in transit to location j+1 are charged at location j’s
holding cost rate.

The updates, at the end of period ¢, after observing
the demand vector D,, are given by

Ot+1 = (Ot+1,t+1/ ceey Ot+1, t+N)I

Zj = (2,21, - - ,z]-L}fl),

Xj 1 = Xje+Zjp — O, =Dy,

X1 =X3+2z;— 0,y —Dy 4,
BHL+1
Xj 1 = Xjp+ 25— > Di— Ot,t+L]-+1'
s=t

AssUMPTION 4. We assume that costs continue to
accrue up to period T. We assume a linear terminal condi-
tion of the form —Z{-Zl Cj, 7+1%j, 741 The economic inter-
pretation is that of a salvage value if X; 1., is positive, and
an acquisition cost if X; 1., is negative. All costs after time
T +1 are assumed to be zero. We take advance information
up to the period T only, hence, Oy +1=0.

Notice that locations j < | do not need to wait
until the beginning of period T +1 to salvage
remaining inventories. Our formulation, which sal-
vages remaining inventory at the beginning of period
T +1, is without loss of generality provided that the
unit costs ¢; 1,y are appropriately discounted, e.g.,
**e; 141 = € r41-1,—.—1,- Notice also that at the
beginning of period T +1, the expressions X, ¥, and x
are equivalent because there is no pipeline inventory
and there is no observed demand over future periods.

To our knowledge all other papers in the litera-
ture charge zero terminal costs for the multiechelon
systems. Linear terminal costs are more realistic and
allow us to show that myopic policies are optimal
for finite horizon problems with stationary costs and
demand distributions, a result that fails to hold under
zero terminal costs.

ali

To simplify the exposition we formulate the
dynamic programming recursion for a series system
with two locations. We discuss how to extend the
results to a series system with more than two locations
at the end of this section and in Appendix B.

4.1. Series System with Two Locations
The problem here is to manage two locations in series
up to period T > L; +L,. The last order for location 1
is dispatched at the beginning of period T —L, —L,
and arrives at location 1 at the beginning of period
T —L,. The last shipment to location 2 is initiated at
the beginning of period T — L, and arrives at loca-
tion 2 at the beginning of period T.

We define the initial state space by (%, Zy,, Xy,
Zos, 5t). Later we show how to reduce the dimension
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of the state space. The optimal cost-to-go starting from
period t is given by

]t(xAlt/ th’ 5&21‘/ Z2)?1 Ot)

= (Zn;l)f;%,{cuzl + oz + Iy EXy g +EQi (X5, 141)
17 42)<-

+aEJ 1 (%1 11, 21, 0410 %o, 1010 22, 1410 Ot+1)} ()

where Jr (1, -, %, ) = —01, 1% — 6, 1%, §(X) =
Iyl + (py + W) 2], and st = ((z,,2,) € 22 2, = 0,
z, > 0, and X,,+z, < %,}. The shipment constraint &,, +
z, < Xy, is equivalent to z, < I;,, meaning that ship-
ments to location 2 are bounded by the inventory on
hand at location 1. Notice that g, is convex and coer-
cive forall t <T.

In the remainder of this section we show that the
above dynamic program can be decomposed into two
simpler problems. To do this, we first show that
the state space of Equation (7) reduces to (%, zy,,
%y, O)) by subsuming pipeline inventory, that is, x,, =
Xy + Zlil Zy. This yields an essentially equivalent
dynamic program with a reduced state space and
cost-to-go J,(%1;, Z1s, Koy, C~)t). We then show that this
dynamic program can be decomposed into two sim-
pler dynamic programs plus a cost function that is
independent of the decision variables z; and z,:

Ji(Gais 2 ot O))

= V(Fy, O) + V2(y, O) + TRy, 21y, O).

We further reduce the dimension of each of these pro-
grams as in Lemma 1. We conclude by establishing
the optimality of state-dependent, echelon base-stock poli-
cies and describe how to compute them.

Ample Ly L,
Supply M(Qt ----- Ot t+n-1)

L1 L
— @@ > O Ortenr) s @ —» (Otts---Ott+n-1)

Location 1

Location 2

A shipment of z, initiated at the beginning of
period t arrives at location 2 at the beginning of

period t+L,. Consequently, the inventory on hand at
location 2 at the end of period t+L, is given by

t+Ly t+L,
Ttz = 2O+ 2 U o,
s=t s=t
where the term in parenthesis is the leadtime demand

for location 2, that is, the demand during periods
{t,..., t+L,}. We charge to period f the cost

t+L,
hyEXy 1+ Gy <j2t +2,— ) Ot,s) ,
s=t

where G,(x) = a"Eg,,, (x — Y15 U, ). This cost
accounting scheme is standard in the inventory liter-
ature. It assists in collapsing the state space, and in
reducing the problem to

]t(jelt/ th' 552[' Ot)

(21, y)ed

L,
+Gf<y— Z Ot,s)

s=t

= min :Cltzl+C2t(y_i2t)+hltE£1,t+l

+aEj; 4 (xl, t417 21, 0417 X2, 417 Op1) }

where [ (X, %, ) = —¢| 115 — ¢ 1 1%, and ol =
{(z1,y) € Z*: z; > 0 and %, <y < x,}. The justification
for this formulation is given by the following lemma.
LEMMA 2. [[(Ryy, Z1y, X1, Zy, Op) =T, (R, Z14, Xy, O))+
G,
The term 6,, described in Appendix C, is a constant.
It is independent of the period t decision variables, z,
and y, so it can be dropped for optimization purposes.
Next, we decompose the series system into two single
location problems.
_THEOREM 2. [,(%y;, Zy;, %y, Op) = VI (%), O) + VA (%y,
O,) + %, where

Vtz(fzu O;) = —cy Xy +1:1;liry1 th(]/, Oy, (8)
Ty <

tL,
th(yr Ot) = CzrV + Gt (y - Z Ot,s)

s=t
oy ~
+ BV (%2, 141, O,

~ B .
Via (X, ) = —¢ 111%
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and

s=t

_ N N tL, _
V! (%, 0) = _Cltx1t+?;}zn{clty+ct (y_ > 0Oy Ot)
ZA1t

+0‘E17t]+1(£1,t+1/ 5t+1) } , )

t+Ly

Gt(y’ 5t) = a"E { h1t+L1 (y - Z ut,5> +aﬁ)t+L1+1

s=t

t+L ~
‘ (]/_ YU, Ot+L1+1> }/
s=t

IP,(y,0;) = HX(min{j,,(0,), y}, 0) — H(§:(0y), O,),
‘7T1+1(921/') = _C1,T+1f1/

ﬂZt(d) is the smallest minimizer of ﬁf(~, 5t) and F, is a
constant.

Here IP, denotes the implicit penalty cost func-
tion as in Clark and Scarf (1960). It measures the
inability of location 1 to match the requirements of
location 2 and depends on the state of the advance
demand information in addition to the echelon inven-
tory positions. So far we showed how to decompose
Equation (7) into two smaller dimensional dynamic
programs. We further reduce the state space of
the dynamic program \73(3?2,, 0,) by subsuming the
observed part of the state-specific leadtime demand*
and introducing the modified inventory position con-
cept as in Lemma 1. It is not clear, however, whether
a state-space reduction for location 2’s dynamic pro-
gram will preclude us from reducing the state space of
location 1’s dynamic program. Recall that the implicit
penalty cost function is based on the location 2’s cost
function 122, hence the state space of IP, depends on
that of 173. We show next why this is not a problem.

As in Lemma 1, the dynamic program for location 2
in Equation (8) is equivalent to

V7 (xy, OF) = —cyy, +£n1<ry1 Hi(y, O}), (10)
th(yr Otz) = oy +G(y) + a’EVt2+1 (%2, 141, Ot2+1)/

VT2+1(xr )= =0 X,

Y, (O?) : smallest minimizer of H?(-, O7).

* the first L, components of vector 5t

where OF = (O, 147,11, --- + O 11n_1). Because of As-
sumption 4, no demand information is recorded for
periods after T, so x,, = X,, for t =T +1.

We argue that the implicit penalty cost function can
be written in terms of the reduced state space for
location 2. Let IP,(x, O%) = H?(min{x, y,,(0?)}, O?) —
H(y5(0?), O). We use this implicit penalty cost
function and the next lemma to reduce the state space
of location 1’s dynamic program.

LemMa 3. IP,(x, O,) = IP,(%, O,) where x = % —
Ziif Oy, and O; = (Oy 1141, -+ + Oy yn-1) for all fixed
Le{0,1,...,N—1}.

We can now assert that IP,(%,0,) = IP,(X —
ziifz O,,,0}). In other words, we can obtain
ﬁ’t(ft, 5,), to be used in the location 1’s new dynamic
program, from V?(x, O?). Hence, the DP for location 1
is independent of the state-space reduction for loca-
tion 2. For the evaluation of Cth (y, O,), notice that O} =
(O4, 141,417 - -+ + Of, 14n-1) contains all the relevant infor-
mation about O, ,, that is available at the beginning
of time t. We apply Lemma 1 to reduce the DP for
location 1 to

~

th(xltr Otl) = —Cp1Xy; +1;;lg}Htl(yr Otl)/ (11)

Ht] (v, Ot1) =y + Gy, Otl) +0‘Eth+1(x1,t+1/ Ot]+1)/

t+Ly

Gy, Of) = O‘LlE{hlt+L1 <3/ - Ut,s) +aﬁ)t+L1+1

s=t

t+Ly B
: (y_ > U, Ot+L1+1> ]/

s=t
VT1+1(x/ ) = —C, 71X,
y1,(O}) : smallest minimizer of H}(y, O}).

LemMa 4. C,(-, O}) is convex and lim, ., C,(x, O})
= OQ.

To summarize, the problem of finding an optimal
policy reduces to solving two simpler, single loca-
tion, dynamic programs. The state space for these pro-
grams is of dimension 14+ (N —L; —1)" for j=1,2. We
are now in a position to present a simple algorithm to
compute an optimal policy. The first step of this algo-
rithm involves solving the single location dynamic
program for location 2, given by Equation (10). Notice
that this recursion has the same form as Equation (5).
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In particular, the functions G,(-) satisfy the conditions
of Theorem 1. The second step involves solving the sin-
gle location dynamic program for location 1, given by
(11). This requires the implicit penalty cost function
that is now available from the solution to the dynamic
program for the second location. Lemma 4 and The-
orem 1 imply the optimality of state-dependent base-
stock policy for location 1. We summarize our results
in the following theorem.

THEOREM 3. An echelon state-dependent base-stock pol-
icy is optimal. In particular, an optimal base-stock level for
location j at time t is given by yjt(O{)for ji=12

Note that the decomposition of the series systems
into stages should be done in a way that preserves
advance demand information for use at all the decom-
posed stages. Notice that the implicit penalty cost
depends on the advance demand information. On the
other hand, if the inventory manager is only con-
cerned with incorporating advance demand informa-
tion up to the minimum of the leadtimes plus one
review period, that is, N < min(L,, L,) + 1, then the
state space for each location is one-dimensional. To
see this, notice that for N <L, +1 the vector O? dis-
appears, so the state space, the implicit penalty cost
function, and C, are all of dimension one. This result
and N <L;+1 imply that the DP for location 1 is
also of dimension 1. As a consequence, all the classical
results and algorithms for series systems apply after
modifying the inventory position, at each stage, to
subsume the observed part of the leadtime demand.

4.2. Series System with | > 2 Locations

The proof of this case is an extension of the results
we obtained for two locations in series. We apply
Lemma 2 and Theorem 2 recursively to decompose
the system into single location problems. Optimal-
ity of base-stock policies then follows directly from
Lemma 4 and Theorem 1. The outline of the proof is
in Appendix B.

5. Myopic Policies

From Theorem 1 we know that myopic policies are
optimal for single location problems whenever the
sequence of myopic base-stock levels is nondecreas-
ing. In particular, the myopic policy is optimal for

finite and infinite horizon problems with stationary
costs and demand distributions. In this section we
show that myopic policies are also optimal for two-
location series system for finite horizon problems with
stationary costs and demand distributions. We refer
to Veinott (1965) and the references therein for finite
horizon single location models. In this section we
show that the myopic policy is optimal for a finite
horizon multiechelon inventory problem in series with
and without advance demand information. We also
show that for a nonstationary problem the optimal
base-stock level is bounded.

AsSUMPTION 5. We assume that hy, = hy, c;; = ¢; for
all t <T—L,—L,, and hy, = h,, ¢,y = ¢, and p, = p for
t<T—-L,.

Next, we define the myopic cost functions

L(y) = 1-a)ey+G(y), (12)
IP" (x) = £*(min{y}', x}) — £*(yy"),

t+Ly t+Lq
C"(x) = ozL1E|:h1 (x— > Ut,s> +alP™ (x— > Ut,s>:|,
s=t

LN y) = A—a)ey+C"(y),

where y" is the smallest minimizer of &'(y) for i =
{1, 2}. Notice that %' is convex and lim,_, ., #'(y) = oo,
so y!" is finite. We refer to the policy that orders up
to the base-stock level y!* as the myopic policy for
location i. We refer to the policy that orders up to
yi" for location 1 and up to yJ' for location 2 as the
myopic policy.

THEOREM 4. For stationary problems, the myopic policy
is optimal for finite horizon problems.

This result implies that for stationary problems
information beyond the leadtimes do not affect the
base-stock levels and the optimal costs. In other
words, at time ¢ knowing that there is some demand
to come in any periods after ¢+ L, will not change
the order-up-to level for location 2. In turn, this
implies that the implicit penalty costs are stationary
and unaffected by the observation beyond location 2’s
leadtime. Therefore the problem corresponding to the
first echelon, that is location 1’s problem, is indepen-
dent of the observations beyond its own leadtime.
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Notice that we do not need to solve dynamic pro-
grams for each location anymore to obtain the optimal
base-stock levels. A straightforward numerical inte-
gration would provide us the myopic cost functions
&' and their minimizers. We have an easy corollary.

CoroLLARY 1. IP,(x, O?) = IP"(x) for all t < T—
L —L,

In words, under stationary cost parameters
IP,(x, O?) is independent of the advance demand
information beyond the leadtime, and hence it is sta-
tionary and given by the myopic implicit penalty cost
function IP"(x). We use this corollary to establish the
optimality of myopic policies for the infinite horizon
problem.

Next, we compare the myopic policy with the opti-
mal policy for nonstationary demand and cost struc-
ture. In this case the myopic policy is defined as
before; the only difference is that cost functions are
time dependent; that is, yj; is the smallest minimizer

of #](y).

ProrosiTiON 1. For nonstationary problems and any
vector O} and t, we have y]-t(O{) <yjforj=1,2.

6. Infinite Horizon Discounted
Cost Model

For the infinite horizon problem, we continue to
assume that all cost parameters and the demand are
stationary. At the beginning of period ¢ the initial state
space is given by (%X, Zy,, X, 5,). Assume that we
are given a policy Y, = (1, ¥20), (V1115 Yar1) s -+ -)-
After implementing this policy at the beginning of
each period s € {t,t+1, ...}, the echelon net inventory
at location 1 is y;, and the echelon inventory position at
location 2 is 7,,. The expected discounted cost of man-
aging this inventory under this policy for an infinite
horizon is given by

](fltr thl j2tr Of | Yoo)

T
= limE}’ a{C1 (Y15 — X15) + 11Xy 1+ 02 (s — %)
s=t

T—o
t+L,
+G<y25 - Z Os,r) }
r=t

Our aim is to determine a policy that minimizes the
above cost function. Notice that the limit exists and
may be +oo because the one-period cost function is
nonnegative. Let

J(Z1s, thr X1, Op) = Yinefl_[]()elf/ Zu/ Yo, Op | Y,)

denote the cost of an optimal policy where II is
the class of infinite horizon measurable policies. If
there exists an optimal policy, it achieves the infimum
above for every state, and we refer to this policy as
the one that solves the infinite horizon discounted
cost problem. The optimality equation, also known as
Bellman'’s equation, for this problem is given by

](xAlt/ th/ iZt/ ot)

= min iclzl+62(y—fzt)+h1Ef1,t+1

(z1,y)est
t+L,
+ G<y - Z Ot,s)

s=t

+aEJ (X 111, 21, 141, X2, 415 Ory1) } (13)

Let 7 € Il be a stationary policy. Under positivity
conditions, which are satisfied in our problem, 7* is
an optimal policy if and only if it satisfies the right-
hand side of (13); see Proposition 1.3 in Bertsekas
(1995, p. 143). We show that this policy orders from
the outside supplier according to the policy that
solves the infinite horizon version of the location 1
problem and ships to the second location according to
the policy that solves the infinite horizon version of
the location 2 problem. To prove this we consider the
finite horizon stationary case and the limit as the hori-
zon grows to infinity. The finite horizon dynamic pro-
gram for each location depends on time to go T —t.
We consider the limit of the functions J, and V/ as
T — oo and show that the decomposition for the finite
horizon problems extends to the infinite horizon prob-
lems as well.

Lemma 5. For every fixed vector 0,

(1) limy_ . VA(%,;, O,) exists and converges uniformly
to a limit function \72(3:@, 0,);

(2) limy_ VX (%y;, O,) exists and converges uniformly
to a limit function Vi(%,, O,); and
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3) limq_ o J,(&y;, Z1s) Xop, 5,) exists and converges uni-
formly to a limit function J(Xy,, Zy;, Xy, 5t) that is equal
to V1(%,,, O)) + V3(%y, O,) + F,. The limit value is also
the optimal value for the infinite horizon problem.

The two-location infinite horizon problem decom-
poses into two infinite horizon, single location prob-
lems. Next, we apply the state space reduction as
suggested by Lemma 1 to obtain the limiting value of
Equation (11). Let

Vz(x2t/ Otz)
= =Xy +{/r>1g1{czy +G(y)+ aEvz(xtH' Ot2+1)}‘

Notice that this is the optimality equation for the infi-
nite horizon location 2 problem. Consequently, due
to Theorem 1, an optimal policy for the above prob-
lem is given by v, the smallest minimizer of #*(y) =
(1-a)c,y + G(y). Similarly let

Vixy, OF) = —c1xy +£H}{C1y+ C"(y)

+aEV1(x1,t+l'Ot1+l } (14)

where C"(y) = a"E[l(y — ¥.5" U, ) + alP"(x —
St U, )]. Convexity of IP" implies the convexity of
C"(-) and the lim,_, . C"(x) = co. Hence, Theorem 1
suffices to show the optimality of base-stock pol-
icy with base-stock level y{" for Equation (14). Thus
because of Theorem 1, Theorem 3, and Lemma 5, the
myopic policy 7, where the location 1 and 2 use the
myopic base-stock level yi" and v}, respectively sat-
isfies the right-hand side of Equation (13); hence it
is optimal. We summarize our result in the following
Theorem.

THEOREM 5. A base-stock policy is optimal for infinite
horizon series system where base-stock levels are given by
the myopic base-stock levels y!",i=1, 2.

7. Numerical Study

For stationary costs and demand, the myopic policy
is optimal. Hence we only need to search for the
minimizer of the myopic cost functions &' to obtain
the optimal echelon base-stock levels. For the non-
stationary problems, however, we need to first solve
location 2’s dynamic program, calculate the implicit
penalty costs, and then solve location 1’s dynamic
program. To do this we use a backward induction

algorithm. The idea is to solve the dynamic program
starting from the last period, which is a single period
problem, by evaluating the cost for each instance of
the state space, choosing an action that minimizes the
cost, and repeating these steps until the first stage is
reached.

FORi=2to1ldo
Initialize Vi ,(x, O') = ¢;r,,x for all x and O
FORt=T to1do
Given O' evaluate H/(y, O') for all y and choose
a minimizer y!(O)
If i #1, evaluate the implicit penalty cost
function IP,(y, O")
Evaluate V/(x, O%)
end FOR
end FOR

The expectations that appear in the dynamic pro-
grams are straight forward numerical integrations.
The convolutions of random variables are easier to
calculate when the demand process is chosen from a
family of regenerative distributions.” Recall that the
dimension of the state space for location j is 1+ (N —
L, —1)* for j={1,2}. The computational burden is
mainly because of the increase in the dimension of
the state space. We limit our numerical study to prob-
lems where L, =L, and N = L, +2. The state space for
these problems is of dimension 2 for both locations.
They are general enough to capture the main ideas.

We assume L; =L, =1 and N =3, and also that
all cost parameters are stationary. The demand vector
is given by D, = (D, ;,D; ;\1, D; ;15, D; ;,3). Observe
that the vectors O} and O} are scalars and equal to
D, 4 ;,. For our computational study we model the
arrival of customers by a Poisson process with mean
A,. An arriving customer requests her demand to be
fulfilled 1 €0, ... , N periods later with probability p,
where Yy, p,; = 1. Hence the demand D, ,,, is Poisson
with mean A, = p,A,. One interpretation is that with
probability p,, the demand leadtime will be I periods.
For stationary problems another interpretation is that
p; *100% of the demand for any period s is placed
during period s —1.

5 A class of distribution is said to be regenerative if the super-
positioning of distributions from this class belongs to the same
class. Poisson is a regenerative distribution.
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Table 1 Optimal Base-Stock Levels and Resulting Cost for i, =1, h, =3,¢, =10,¢, =30
p =19, 20 periods p =19, 20 periods
No. (Ags Aqy g, Ag) iz Yot Cost V % No. (Ags Aqy Ag, Ag) Vi Vot Cost V %
1 (4,0,0,0) 20 10 2,806 5 (3,0,0,0) 15 8 2,142
2 (0,4,0,0) 1 6 2,405 14.3 6 (0,3,0,0) 8 4 1,830 14.5
3 (0,0,4,0) 0 0 1,936 31.0 7 0,0,3,0) 0 0 1,452 32.2
4 (0,0,0,4) 0 0 1,780 36.4 8 0,0,0,3) 0 0 1,338 37.5
p =19, 40 periods p =9,40 periods
No. (Ag, Ay, Ag, Ag) Vit Var Cost V% No. (Ag, Apy g, Ag) Vit Vot Cost V%
9 (2,0,0,0) 11 6 1,978 13 (3,0,0,0) 13 7 2,672
10 0,2,0,0) 6 3 1,698 14.2 14 (0,3,0,0) 7 4 2,372 11.2
11 (0,0,2,0) 0 0 1,322 332 15 (0,0,3,0) 0 0 1,983 25.8
12 0,0,0,2) 0 0 1,246 37.0 16 0,0,0,3) 0 0 1,869 30.0
p =19, 20 periods p =99, 40 periods
No. (Ags Agy Ay, Ag) Vit Yot Cost V % No. (Ags Ays Ag, Ag) Vi Vot Cost V %
17 (3,0,0,0) 15 8 2,142 21 (3,0,0,0) 19 10 3,801
18 (2.4,06,0,0) 14 7 2,081 2.8 22 (2.4,06,0,0) 17 10 3,625 4.6
19 (2.4,0,0.6,0) 14 7 2,033 5.1 23 (2.4,0,0.6,0) 16 9 3,498 8.0
20 (2.4,0,0,0.6) 12 7 1,964 8.3 24 (2.4,0,0,0.6) 16 9 3,364 11.5
p =99, 20 periods p =99, 40 periods
No. (Ags A1y Ag, Ag) Vit Yot Cost V % No. (Ags Aqy Ay, Ag) Vi Vot Cost V %
25 (3,0,0,0) 18 10 3,439 31 (1,0,0,0) 8 5 1,436
26 (2,1,0,0) 15 8 3,122 9.2 32 (0.5,05,0,0) 7 4 1,265 11.9
27 (1,1,1,0) 10 6 2,559 25.6 33 (0,0.5,0.5, 0) 3 2 934 34.9
28 0,1,1,1) 4 3 1,899 44.8 34 (0,0.5,0,0.5) 3 2 872 39.2
29 (0,0,1,2) 0 0 1,367 60.3 35 (0,0,0.5,0.5) 0 0 603 58.0
30 (0,0,0,3) 0 0 1,338 61.1 36 0,0,0,1) 0 0 596 58.2

To portray the necessary insights, and also to illus-
trate our theoretical results numerically, we present
a subset of problem instances with the parameters
hy,h,=1,2,3,6, ¢;,c,=10,20,30, p=9,19,99, a =
0.95, T =20,40. We start by analyzing the benefits
of using advance demand information for stationary
problems.

Note that under our numerical study the demand
at any period s is given by D, 5  +D, , +D, |+
D, .. In our first set of experiments (as summarized in
Table 1), we address the stationary demand case; that
is, A, = A and p,, = p;. In this case, the mean value
of demand for any period s is given by A = Y7 A,
We fix A and change the value of p, to study different
advance demand information scenarios. Consider the
following two extreme scenarios. Under the first sce-
nario assume that the inventory manager is incapable
of obtaining advance demand information. We model
this first case by setting py=1 and p; =p, =p; =0. On
the other extreme, assume that the inventory manager
implements an aggressive strategy to convince all cus-
tomers to place orders three periods in advance. This

scenario is modeled by py =p, =p, =0,p; =1. All
the other possibilities lie between these two extreme
scenarios.

We divide Table 1 into eight groups reflecting dif-
ferent parameter set; A, penalty cost p and the hori-
zon length T. For each such set we explore the impact
of having more advance demand information. Notice
the reduction in echelon base-stock levels as more
of the demand is known in advance. In particular,
the base-stock levels drop to zero when the manager
obtains all the demand information two periods in
advance. This illustrates how advance demand infor-
mation allows a fundamental bridge between build-
to-stock and build-to-order systems. Our model can
be used to asses the cost and benefit of such a shift
in series production systems. Even in the case of
moderate advance demand information, modeled in
Experiments 17 through 24, the cost reductions range
from 4% to 11%. It is also worth noticing that having
advance demand information is more desirable for a
system with high penalty costs.
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Figure 2 Stationary Demand
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Note. hy=1;h,=3;,p=19; ¢, =10; ¢, = 30.

Next we turn our attention to the nonstationary
demand and its impact on the optimal echelon base-
stock levels. We assume for the next set of experi-
ments that p;,; = p,; for all 7, j. Figures 2 and 3 exhibit
optimal echelon base-stock levels at each period. Our
benchmark is Figure 2. It addresses the case for sta-
tionary demand process where the mean is A, =2
for all t ={1,...,20}. Figure 3(a) depicts the result
for a ramp-up demand case where the average num-
ber of customers arriving, A,, is increasing over time.
Figure 3(b) is for a ramp-down demand case. In
Table 2, as a complement to these figures, we tabulate
the optimal echelon base-stock levels at Period 1 as

Figure 3(a) Ramp-Up Demand
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Figure 3(b) Ramp-Down Demand
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a function of the observed demand beyond the loca-
tion’s leadtime and the myopic base-stock levels. We
observe that myopic base-stock levels are optimal for
stationary and ramp-up demand. This observation
verifies both the optimality of echelon base-stock poli-
cies and the optimality of myopic policy for stationary
problems. For these cases information beyond each
locations’s leadtime does not affect the echelon base-
stock levels. Hence, information beyond the leadtime
has no operational value for both the stationary and
the ramp-up demand process.

8. Conclusion

In this paper we establish the optimal control
policy for a series system that incorporates advance
demand information. We show the optimality of
state-dependent, echelon base-stock policies. We also

Table 2 Is Myopic Policy Optimal for t =1?

Di 1 oo 0 1 2 3 4 5 ym

Stationary Demand
Y1t (Dr_1,141) 9 9 9 9 9 9 9
Yor(Dy_q,41) 3

Ramp-Up Demand
Vit (D1, 141) 8 8 8 8 8 8 8
Yor(Dy_q, 1) 3

Ramp-Down Demand
Vir(Di_q 141) 14 14 15 15 15 16 13
Vot (Dy 1 141) 8 8 8 8 8 8 8

w
w
w
w
w
w

wW
w
w
w
w
w
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prove that myopic policies are optimal for station-
ary problems. Hence the computational effort to solve
this problem dramatically reduces for the stationary
case. For problems where the information horizon
is smaller than min{L,,...,L;}+1, the decomposed
dynamic programs for each location reduce to a sin-
gle dimensional problem. Hence, existing software for
classical series systems can be used to solve our prob-
lem for this special case provided that the inventory
positions are redefined as suggested in the paper.
If the manager, however, wants to incorporate addi-
tional information beyond the min{L,,...,L;} +1,
then he has to deal with state-dependent policies.
We propose an algorithm that recursively solves the
dynamic program for this more general case. We pro-
vide a numerical study to shed some light on the
value of advance demand information for a series sys-
tem. We illustrate how this information provides a
bridge between build-to-stock and build-to-order pro-
duction systems. Our results provide a tool to asses
the cost and benefit of advance demand information
and can be used to design an effective production
system.

The scheme developed in this paper assumes that
the control is centralized. The policy can be decentral-
ized. The problem in this case is a pull system where
each echelon orders based on their local base-stock
levels. In this case, echelon inventory managers need
to know the advance demand information seen only
by the last stage. Another interesting future research
direction is to analyze and develop incentive systems
to share the benefits of advance demand information
so as to induce the party down stream in the supply
chain to share this information with the other parties
located upstream in the chain.

Appendix A. Glossary of Notation

Notation for Advance Demand Information Model:

N: length of information horizon;

D, ,: orders placed for period s€t, ..., t+N during period t;

O, ,: observed (known) part of period s demand at the beginning
of period t;

U, ;: unobserved (unknown) part of period s demand at the
beginning of period t;

(i =(0:, Oy 141, ++- Oy 1yn-1), vector of observed demands;

O, = (O 44141, +++ +Os tyn_1), Vvector of observed demands be-
yond the leadtime;

Otl = (Ol,t+L1+l/ oo Opna);

O} = (Of,t+L2+1r oo Op )
Notation for the Multilocation Problems:

T: terminal period for the finite horizon problem;

J: total number of locations in the series system and also denotes
the last location;

L;: leadtime for a shipment dispatched from location j—1 to
location j;

L=L—1;

p;: penalty cost (at location J) per unit;

I’;: local inventory holding cost at location j per unit;

hj;: echelon holding cost at location j per unit;

=hy,—H_,  forje{2,..., ]} and h, =h;

c;;: shipment cost per unit in period ¢;

I;: inventory on hand at location j at the beginning of period t;
B,: backorders at location | at period t;
%;;: echelon net inventory at location j;

L
X, =%+ 25:5 z;,, echelon inventory position at location j;
- tHLj - . .

X =X — > O, ,, modified echelon inventory position at loca-
tion j;

Zy =2,

z;;: shipment dispatched from location j—1 to location j at the
beginning of period t —s;

z,: orders from outside supplier to be received at location 1;

z;: shipments to location j > 2 from location j—1.

,2 /-L;) trans-shipments to location j;

Optimal Dynamic Programming Cost Functions:
Our convention is to drop the tilde signs to emphasize that the
observed part of the leadtime demand has been subsumed and we
operate with a reduced state space. At period t

Ji(R1y) 21, %oy 2y, O,): before decomposition and before subsum-
ing the pipeline inventory;

1Ry, Z1ys B, Oy): before decomposition after subsuming z,,;

\7,2 (Xy, 6[): DP for location 2 after the decomposition and before
subsuming the observed part of the leadtime demand;

VZ(xy, O?): after subsuming the observed part of the leadtime
demand;

\7}(3?“,21,, 0,): for location 1 after decomposition before sub-
suming Z,,;

l7,1 (%, O,): after subsuming the pipe-line inventory;

V}(xy,, O}): after subsuming the observed part of the leadtime
demand.

Appendix B. Extension to | > 2 Case
The optimal cost-to-go function for this more general case, similar
to Equation (7), is given by

][(fltr Zlf/ ety f/t/ 2/.‘! Ot)

] J-1
= min ZCitZi"'ZhitEfi,H-l +Egt(£],t+l)

zpesd' | 5 -
(zl,..,,h,)e,/ i—1 i1

+aEf (Jel,tJrl/ 21,t+1l cee s 72], 17 Z],H»l/ Ot+1) (15)
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where Imle LG R ) = =Y Liof, g(x) = hy[x]+
(pp +1)x]", and o' = {(zy, ... ,2)): z; > 0,Viand X; +z;, <%, ,,
Vi > 1}. Notice that shipment constraints ¥; +z; <%, , are equiva-
lent to z; <I,_, ;,, meaning that shipments to location i are bounded
by the inventory on hand at location i — 1. Notice also that g, is
convex and lim,_, ., g;(x) = co.

We first apply Lemma 2 to reduce the state space and embed
Z;, into the net inventory of the last location. Hence, the cost-to-go
function after this transformation is given by J,(%,,, Zy,, ... , X, (1),
Next, using the arguments in Theorem 2, we decompose the cost
function.

]t(jeliletr rjéltr Ot) = ]t(fltrzl.‘/ /fl—l,frzl—l,tr Ot)
+V/ (%, 0).

The first cost function is the cost-to-go function for a | —1 location
series system, and the second cost function is the single location
problem for location ]. The location | problem is similar to Equa-
tion (8). The implicit penalty cost function to be used in ]A, is based
on the cost of not being able to satisfy the requirements of loca-
tion J. Hence,

JiE, 2y, 32]—1,!/2]—1,11 0)

J-1 = - -
= min , >ocuzi+ > hyEX +IP(X)_1, 141, O;)
(Zl,.../Zlil)E.‘A i1 i—1
+aEj,, (fl,tﬂz 21,0417 00 s 72171,”1 7 211,417 O (- (16)

From this point on we use Theorem 2 recursively to decompose
the entire system into single location problems. The arguments in
the proof of Theorem 2 enable us to embed the pipeline inventory
Z; into the net inventory of that location and to decompose the j
location series system into a single location problem and a series
system with j—1 locations. Once the | location series system is
decomposed into single location problems, we apply Lemma 1 to
further collapse the state space of these single location problems.
Theorem 1 suffices to conclude the optimality of state-dependent
base-stock policy for each problem. In summary,

Apply Lemma 2 to Equation (15): J, (%, Zy, ..., %y, 25, 0) —
J®ie Zygs e fn/ 0y);
FORi=] to1do
Apply Theorem 2 and decompose J,(%y;, Zy;, - - -
two subproblems:
JRu Zur e o Ry 2, O) + V&, O)
Next subsume Z;_; ,:

J&y Zys -
end FOR;
Apply Lemma 1 to all single location problems: \7{ (%1, 0,) —

‘/ti(xrf/ Ot’)

, X, O,) into

A -

s X1, Zica,e O) = TRy, Zis e Xi1,0, Op)

We remark that the algorithm described in the numerical section
can be used to solve systems with several locations by changing
the first loop to “FOR i =] to 1 do.”

Appendix C. The Proofs

Proor of THEOREM 2. We first show that
]r(fur th/ fzu Ot) = ‘/fl (3%1}/ th' O:) + ‘/tz(JEZf/ Ot)‘ (17)

Second, we subsume the location 1 pipeline inventory into its
echelon net inventory and conclude our proof by showing that
VM&y,, 2y, O,) = V%, O,) +F,. Let us first define the DP:

th(fm Z1, O)) = —c Xy, +g?i<f;{cny+hu5f1,f+1 +1IP,(%;, O,)
=
+ aE‘//\:H (1,417 21,1010 6r+1)}/

where \7% (&1, -) = —¢; 1,1%,. Notice that our first claim Equa-
tion (17) is true by definition for t = T +1. Now suppose it holds
for t4+1. Then

Ji G Zais %, O)

. R ~ s . ~
= (le‘nl})l!q{clle +hyERy 0 + @BV (R0, 44, 21,1415 Obg)

t+Ly

+eu(y — %) +Gf(y— > O) +aEV2 (%11, 0,) {. (18)

s=t

There are two decision variables to consider, z; and y. The ordering
decision z, has an impact on the echelon net inventory at location 1.
These decision variables are linked only by the constraint X, <y <
Xy, We first fix z, and optimize over y. This results in

—Cy ¥y + _min ﬁf(y,d)-

T =y=ty

This is a capacitated version of Problem (8) where the decision
variable y is not restricted to be less than %, ,. Notice that gz,(&)
exists because G,(-) satisfies Assumption 2. If £, > gz,(d), then the
upper bound induces no penalty. On the other hand, if X;, < th(é,),
then it is optimal to set y = %;, and the implicit penalty cost is
H2(%,;, G,) — H2(74(G,), O,). Consequently,

eyt min (Y, O) = Vi(E, O)+Hmin(7(5), 2,1, O,)
Xt =y=xqt
~H}(74(0), 0)
= ‘7}(3}2” 6[) +ﬁ)t(£1u 6t)
Substituting into Equation (18) we obtain

e . o~ . . ~ s . ~
Ji(%1e, 214, %y, Op) = Izrllll('}{cuzl+h1zEx1,t+1+aEV:+1(x1,z+1/21,r+1/Or+1)

+V2(%y, 0,) +IP,(%,,0,))

= Izllli){)‘{cltzl +h1tE7e1,f+l +1P,(%,;, 0;)

+aEVfl+1 (fuﬂ ’ Euﬂ ’ Ot+1)} + sz(fzu O)

V%, 2y, 0,)+V2(%y, O)),
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completing the induction argument and proving our first claim
Equation (17). Now let us prove our second claim. Notice that if we
initiate an order for z; units at the beginning of period ¢, it arrives
at location 1 at the beginning of period f+L;. Consequently, the
echelon net inventory at location 1 at the end of period t+L, is
given by

i

i t+Lq t+L t+Ly t+Lq
x1r+2211+21* ZOz,HrZU,,s *x1t+zlfzor,s*2uz,s/
s=t s=t s=t s=t

=1

where Y11 O, .+ P U, , is the leadtime demand for location 1,
that is, the demand during periods {t, ..., t+L,}. The echelon net
inventory at the end of period t+ L, impacts the holding cost
charged to period f+L; and the implicit penalty cost charged
to period t+ L, +1. Thus, the location 1 problem reduces to ‘7,1,
defined as in Equation (9). The difference between \7,1 and \7,1 con-
sists of the unaccounted holding costs over periods {t, ... ,t+ L}
and unaccounted implicit penalty costs over periods {t, ..., t+L;}:

f+L’1 t+Lp

Fy(fy, 2y, 0) = 3 @'y ERy o]+ Y @ 'E[IP, (%, O,)].

s=t s=t

Notice that the %, for s {t, ..., t+L,} are independent from the
decision z; and z, made at time t. Hence for optimization purposes
we can eliminate this constant from further consideration. [

ProOF OF THEOREM 4. Before we establish the optimality of
the myopic policy we should understand what happens at time
T —L,+1. At the beginning of period T — L, +1, the inventory on
hand at location 1 is never shipped to location 2. Hence, it can
and should be salvaged at this time and the corresponding cost is
charged to period T — L, — L, + 1. Notice that this avoids further
location 1 holding costs. However, we have formulated the prob-
lem with salvage at time T + 1. This was done for convenience,
and is equivalent to our intended formulation provided that: (i) we
do not charge holding costs to location 1 after period T —L,, and
(ii) we adjust the salvage value accordingly; that is, ¢; ., = ¢,/a2.
See also the discussion after Assumption 4.

According to Theorem 3a state-dependent base-stock policy is
optimal. Recall that we do not release shipments to location 2 after
period T —L,. Our first task is to show that an optimal policy for
location 2 is to order up to y)' for all t < T —L,. To do this, it is
important to write the cost function for period T — L, + 1. Because
holding and penalty costs are shifted by L, units and because hold-
ing and penalty costs are zero for ¢ > T, the only nonzero costs are
those related to the terminal condition at time T +1. Consequently
from Equation (10)

T+1
2 2 _
Vi Or,0) = =6 <XE > uTL2+l,s> ,

s=T—Ly+1

H%—LZ v, O%—LZ) = oy +Gy)+ aEV%*L2+1 y-Ww, O%—Lerl)

T+1
32(y)+aCzE{ > Urpys +W}/

s=T—Lp+1

where W = ZST:T{LZ Dr_1,,s+ Or_,, 141 is a nonnegative random
variable and the last term is a constant. Because the optimal
base-stock level for period T — L, is obtained by minimizing
Hi_;,(y, O7_,), it follows that yr_;,(07_;,) = y3'. Assume for an
induction argument that the myopic policy is optimal for t+1. Then
we have for all y

me (v, Ot2+1) = —GqY +Ht2+‘l (max(y, v3'), Ot2+1)’
H}(y, 0}) = ey +G(y) +aEVE, (v — X, OF,)
= L2(y) +aE{,X +HY, (max(y — X, v7'), O},

where X = Z;LLZ“ D, ;4 Oy, 141,41 is a nonegative random variable.
For any y < vy, the term in brackets is independent of y, hence the
minimizer of #?(-) is the minimizer of H?(-). Notice that for y > yJ'
both #*(-) and H},(-, O},,) are nondecreasing and EHZ, (max(y —
X, y3), O%4,) is a convex combination of nondecreasing functions
and constants, hence H?(-, O,,,) is nondecreasing in this region.
The optimal base-stock level for period t is obtained by minimizing
HZ(-, 0?), so it follows that y,(0?) = y3', concluding the induction
argument for the first stage.

Notice also that from the definition of the implicit penalty
cost we have IP,(x,0?) = HZ(min{yy', x}, O} — HX(y», OF) =
F2(min{yy, x}) — L*(yy") =IP" (x) for x <y}, otherwise it is equal to
zero. From the definition of C,(y, O}) given in Equation (11) we can
also conclude that C,(y, O}) = C"(y). Next we establish the opti-
mality of a myopic policy for location 1. We need to show that
y1,(O}) =y for all t < T — L, — L, because no orders from the out-
side supplier are allowed after time T —L, — L,. Let us prove the
optimality of the myopic policy first for t =T — L, — L,. To do so
it is important to write the cost function for period T —L, — L, +1.
Due to the salvage assumption and the fact that after time T —L,
location 1 has no on-hand inventory,

T-Ly+1
1 1 _
VT—Ll—LZJrl(x' OT—LI—L2+1) = —q|x—E > Ur_p 11,6 )
s=T—Ly—Ly+1
1 1 _ m
Hy y1,(y, Or_,1,) = ay +C"(y)

+ aEVTlh Ly —Z, O%"—L, “L,+1)

T—Ly+1

st (y)+aclE[ >

s=T—Ly—Ly+1

Ur 141,52 ] ,

T-Ly+1 .
where Z =3 ;2 Drp 1, s+ Or_p_1,1-1,41 iS a nonnega-

tive random variable and the last term is a constant. Thus,
Yr-1,-1,(O1_1,1,) = yi" is optimal. This sets the stage for a similar
induction argument (as described in location 2’s DP) that estab-
lishes the optimality of the myopic policy for the first location.
Combining our results, we have that the myopic policy is optimal
for finite horizon stationary series systems. [

Proor oF LEMMA 1. It is based on induction. Notice that X;,, =
Xr,; because by definition Oy ; =0, or in other words the man-
ager does not allow customers to place orders beyond the terminal
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period (i.e., the store is closed). Hence part (i) is true for T +1.
Assume it is also true for t+ 1. Then we can write

V=Xt

~ o t+L
V,(%,0)) = mm{ct(%—x )+G, ( l_zo.‘,s)
s=t
+aE‘7t+1(gt_Ot,.‘_Dt/tf 5t+1)}
t+L
= mu}{cl(ytxf)+c (32@,5)
s=t

hr=
t+L+1
Df,t - Z Ot+1,sr Ot+1) }

s=t+1

+ aEVH—l (];t - Ot,t -

Yezxt

= min{ct(yt —x)+G,(y,)

t=L+1
Z Dt,s - Of,I+L+1/ OI+1
s=t

+aEV,, (}/r -

‘/t(xfl Ot)

The third inequality is obtained by substituting the update O, ,
for O, ,+D, , x, for £, — Y1 0, , and y, for §,— Y1*F O, , and rear-
ranging the terms. This verifies the induction hypothesis and the
proof of the first part. Next we show (i) = (ii).

H,(#, 0,

t+L
¥+ G, (];t - Z Om) +aEV, 1 (%11, Op)

s=t

t+L

Z Ot,s) +aEV,,(X41, Opig)

s=t

Cfgt+Gt(}7f

s=t

tL
C (yf + Z O, 5) +Gi(Yy) + @EVi 1 (Xp41, Opir)

t+L

Ht(yf/ O +¢ Z Ot,s‘

s=t

Next we show that (ii) = (iii). Recall that ]}t(CN) ) is the smallest
minimizer of () 0, ,). From (ii), and y, = 7, — X121 O, , it follows
that 7,(0,) — '™ O, , is the smallest mimmlzer of H[( ,0). O
Proor oF LEMMA 2. In the statement of the Lemma we ref-
ered to f@,()?Z,,ZZt,d) as 4, The difference between J, and J,
consists of the unaccounted costs over periods {f, ,t+L5}. That
is, G,(%y, 2y, 0,) = Z;jé a*'Eg (%, 1) We want to verify that
these costs do not depend on the decisions made at time t. To
see this, let Gi(y) = ¢'Eg,.;(y — X! U, ). Recall that we do not
incur any cost after the terminal perlod T +1. Now we can write
Gy, 2y, 0) = GI(2y, — O, ) +G! (xz, 25, = D 0,) + Gy +

21, T 2051 — TEO0)+ -+ G (x2t Zs tz O,), which is
independent of the decisions made at time ¢, that is Zy and z,. O

Proor ofF Lemma 3. IP,(%,0,) = Hz(mm{yz,(O) 7,0, —
H (ny(O) O) —Hz(mln{yﬂ(o) B =X : O, slo) (th(O)_
ZHL 0,.,0,) = H}(min{y,(0), x}, z) - Hfz(th(Or)/ 0) =
IP,(x, O,). The second and third equalities follow from Lem-
mal 0O

Proor oF LeEmMa 4. Notice that the implicit penalty cost
inherits its convex1ty from H2 In fact, IP( O) is nonincreas-
ing convex. Thus, G (y,O) = h,y + aEIPHl(y, r+1) is convex
and l1mM%0C (x, O) = oo for all t. We can express C,(y, O) =
a 1EC’iL1 (y— i U, ., 0, +1,)- So, C, inherits these properties
from C,. O

PrOOF OF ProrosiTION 1. We define Vf(x,y) = f(x+1,y) —
f(x,y) as the first difference of function f. We first add and sub-
tract aEc, ;,1X, ;,; to the right-hand side of Equation (10) and use
the state updates to obtain H?(y, O?) = (cy — a¢, 1,1)y + Gi(y) +
aE[V3, (0,111, OFt) = €0 11X, 1a] +acy 1 (E ZHLZH Dy i+ 0, 111y41)-
From this we have VH?(y, O}) = VZX(y) + aV[V2,(x, 111, O4y) +
Cy111%,111]- Notice that the second term is nonnegative due
to Theorem 1, Part 1 (iii). Hence VH?(y, O?) > V¥2(y). This
implies ,,(0?) < y because both H?(-,0?) and %2(-) are
convex. To show that y,(O}) <y, it is enough to show
that VH!(y, 0}) = VZ'(y). Now VH!(y,0}) = (c; — acy 1) +
VCi(y, Of) +@E[V)} (%1 121, Of1) +61 11Xy, 141]. The last term is pos-
itive because of Theorem 1, Part 1 (iii). On the other hand, from
Equation (12) V! (y) = (c;; — acy, 1) + "l + a1 EVIP™ (y —
Zi;Ll U, ). To complete the proof it is enough to show
that VC,(y, O}) = a1 hy 1,y + a1 EVIP" (y — it U, ,). However,
Equation (11) we have VC,(y, O}) = @"1hy ,,;, +a" T EVIP, (Y —
P U, ., 0}). To conclude we need to show VIP,(y, O,) > VIP" ().
However, notice that VIP,(y, O,) = VHX(min{y, y,,(0?)}, O?) >
V£ (min{y, y,(O})}) = VIP"(y) from Equation (12) and the
inequality is from the first part of the proof. O

ProoF oF LEmMA 5. Let V(%,, 0,) = —c,, &, +min,. fe,y +
cn(j— i O, )+ aEV! (%1, 41, O141)). Notice that C™ does not
involve optimal cost function due to Corollary 1, and hence it is
stationary. This result is important to establish the proof. Part 1 fol-
lows immediately from Theorem 1, Part 2, the proof of which is
similar to that of Iglehart (1963). To prove the second part, recall
first that for stationary problems the implicit penalty cost function
is given by IP"(-). Hence the dynamic program for V;' has station-
ary single period costs that satisfy Assumption 2 and hence has
similar structure to that of \7,2. Now one can use similar arguments
as in Theorem 1 to show that \7,1 converges to 12 (%3, (’1), conclud-
ing the proof of the second part. From Theorem 2 we know that
the J, = V' + V2 +F,. Taking the limit of both sides and using Part
1 and 2 implies the first part of Lemma 5, Part 3. So far we have
shown that the limit of the finite horizon problem converges and
decomposes into two limiting functions. Next we want to show
that this limit function, that is ], is actually the optimal value for
the infinite horizon problem. Because the positivity assumption and
the compactness of the set U,((Xy;, Zy;, %y, 6[), A) in Proposition 1.7,
Bertsekas (1995, p. 148) is satisfied, we can conclude that | is the
optimal value, concluding the proof of the lemma. O
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