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Introduction: Multi-view video acquisition is widely used for recon-

struction and free-viewpoint rendering (FVR) of dynamic scenes. Cur-

rent approaches to FVR resample directly from the captured multi-view

images at each time frame, achieving a high level of photo-realism but

requiring storage and transmission of multi-video sequences. This is pro-

hibitively expensive in both storage and bandwidth required for multiple

video streams limiting applications to local rendering on high-performance

hardware. This paper addresses the problem of optimally resampling and

representing multi-view video to obtain a compact representation without

loss of the view-dependent dynamic surface appearance.
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Figure 1: Overview of the resampling of multi-view video to a multi-layer

texture video

Representation and Optimisation: Fig. 1 shows an overview of the

proposed approach taking as input a set of camera images and an aligned

mesh sequence. Texture coordinates, a 3D-2D mapping, are defined and

the multi-view images are resampled into a hierarchy of texture maps with

the views of each facet ordered by visibility. Optimal resampling from

multiple views requires spatial and temporal coherence of the representa-

tion. The problem can be cast as a labelling problem where we seek the

mapping L : F → C from the set of mesh facets F to the set of cameras

C = {1...NC} which assigns a camera label l f ∈ C to each facet f ∈ F .

We formulate the computation of the optimal labelling L(t) as an energy

minimisation of cost:

E(L(t)) = ∑
∀t

(Ev(L(t))+λsEs(L(t))+λtEt(L(t),L(t +1)). (1)

where Ev(L(t)) is the unary visibility cost for all faces F to be assigned

camera labels L(t) at time t, Es() is the spatial coherence cost which en-

forces consistent camera labelling between adjacent mesh facets, Et() is

the temporal coherence cost which enforces temporal coherence of the

camera labelling, finally λs and λt are weighting terms for the spatial and

temporal smoothness functions.
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Figure 2: Results of surface-based optical flow alignment of appearance

from multiple views

Multi-View Alignment: Simple projection and blending of camera views

using the approximate reconstructed mesh geometry leads to blurring and

ghosting artefacts. These artefacts are caused by misalignment between

overlapping camera images projected onto to mesh surface from inaccu-

rate geometry and camera calibration. In order to minimise these arte-

facts, we use optical flow based image warping to correct misalignments

before sampling into the texture domain. To establish optical flow be-

tween camera views, we first render the geometry from the viewpoint of

camera Ci and projectively texture the geometry using the image of cam-

era C j for all NC cameras. This results in N2
C rendered images, R

j
i , which

denotes the image rendered from the ith camera viewpoint using the jth

camera image, Fig. 2(a) and (b). An optical flow correspondence field,

Oi→ j, is computed between the rendered image Ri = Ri
i and R

j
i where

i 6= j. A binary confidence score is assigned to each flow vector, black

indicates areas where occlusion or depth discontinuities occur these are

assigned a zero confidence scores, Fig. 2(c). The magnitude of the cor-

rection vector is given by the weighted average of all visible and high-

confidence flow vectors on the surface.

Results: Optimal resampling of the captured multi-view images as a lay-

ered texture map representation is achieved by combining the optical flow

alignment of the captured images on the reconstructed surface with the

spatio-temporal optimisation of camera label assignments for each mesh

facet. Fig. 3 shows two examples of the multi-view alignment: (a) a tex-

ture map layer from dataset Dan. (b) First three layers from Cloth dataset

blended together. This demonstrates that the approach corrects misalign-

ment which reduces ghosting and blur artefacts during rendering. The

representation is evaluated in terms of rendering quality and required stor-

age when varying the size of the texture map and number used. We show

that only 3 texture layers are required to maintain view dependence dur-

ing rendering and no significant increase in quality occurs when using a

texture size above 1024. This results in a >90% reduction in the required

storage when compared to the captured data.
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Figure 3: Results of multi-view optical flow based alignment

Conclusion: A method is presented for optimisation of the resampling

from multi-view video sequences of a reconstructed surface into a multi-

layer 2D texture map representation to obtain a compact, spatially and

temporal coherent representation that minimises the loss of information

from the captured data to maintain FVR quality. Spatio-temporal optimi-

sation is combined with a surface-based optical flow alignment to signif-

icantly reduce the storage footprint and minimise artefacts due to errors

in geometry and camera calibration. This demonstrates that the proposed

approach results in an efficient representation that preserves the visual

quality of the captured multiple view video for FVR whilst achieving ap-

proximately >90% reduction in size.


