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Abstract

We study the replication transition problem in distributed

hierarchical systems. Most distributed systems replicate

data to increase data access efficiency. A replication strat-

egy dictates where the replicas are stored in respond to the

data access pattern, therefore a good strategy can effec-

tively improve data access efficiency. However, the access

pattern in a distributed system is constantly changing. As

a result, a good replication strategy must evolve accord-

ingly. The replication transition problem is to seek an ef-

ficient transition from one replication strategy to another,

in order to cope with the dynamic access pattern. This pa-

per focuses on solving the replication transition problem on

tree topology, which is one of the most important models

in Data Grid systems and web proxy systems from the lit-

erature. To the best of our knowledge, our work is the first

that proposes an optimal algorithm for the replication tran-

sition problem on tree topology. The algorithm has a time

complexity of O(n log ∆ log(nΛ)), where n is the number
of sites, ∆ is the maximum degree in the tree and Λ is the
largest communication delay in the network.

1 Introduction

Grid Computing has enabled applications to utilize dis-

tributed data and computing resources with the help of the

rapid increase in computer and network performance during

the last decade. One example of Grid Computing is Data

Grids, which consist of distributed storage infrastructures

that integrate geographically distributed and independently

managed data resources.

In recent years, a number of Data Grid projects have

been developed, such as the EU DataGrid [1], GriPhyN [2],

LCG [3], and TeraGrid [4]. These project aim to pro-

vide integrated service platforms that allow users to access

those data resources transparently and efficiently. There-

fore, these Data Grid projects focus on the issues of storage

and data management, data transfers, data replication, data

access optimization, and at the same time maintaining high

data reliability and availability.

A common approach to increase data access efficiency

in a distributed system is to replicate data at different sites.

Data replication improves not only data access efficiency

but also data availability and fault tolerance. A replication

strategy dictates where the replicas are stored in respond to

the data access pattern. Many researchers [8, 12, 13, 14, 15,

19, 20, 21, 22, 23, 24, 25, 26, 27] have proposed algorithms

to find optimal or near-optimal replication strategies when

data access patterns are given.

The problem we are interested in is to design an algo-

rithm that finds an efficient transition from one replication

strategy to another within the minimum amount of time.

Since the data access pattern usually changes over time, the

system needs to create new replication strategies in respond

to the changing patterns. Therefore, we need to transit from

the old replication strategy to the new one. We denote this

problem as the replication transition problem, which has

been studied on complete graph [7, 9, 11, 16, 18].

This paper focuses on solving the replication transition

problem on tree topology, which is one of the most im-
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portant model in Data Grid systems and web proxy sys-

tems from the literature [5, 12, 15, 23, 24, 25, 27]. To the

best of our knowledge, replication transition on tree topol-

ogy has never been studied. On the other hand, this paper

proposes the first algorithm that gives optimal replication

transitions on tree topology. This algorithm runs in time of

O(n log ∆ log(nΛ)), where n is the number of sites, ∆ is
the maximum degree in the tree, and Λ is the largest com-
munication delay in the network.

1.1 Related Works

The replication transition problem on complete graph

has many variations in the literature. Hall et al. [11] stud-

ied the replication transition problemwith two assumptions.

First, the network bandwidths is the same for all links, so

that it takes the same amount of time to transfer a data item

from one site to any other site. Second, each data has only

one copy i.e., we are not allowed to replicate data. The goal

is to minimize the makespan. They developed a polynomial

time algorithm that finds a near-optimal migration plan in

the presence of space constraints when a certain number of

additional nodes are available as temporary storage, and a

1.5-approximation algorithm for the case where data must

migrate directly to their destinations [11].

Khuller et al. [16] studied the same problem as in [11],

but assumed that data have replicas, and gave a 9.5-

approximation algorithm. Kim [18] studied the replication

transition problemwith the same assumptions as in [16], ex-

cept that the network bandwidth may vary and the goal is to

minimize the average completion time. A 9-approximation

algorithm was given in [18]. Later Gandhi et al [7] im-

proved the approximation ratio to 5.06 [7]. Interested read-

ers may refer to [7] for a good survey about the history of

the problem.

The multi-casting problem is strongly related to the

replication transition problem. Replication transition is

essentially a multi-casting problem with multiple sources.

Khuller et al. [17] studied the single-source multi-message

multi-casting problem on complete graph. Gonzalez [9, 10]

studied the same problem and further assumed that a sender

can multicast a message to a set of sites in a single send.

Both works assume that the size of messages and the net-

work bandwidth are the same, and gave approximation al-

gorithms for these two models respectively [17, 9].

The above mentioned works cannot be applied on tree

topology systems, such as Data Grids and web proxy sys-

tems, due to the lack of a direct communication channel be-

tween any two sites in tree topology. On the other hand, this

paper proposes the first algorithm that gives optimal repli-

cation transitions on tree topology.

The rest of this paper is organized as follows. Section 2

describes our system model and gives a formal definition

of the replication transition on tree topology. Section 3

presents our algorithm and provides theoretical analysis.

Section 4 gives experimental results, and Section 5 gives

concluding remarks and open problems.

2 System Model and Problem Definition

We consider a hierarchical distributed system, which can

be represented by a tree T = (V, E, w), where V is the
set of sites, E ⊆ V × V is the set of links between sites,
and the function w: E → N maps each edge to a positive

integer which represents the communication delay of the

corresponding edge. For the sake of simplicity, we use wuv

instead of w(u, v) to denote the communication delay of
link (u, v) ∈ E. Nodes and sites are interchangeable terms
in this paper.

This paper adopts the full-duplex and one-port commu-

nication model [6]. In the full-duplex one-port model, each

site can simultaneously send/receive one data item to/from

one of its neighbors. We further assume that the commu-

nication is non-preemptive, i.e., a site cannot send another

data item before the current one finishes. Similarly, a site

cannot start receiving a new data item before completely re-

ceiving the current one. In addition, two sites u and v can
communicate only if there exists a link (u, v) ∈ E.

The sites require data because they are planned to store

replicas. If a site needs the data which is not available lo-

cally, it must request the data from other sites that have the

data or the replica. For simplicity we will consider one data

at a time, and assume that there is only one data in the sys-

tem. Initially, there are two set of sites – the owner set

O ⊂ V is the set of sites that own the data, and the re-
quester set R ⊂ V is the set of sites that request the data.
Other sites are routers. A router can temporarily request

and store the data, if it is required by its parent or at least

one of its children. We assume thatO∩R = ∅ since a node

cannot own and request the same data at the same time.

We formally define the timing of all the message pass-

ing by communication. We define a communication as a

quadruple (s, r, ts, te), where s and r are the sender and the
receiver in V , and ts and te are the starting and ending time
of the communication. For ease of notation we use τ.ts to
indicate the starting time ts of a communication τ . The re-
ceiver owns the data when the communication is completed

and r is removed fromR if it belongs to R initially. A com-
munication is valid if the following conditions hold.

1. The node s owns the data before or at time ts.

2. There is a link in E between s and r.

3. The duration of the communication te − ts is the link
delay wsr .
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A valid communication schedule S is a set of valid com-
munications that obey the following two conditions.

Non-overlapping For any two communications τ , and τ̄ ,
if they have the same sender or the same receiver, then

they cannot overlap. That is, the ts of τ must be equal
to or later than the te of τ̄ , or the ts of τ̄ must be equal
to or later than the te of τ .

Completeness All request sites own the data after the

schedule.

We now define the completion time of a requester, which

can be used to define the length of a schedule. Given a valid

schedule S, we define the completion time of a requester
r as min{τ.te|τ ∈ S, τ.r = r}, which is the earliest end-
ing time of those communication having r as the receiver.
The length of a schedule is the maximum completion time

among all requesters.

The following lemma suggests that, in the search of an

optimal schedule, we could consider only those valid sched-

ules in which all nodes receive the data at most once. This

gives us a “canonical” form of a communication schedule,

at which we can focus our search of optimal schedule.

Lemma 1. Given a valid schedule S, there exists another
valid schedule S′ such that S′ has the same length as S and
all nodes receive the data at most once in S′.

Proof.

Suppose there are k ≥ 2 communications c1, . . . , ck ∈ S
with the same receiver r. Those communications do not
overlap in time since S is valid. Without lose of generality,
we assume that c1.te < · · · < ck.te. We modify S by
removing c2, . . . , ck, and denote the resulting schedule by

S′.

The schedule S′ satisfies the Non-overlapping condi-

tion since we only remove communications from S. S′ also

satisfies the Completeness condition since r will have the
data after the communication c1 in S′. As a result the sched-

ule S′ is valid.

Furthermore, the schedule S′ has the same length as S
because the completion times of r and the other nodes re-
main the same. Therefore, by repeating this process, we

obtain a valid schedule S′ in which all nodes receive the

data at most once, and S′ has the same schedule length as

S.
A replication transition problem instance I is a tuple of

(T, O, R), where T represents the tree topology, O is the
owner set, and R is the requester set. The goal is to find
a valid communication schedule with the minimum length

for a given problem instance I . In the following section, we
describe an algorithm that finds the optimal schedule for the

replication transition problem on tree topology.

3 The Optimal Replication Transition Algo-

rithm

This section describes our optimal replication transition

algorithm. A schedule is D-feasible if it is valid and its
length is no more thanD. The timeD servers as a deadline
of all requesters. We start by describing a FindFeasible
algorithm that given a problem instance I and a deadline
D, determines whether a D-feasible schedule exists. Then
we describe our optimal replication transition algorithm that

calls FindFeasible repeatedly within a binary search in
order to find an optimal schedule.

3.1 The FindFeasible Algorithm

Given a problem instance I = (T, O, R) and a dead-
line D, the FindFeasible algorithm determines whether
a D-feasible schedule exists. Let Ii be a sub-problem in-

stance consisting of (Ti, Oi, Ri), where Ti is the sub-tree

of T rooted at node i, Oi is the set of data owners in Ti,

and Ri is the set of data requesters in Ti. Formally we have

Oi = O ∩ V (Ti) and Ri = R ∩ V (Ti).

A sub-treeD-self-fulfilled if all the requesters in the sub-
tree can obtain data from those owners located in the same

subtree within timeD. Formally we have the following def-
inition.

Definition 1. Given a common deadlineD, a sub-tree Ti is

D-self-fulfilled if there exists aD-feasible schedule for Ii.

Two observations can be derived from Definition 1.

First, Ti is definitely self-fulfilled if there is no requester

in Ti. Second, if Ti is not D-self-fulfilled, the root of Ti

(node i) must receive the data from its parent in aD-feasible
schedule for I . For simplicity, we use feasible schedule to
representD-feasible schedule.

3.1.1 Earliest Supplying Time and Deadline

Definition 2. When Ti is D-self-fulfilled, the earliest sup-
plying time of node i, denoted by ci, is the earliest time at

which node i can start sending the data to its parent.

Note that when Ti is notD-self-fulfilled, the earliest sup-
plying time ci is infinity. The reason is that when Ti is not

D-self-fulfilled, instead of sending the data to its parent,
node i must receive the data from its parent in a feasible
schedule for I according to the second observation above.

Definition 3. When Ti is notD-self-fulfilled, the deadline of
node i, di, is the latest time at which node i must complete
receiving the data from its parent so that requesters in Ti

can complete receiving the data at time no later thanD.
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Note that when Ti is self-fulfilled we set di to infinity.

The reason is that when Ti is self-fulfilled it is not necessary

for node i to receive the data from its parent; instead node i
will receive the data from a node within Ti. In addition, we

define a communication to be feasible when its ending time

is no later than the deadline of its receiver.

3.1.2 Earliest Possible Time Calculation

We now compute the earliest possible time of a node i,
which is the earliest possible time node i can receive the
data from nodes other than its parent. We denote the ear-

liest possible time time of node i by si. Let Ki be the set

of children of node i whose earliest supplying time c is not
infinity, and Li be the set of children of i whose deadline d
is not infinity.

Now we compute the earliest possible time of node i.
FindFeasible processes tree nodes in post-order. As a re-
sult we may assume that when we compute the earliest pos-

sible time for node i, we know the earliest supplying times
and deadlines of all the children of node i. Thereforewe can
classify the children of node i intoKi and Li and calculate

earliest possible time si as follows.

si =







0 , if i ∈ O
∞ , if i /∈ O andKi = ∅

mink∈Ki{ck + wik} , if i /∈ O andKi 6= ∅

(1)

The first equation states that if node i owns the data,
the earliest possible time is 0. If node i does not own the
data initially and none of its children nodes can supply the

data, the earliest possible time si is set to infinity. On the

other hand, if any child of i can supply the data, then node i
chooses the child that can send the data at the earliest time.

We now describe FindFeasible in details.

FindFeasible processes tree nodes in post-order.

For each node i, FindFeasible first decides whether
Ti is self-fulfilled. If Ti is self-fulfilled, FindFeasible
computes ci and set di to infinity; otherwise it computes di

and sets ci to infinity.

3.1.3 Li is empty

We consider two cases in the computation of earliest sup-

plying time and the deadline. First we consider the case

where Li is empty and we have three sub-cases.

i is not a requester Ti is self-fulfilled because neither

i nor the children of i will request the data.
FindFeasible sets ci to si because it is the earliest

time i can send data to its parent. FindFeasible sets
di to infinity because Ti is self-fulfilled.

i is a requester and si ≤ D Ti is also self-fulfilled be-

cause node i can get the data from its children no later
than time D, so FindFeasible sets ci to si and di to

infinity.

i is a requester and si > D In this case Ti is not self-

fulfilled because i cannot receive the data from its
children before time D, so it sets ci to infinity.

FindFeasible sets di to D because i, as a requester,
must receive the data no later thanD.

In the first two sub-cases, if node i receives the data from
one of its child k′, then si = ck′ +wik′ , and FindFeasible
creates a communication τs = (k′, i, ck′ , si). We will show
that the communication τs will not overlap with other exist-

ing communications of node k′.

3.1.4 Li is not empty

We now consider the case when Li is not empty, which im-

plies that node i must send the data to those nodes in Li

before their corresponding deadlines. Consider a node l in
Li. It is necessary for node l to start receiving the data
from node i at the time no later than dl − wil, otherwise

requesters in Tl could not possibly complete receiving the

data at time D. Therefore we must create communications
such that each node l in Li could start receiving the data

from node i at time no later than dl − wil.

FindFeasible creates communications for nodes in Li

as follows. Let the number of nodes in Li be m, and
l1, · · · , lm be the nodes in Li sorted by their deadlines in a

non-decreasing order. FindFeasible creates m communi-
cations, and the j-th communication is τj = (i, lj, t

′

lj
, tlj ),

where the starting time t′lj is tlj − wilj , and the ending

time tlj is the minimum of τj+1.ts and dlj . We also create

a dummy communication τm+1 where τm+1.ts is infinity.
This communication τm+1 is only for boundary condition.

The equation tlj = min{τj+1.ts, dlj} ensures two prop-
erties. First, any two sending communications of node i
cannot overlap because τj must end before the starting time

of τj+1. Second, any communication will not miss its dead-

line because the equation guarantees that τj ends before dlj .

Figure 1 illustrates the idea of the communication cre-

ation. Node i has 4 children – l1, l2, l3 and l4. The com-
munication delays between node i and l1, l2, l3 and l4 are
4, 3, 2 and 3 respectively. The deadlines of node l1, l2,
l3 and l4 are 9, 9, 14 and 16 respectively. Each block
represents a communication, and the length of a block is

the cost of the corresponding communication. The com-

munication creation starts from node l4, which has the lat-
est deadline 16. We first create the communication τ4 =
(i, l4, 13, 16) in Figure 1(a), since l4 must get the data be-
fore its deadline 16. Then, we create the communication

τ3 = (i, l3, tl3 − wil3 , tl3), where tl3 = min{τ4.ts, dl3} =
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Figure 1. An illustration of the creation of communications.

min{13, 14} = 13, as illustrated in Figure 1(b). This
ensures that the two sending communications of node i
(τ3 and τ4) do not overlap. Then we create communi-

cation τ2 = (i, l2, tl2 − wil2 , tl2). The ending time tl2
is set to min{τ3.ts, dl2} = min{11, 9} = 9, which en-
sures that node l2 meets its deadline. Finally, we create
τ1 = (i, l1, 2, 6) as in Figure 1(d).
The communications created above can form groups and

communications within the same group are contiguous in

time. For example, there are two groups in Figure 1(d) –

τ1 and τ2 are in one group, and τ3 and τ4 are in the other

group. The starting time of a group is the starting time of

its first communication and the ending time of a group is

the ending time of its last communication. Furthermore, the

ending time of a group is the deadline the receiver of its last

communication.

The following lemma states an important property of the

created communications.

Lemma 2. Let τ1, · · · , τm be the communications created

by FindFeasible between node i and its child nodes such
that τi.ts < τj .ts for i < j. τ1.ts is the latest time for node
i to start sending the data to its child nodes in all feasible
schedules.

Proof.

We prove this lemma by contradiction. Let S be the
schedule created by FindFeasible and g1 be the earliest

communication group , τ1, . . . , τu, of node i. Suppose there
is a feasible schedule S′ such that the earlies time at which

node i starts sending the data to its child nods in S′ is later

than τ1.ts. Let g
′

1 be the earliest communication group of

node i in S′ and t′s be the starting time of g
′

1, which is later

than τ1.ts, i.e. t
′

s > τ1.ts.
By Definition 3, all subtrees rooted at the receivers in

g1 are all not self-fulfilled in any feasible schedule. As a

result, those receivers must receive the data from node i in
S′. Furthermore, none of them can complete after τu.te in
S′ because those receivers must complete receiving the data

before their deadlines and τu.te is the latest deadline among
those receivers.

Then, we claim that there is at least one communication

in g1 that is not in the duration between t′s and τu.te in S′.

First, the duration between τ1.ts and τu.te is the minimum
duration to contain all the communications of g1 since τu.te
is the latest deadline among those receivers and g1 consists

of contiguous communications. And, second, t′s > τ1.ts.
Along with our assumption that t′s is the starting time of g

′

1,

we can conclude that, in S′, there is at least one communi-

cation in g1 that completes later than τu.te, a contradiction.
Thus, τ1.ts is the latest time for node i to start sending the
data to its child nodes in all feasible schedules.

Lemma 2 implies that τ1.ts is the latest time at which
node i must start sending the data to its child nodes so that
all children in Li can meet their deadlines in all feasible

schedules.

3.1.5 si > τ1.ts

We can determine whether Ti is self-fulfilled by comparing

τ1.ts with si. Recall that si is the earliest possible time at

which node i can obtain the data without receiving it from
the parent, and by Lemma 2, τ1.ts is the latest time for node
i to start sending the data to its children. Thus, if si > τ1.ts,
Ti could not be self-fulfilled. In this case we set the deadline

di to τ1.ts, which means the parent must supply the data to
i no later than τ1.ts so that all requesters in the subtrees in
Li can complete within time D. And we set the earliest
supplying time ci to infinity to indicate that node i will not
send the data to its parent.
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3.1.6 si ≤ τ1.ts

On the other hand, if si is less than or equal to τ1.ts, node i
can send the data to nodes in Li so that they can meet their

deadlines. In this case Ti is self-fulfilled since all requesters

in Ti can get the data no later thanD.
Now if Ti is self-fulfilled then we need to compute the

earliest supplying time ci, which is the earliest time node i
can start sending the data to its parent. Therefore, in order

to compute ci, we need to find the earliest idle period that is

large enough to insert a communication between node i and
its parent. The idea is to find an idle period with length at

least wip among communications τj , 1 ≤ j ≤ m, where p
is the parent of node i.
Before describing the algorithm, we use an example to

demonstrate how to find such an idle period. Please refer to

Figure 2 for an illustration.

In this example, si is 0 and wip is 4. τ1, τ2, τ3, τ4 are

shown in Figure 2(a). We start searching the idle period

from si = 0. As shown in Figure 2(a), the length of the first
idle period is 2, which is not enough for τp. Therefore, we

move τ1 and τ2 forward to time 0 and time 4 respectively, as

shown in Figure 2(b). Please note that, in order to meet the

deadlines of those child nodes, we can only move the ex-

istent communications forward rather than dylaying them.

Now we combine the first and the second idle periods and

a larger idle period is formed. The new idle period is now

large enough for τp to fit in, therefore we set ci to 7.

Nowwe describe the process that finds the idle period for

τp. Let aj and bj represent the starting and ending time of

τj , where 1 ≤ j ≤ m. We set b0 to si and am+1 to infinity

as the boundary conditions. We consider the gaps between

communications one at a time, and start from the first idle

period. If the j-th idle period aj+1 − bj is at least wip, then

we use this gap as the idle period for τp, and set ci to bj .

Otherwise, we move the communication τj+1 forward by

setting its starting time to bj and its ending time to bj +
wilj+1 . Then we consider the next gap. This process will

eventually terminate because am+1 is set to infinity.

Lemma 3. The time ci found by FindFeasible is the ear-
liest time at which node i can start sending the data to its
parent node when Ti is self-fulfilled.

Proof. Since the procedure of the idle period starts

from the earliest possible time si, the time ci found by

FindFeasible is the starting time of the first idle period,
which conforms to Definition 2.

Note that the communication τp has not yet been created

at this point since we still do not known whether it is neces-

sary for node p to have τp. However, if node p requires the
communication τp = (i, p, ci, ci + wip), it will not overlap
with existing communications of node i.
The following theorem states that FindFeasible can

find a feasible schedule if such a schedule does exist.

Theorem 1. Given a problem instance I = (T, O, R) and a
deadlineD, FindFeasible determines whether these exists
aD-feasible schedule.

Proof. We would like to show that for each node i,
FindFeasible determines whether Ti is self-fulfilled, and

all communications created by FindFeasible do not over-
lap and are feasible.

For each node i, we can determine whether Ti is self-

fulfilled by si and τ1.ts. The earliest possible time si is

the earliest time node i can obtain the data from its children
or itself. By Lemma 3, all the earliest supplying times of

its child nodes are computed correctly by FindFeasible,
which implies that si can be correctly determined by Equa-

tion 1. In addition, Lemma 2 implies that τ1.ts is the latest
time for node i to start sending the data to its child nodes so
that they will not miss deadlines. Therefore, if si > τ1.ts,
there is no D-feasible schedule for Ti. If that is the case,

the deadline di is set to τ1.ts, which conforms to Defini-
tion 3. On the other hand, if Ti is self-fulfilled, by Lemma 3,

FindFeasible can also calculate the earliest possible time
of node i correctly.
Now we argue that the communications created by

FindFeasible for node i do not overlap and are feasi-
ble. During the creation, communications τ1, . . . , τm do not

overlap and, when the communication τs is created, it will

not overlap with the existing communications of its children

by construction. In addition, the created communications

are feasible since the deadlines of receivers are all satisfied

by construction. Therefore, FindFeasible can determine
whether T is self-fulfilled and, if it is, the created commu-
nications form a valid schedule. Hence, FindFeasible can
find a feasible schedule if there exists one.

The time complexity of FindFeasible is as fol-
lows. Let δi be the number of child nodes of i ∈ V
and ∆ = maxi∈V {δi}. For each node i, the process-
ing time is dominated by sorting Li since the rest of

the algorithm runs in time proportional to either the

size of the set Ki or the size of the set Li. Therefore,

for each node i, the processing time is bounded by
O(δi log δi), and the time complexity of FindFeasible
is

∑n

i=1
O(δi log δi) = O(

∑n

i=1
δi log δi) ≤

O(
∑n

i=1
δi log ∆) = O(log ∆

∑n

i=1
δi) = O(n log ∆).

The pseudo code of FindFeasible is given in Figure 3.

3.2 The Scheduling Algorithm

Given a problem instance I , our algorithm finds an op-
timal solution by a binary search. First, the algorithm de-

termines the initial values of the upper bound U and the
lower bound L of the optimal schedule length. Then, wee
set the deadlineD to the average of the upper and the lower
bound, and call FindFeasible to determine whether a D-
feasible schedule exists. If we do find a D-feasible sched-
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Figure 2. An illustration of how to create an idle period for communication τp.

ule, we lower the upper bound to D. Otherwise, no D-
feasible schedule exists according to Theorem 1, and we

raise the lower bound to D. By this binary search we can
find the minimum D such that a D-feasible schedule does
exist. This is the optimal schedule length we are looking

for.

We now analyze the number of iterations of the binary

search by bounding the upper bound. Let Λ be the largest
network delay among all links in the tree network. The

longest distance between any two nodes in T is bounded by
nΛ since there are only n nodes. Since there are at most |R|
requesters, it is sufficient to set the schedule upper bound

to nΛ × |R|. For simplicity we set the upper bound to n2Λ
since |R| is at most n. Our algorithm calls FindFeasible
for at most O(log(nΛ)) times and the time complexity is
O(n log ∆ log(nΛ)).

4 Experiment

We conduct experiments to evaluate the performance of

our scheduling algorithm. We first describe the settings of

our experiments and then discuss and analyze the experi-

mental results.

4.1 Experiment Settings

We use the Shortest Path First (SPF) algorithm, a greedy

heuristic algorithm, as a performance comparison with our

algorithm. SPF algorithm works as follows. For each re-

quester, SPF chooses the nearest owner. Once an owner is

chosen by a requester, the data will be sent along the path

from the owner to the requester. There is a upper bound k
that limits the number of requesters a owner could serve.

When all paths are found, the communications are cre-

ated as follows. The owners will first create communica-

tions to their neighbours. If a receiver is scheduled to re-

ceive the data multiple times, it chooses the communication

with the earliest ending time and drops other communica-

tions. The receiver becomes an owner after it receives the

data. The process repeats until all requesters receives the

data.

The settings of experiments are as follows. All test cases

are generated based on the proposed system model. The

height of each tree is at most 8. For each node the number of

children are generated from a uniform distribution between

0 and 6. The number of nodes in each generated tree is

between 8000 and 14500. There are 20 trees generated in

the experiments.

Requester and owners are selected from tree nodes ran-

domly. For each tree, the sum of the numbers of requesters

and owners is one tenth of the total number of nodes. We

test 19 ratios between the numbers of requesters and own-

ers, i.e., |R|/|O|, from 10

1
to 1

10
. The communication cost

of each link is from a uniform distribution between 1000

and 20000. In our experiments, k is set to 5, 10, 15, 20, 25
and infinity.

4.2 Experimental Results

For each R/O ratio, our algorithm and SPF generate
schedules for 20 trees and take the average makespan as the

performancemetric. The results are shown in Figure 4. The

horizontal axis represents the different R/O ratios and the
vertical axis is the average makespan. For each algorithm,

Figure 4 illustrates the average, minimum, and the maxi-

mum makespan. Note that the vertical axis is in log-scaled

due to the large range among different results. There are no

results of SPF for 10/1 ∼ 6/1in Figure 4(a) when k is 5
since there is not enough owners to send data to requesters

sue to the limit of k.
Figure 4 clearly shows the large performance gap be-

tween SPF and our algorithm when the R/O ratio is large.
When the R/O ratio is from 10/1 to 1/1 in Figure 4(a),
the average makespans for SPF are about 675000∼150000
and the average makespans for our algorithm are about

147000∼99000. This is because when the number of own-
ers is relatively small compared to the number of requesters,

the requesters tend to find the same owner as their senders

in SPF. On the other hand, our algorithm does not assign
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Figure 4. Illustrations of the experimental results.

owners to requesters in advance. Instead, our algorithm dy-

namically assign owners to requesters, while considering all

the communication that have been determined.

When the R/O ratio is smaller the average makespans
in SPF decreases as shown in Figure 4(b). When the R/O
ratio is 1/10, the makespan of SPF is closed to the opti-
mal makespan. This is reasonable since requesters may now

choose different senders and hence distribute the communi-

cations into different sections of the tree.

Figure 4 also shows the influence of different k on SPF.
The performances difference is small from k = 5 to k = 25.
However, it is interesting that the average makespan is the

worst when k = ∞. The reason is that, when k = ∞,
requesters tend to choose the same owner since there is no

limitation on the number of requester that can go to the same

owner. When R/O ratios is smaller than 1 the performance
of SPFs are almost the same, independent of k.

From Figure 4(a) and (b) we conclude that although SPF

is straightforward and can be easily implemented, it has rel-

atively poor performance compared with our algorithm.

5 Concluding Remarks

This paper considers the data replication transition prob-

lem on tree topology. A replication strategy dictates where

the replicas are stored according the data access pattern. A

good replication strategy must evolve in respond to the con-

stantly changing data access pattern. Therefore, the repli-

cation transition problem is to seek an efficient transition

from one replication strategy to another on tree topology

networks. The goal is to minimize the makespan of the

replication transition. To the best of our knowledge, our

work is the first that proposes an optimal algorithm for the

replication transition problem in tree topology.

Given a hierarchical distributed system T = (V, E, w)
and an initial owner set O ⊂ V and requester set R ⊂ V ,
we give an efficient algorithm that finds an optimal tran-

sition schedule. The time complexity of our algorithm is

O(n log ∆ log(nΛ)), where n = |V | , ∆ is the maximum
degree among all nodes in T , and Λ is the largest communi-
cation delay in the network. The experimental results indi-

cate that the algorithm produces very efficient schedules,

when compared those produced with Shortest Path First

heuristic.

There are still many variations of the replication tran-

sition problem on tree. This paper address a single mes-

sage multi-source multi-casting problem on tree topology.

When more than one data are involved, the replication tran-

sition problem become a multi-messagemulti-source multi-

casting problem. These problems are very exciting and
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Input: A problem instance I = (V, E, w, O, R) and a common deadlineD
Output: A feasible scheduleS orNULL if no such schedule exits
begin

S ← ∅

Order nodes inV into postorder

foreach i ∈ V in postorder do
Ki ← ∅,Li ← ∅

foreach childk of i do
if ck 6=∞ then Ki ← Ki ∪ {k}
if dk 6=∞ then Li ← Li ∪ {k}

end

if i ∈ O then si ← 0
else if Ki = ∅ then si ←∞
else si ← c

k′
+ w

ik′
= mink∈Ki

{ck + wik}

ifLi = ∅ then

if i /∈ R OR si ≤ D then
ci ← si , di ← ∞
if si 6= ∞ AND si 6= 0 then

// add communication τ into S

S ← S + τ where τ = (k′, i, c
k′

, c
k′

+ w
ik′

)

end

else
ci ←∞, di ← D

end

else
m ← |Li|
sortLi by deadlines in a non-decreasing order
Li = {l1, . . . , lm} // sorted in a non-decreasing order

τm ← (i, lm, dm − wilm
, dm)

for j ← m− 1 downto 1 do
tlj
← min{tlj+1

− wilj+1,dlj
}

τj ← (i, lj , tlj
− wilj

, tlj
)

end

if τ1.ts < 0 then // τ1.ts must not be smaller than time 0

returnNULL
end

if si > τ1.ts then // Ti is not self-fulfilled

ci ←∞, di ← τ1.ts
else

di ←∞
if i is not root then

// compute ci
p ← parent(i)
Let aj represents τj .ts and bj represents τj.te ,

1 ≤ j ≤ m
Let b0 ← si and am+1 ← ∞

for j ← 0 to m + 1 do
idle period ← aj+1 − bj

if idle period ≥ wip then
ci ← bj
break

else
τj+1 ← (i, lj+1, bj , bj + wilj+1

)

end

end

end

end

// Add communications τj into S, 1 ≤ j ≤ m

for j ← 1 tom do
S ← τj

end

end

end

if droot = ∞ then // T is self-fulfilled.

return S
else T is not self-fulfilled

returnNULL
end

end

Figure 3. The pseudo code of FindFeasi-

ble algorithm

challenge, and we give two such problems, which we will

further investigate.

• When multiple messages are present in the distributed
systems, is there a polynomial time algorithm for the

replication transition problem on tree topology or other

topologies such as paths and cycles?

• Is there a polynomial time algorithm for replication
transition problemwhen multiple messages are present

and each site has limited storage capacity?
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