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Abstract—Demand response (DR) enables customers to adjust
their electricity usage to balance supply and demand. Most pre-
vious works on DR consider the supply–demand matching in an
abstract way without taking into account the underlying power
distribution network and the associated power flow and system
operational constraints. As a result, the schemes proposed by
those works may end up with electricity consumption/shedding
decisions that violate those constraints and thus are not feasible.
In this paper, we study residential DR with consideration of the
power distribution network and the associated constraints. We
formulate residential DR as an optimal power flow problem and
propose a distributed scheme where the load service entity and
the households interactively communicate to compute an optimal
demand schedule. To complement our theoretical results, we also
simulate an IEEE test distribution system. The simulation results
demonstrate two interesting effects of DR. One is the location
effect, meaning that the households far away from the feeder
tend to reduce more demands in DR. The other is the rebound
effect, meaning that DR may create a new peak after the DR
event ends if the DR parameters are not chosen carefully. The two
effects suggest certain rules we should follow when designing a DR
program.

Index Terms—Demand response (DR), distributed algorithms,
distribution networks, optimal power flow (OPF), smart grid.

I. INTRODUCTION

D EMAND response (DR) is a mechanism to enable cus-

tomers to participate in the electricity market in order

to improve power system efficiency and integrate renewable

generation [1]. Most of the existing DR programs in the United

States are for commercial and industrial customers and they

have been well studied. Very few DR programs are in use for

residential customers [2]. However, as smart grid technologies

such as smart metering, smart appliances, and home area net-

work technologies developed significantly over the past years,
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residential DR becomes increasingly attractive due to its great

potential [3].

Residential DR requires the coordination of a large number

of households in order to improve the overall power system

efficiency and reliability. Such coordination is usually imple-

mented via pricing signals, assuming that customers are price

responsive. Extensive algorithms [3]–[8] have been proposed in

the literature to determine the prices and customers’ responses

to the prices. Most of those works consider the supply–demand

matching in DR in an abstract way where the aggregate demand

is simply equal to the supply. However, households are not

isolated with each other, but they are connected by a power

distribution network with the associated power flow constraints

(e.g., Kirchhoff’s laws) and system operational constraints

(e.g., voltage tolerances). As a result, the schemes proposed

by previous works may end up with electricity consump-

tion/shedding decisions that violate those constraints and thus

are not feasible. There are few works which consider DR in

direct current (DC) distribution networks [9]. However, they

cannot be applied to the most widely-used alternating current

(AC) distribution networks.

This paper focuses on the design of a DR scheme for a large

number of residential households with consideration of the AC

power distribution network and the associated constraints in a

smart grid where two-way communications between the load

service entity (LSE) and the households are available. More

specifically, we consider a direct residential DR program where

customers who participate in it sign a contract with the LSE

in advance to let the LSE control some of their appliances

for a certain period of time. The home energy management

systems (HEMs) in the participating households can receive

DR control signals from the LSE to coordinate their appliance

operations in order to meet the DR objective in a DR event.

The objective of the DR is to manage the appliances for each

household such that (i) the social welfare (i.e., the customer

utilities minus the power losses) is maximized, (ii) the system

demand is below a certain limit during peak hours, and (iii) the

appliance operational constraints, the power flow constraints,

and the system operational constraints are satisfied.

Specifically, we formulate residential DR as an optimal

power flow (OPF) problem using a branch flow model [10]. The

OPF problem is non-convex due to the power flow constraints

and thus is difficult to solve. We relax the problem to be a

convex problem. The convex relaxation is not exact in general

(i.e., the solution to the relaxed problem is not the same as the

solution to the original problem). Recent works [11]–[13] have

derived sufficient conditions under which the relaxation is exact
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for radial networks. Roughly speaking, if the bus voltage is

kept around the nominal value and the power injection at each

bus is not too large, then the relaxation is exact. For detailed

conditions, please refer to [11]. More sufficient conditions

can be found in [12], [13]. Those conditions can be checked

a priori and hold for a variety of IEEE standard distribution

networks and real-world networks. Therefore, we focus on

solving the relaxed OPF problem (OPF-r) in this paper. The

OPF-r problem is a centralized optimization problem. To solve

it in a distributed manner, we propose a DR scheme where

the LSE and the HEMs in the households jointly compute an

optimal demand schedule. In our proposed DR scheme, the

HEM in each household keeps the private information locally

(i.e., utility functions and appliance operational constraints) and

the LSE has the system information (i.e., network topology, line

impedances, power losses, etc.). Therefore, customer privacy

(i.e., detailed appliance-level information) is protected in the

DR process.

To complement our theoretical model, we apply the proposed

DR scheme to an IEEE test radial distribution system [14].

The simulation results demonstrate the effectiveness of our

proposed DR scheme and show two interesting effects of DR.

One is the location effect, meaning that the households far

away from the feeder tend to reduce more demands in DR.

The other is the rebound effect, meaning that DR may create

a new peak after the DR event ends if the DR parameters are

not chosen carefully. The two effects suggest certain rules we

should follow when designing a DR program.

The rest of the paper is organized as follows. We introduce

the system model in Section II and propose the DR scheme

in Section III. Simulation results and the discussions about the

location effect and the rebound effect are provided in Section IV

and conclusions are given in Section V.

II. SYSTEM MODEL

This section describes the system model of the proposed

distributed residential DR scheme. We give an overview of

the system followed by the appliance model, the customer

preference model, the distribution network model, and the DR

model. Those models will be used for designing the DR scheme

in the following section.

A. System Overview

We consider a residential DR over a distribution network,

which is operated by one LSE. In the network, each load bus

is connected with a set of households and there are a total of

H households H := {h1, h2, . . . , hH} in the system. In each

household h ∈ H, there is a HEM system managing a set of

appliances Ah := {ah,1, ah,2, . . . , ah,A} such as air condition-

ers (ACs), electric vehicles (EVs), dryers, etc. The HEM is

also connected with the LSE’s communications network via

a smart meter so that there is a two-way communication link

between the LSE and the household [15]. Since most distribu-

tion networks are radial, we focus on only radial distribution

networks in this paper. The overall system architecture is shown

in Fig. 1.

Fig. 1. An illustration of the system model. (a) An LSE’s distribution network
of H households. (b) The HEM system in each household.

We use a discrete-time model with a finite horizon in this

paper. We consider a time period or namely a scheduling

horizon which is divided into T equal intervals ∆t, denoted

by T . For each appliance a ∈ Ah, let ph,a(t) and qh,a(t) be

the real power and reactive power it draws at time t ∈ T . The

complex power of the appliance can be denoted by sh,a(t) :=
ph,a(t) + iqh,a(t). The HEM system in each household is able

to gather the power consumption information of the appliances

{sh,a(t)}a∈Ah
and adjust the electricity usage to achieve certain

energy efficiency for the customer. If the customer is enrolled in

a DR program, the HEM system can receive DR events issued

by the LSE. A DR event would request the participants to shed

or reschedule their demands in exchange for some incentives.

Although it is possible that customers can change their demands

manually, a fully-automated system which can respond to DR

events automatically is more favorable for residential customers

[16]. To implement such an auto DR system, an intelligent con-

trol algorithm is needed for the HEM to manage the operations

of the appliances in order to meet the DR objective.

B. Appliance Model

Household appliances can be classified into three types

in the context of DR: critical, interruptible, and deferrable
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loads [6]. Critical loads such as refrigerators, cooking, and crit-

ical lighting should not be shifted or shedded at any time. Inter-

ruptible loads such as ACs and optional lighting can be shedded

during DR. Deferrable loads such as washers, dryers, and EVs

can be shifted during DR but they are required to consume a

certain minimum energy before deadlines to finish their tasks.

Since critical loads cannot participate in DR, we do not consider

them here.

For a given appliance a ∈ Ah, the relationship between the

real power and the reactive power is given by the power factor

ηh,a(t):

ηh,a(t) =
ph,a(t)

|sh,a(t)|
, ∀t ∈ T . (1)

And we characterize an appliance by a set of constraints on its

demand vector ph,a := (ph,a(t), t ∈ T ).
Now we introduce the appliance operational constraints [7].

• For each appliance, the demand is constrained by a min-

imum and a maximum power denoted by pmin
h,a (t) and

pmax
h,a (t), respectively:

pmin
h,a (t) ≤ ph,a(t) ≤ pmax

h,a (t), ∀t ∈ T . (2)

Note that pmin
h,a (t) and pmax

h,a (t) can be also used to set the

available working time for the appliance. For example, if

the appliance cannot run at time t, then we set pmax
h,a (t) =

pmin
h,a (t) = 0.

• For thermostatically controlled appliances such as ACs

and heaters, the constraint (2) alone is not enough. To

model this kind of appliances, we need to find the rela-

tionship between the indoor temperature T in
h (t) and the

demand vector ph,a (refer to [7] or Section IV for details).

We assume that the customer sets a most comfortable tem-

perature T comf
h (t) and there is a range of temperature that

the customer can bear, denoted by [T comf,min
h , T

comf,max
h ].

In addition to (2), a thermostatically controlled appliance

can be modeled as:

T
comf,min
h ≤ T in

h (t) ≤ T
comf,max
h , ∀t ∈ T . (3)

• For deferrable loads, the cumulative energy consumption

of the appliances must exceed a certain threshold in order

to finish their tasks before deadlines. Let Emin
h,a and Emax

h,a

denote the minimum and maximum total energy that the

appliance is required to consume, respectively. The con-

straint on the total energy consumed by a deferrable load

is given by:

Emin
h,a ≤

∑

t∈T

ph,a(t)∆t ≤ Emax
h,a . (4)

C. Customer Preference Model

We model customer preference in the DR using the con-

cept of utility function from economics. The utility function

Uh,a(ph,a) quantifies a customer’s benefit or comfort obtained

by running an appliance a ∈ Ah using its demand vector ph,a.

TABLE I
NOTATIONS

Depending on the type of the appliance, the utility function may

take different forms [7].

• For interruptible loads, the utility is dependent on the

power it draws at time t and may be time variant if

the operation is time sensitive. For example, the utility

function for interruptible loads can be defined as:

Uh,a(ph,a) :=
∑

t∈T

Uh,a (ph,a(t), t) . (5)

• For thermostatically controlled appliances, the utility is

related to the temperature T in
h (t) and the most comfort

temperature T comf
h (t). Therefore, the utility function can

be defined in the form of:

Uh,a(ph,a) :=
∑

t∈T

Uh,a

(

T in
h (t), T comf

h (t)
)

. (6)

• For deferrable loads, since a customer mainly concerns

if the task can be finished before deadline, we define the

utility as a function of the total energy consumption:

Uh,a(ph,a) := Uh,a

(

∑

t∈T

ph,a(t)∆t

)

. (7)

For the rest of the paper, we assume that the utility function

Uh,a(ph,a) is a continuously differentiable concave function for

all h ∈ H, a ∈ Ah.

D. Distribution Network Model

A power distribution network can be modeled as a connected

graph G = (N , E), where each node i ∈ N represents a bus

and each link in E represents a branch (line or transformer).

The graph G is a tree for radial distribution networks. We

denote a branch by (i, j) ∈ E . We index the buses in N by

i = 0, 1, . . . , n, and bus 0 denotes the feeder which has a fixed

voltage and flexible power injection. Table I summarizes the

key notations used in modeling distribution networks for the

ease of reference.

For each branch (i, j) ∈ E , let zij := rij + ixi,j denote the

complex impedance of the branch, Iij(t) denote the complex

current from buses i to j, and Sij(t) := Pij(t) + iQij(t) denote

the complex power flowing from buses i to j.

For each bus i ∈ N , let Vi(t) denote the complex voltage at

bus i and si(t) := pi(t) + iqi(t) denote the complex bus load.

Specifically, the feeder voltage V0 is fixed and given. s0(t) is

the power injected to the distribution system. Each load bus i ∈
N \ {0} supplies a set of households which are connected to
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the bus denoted by Hi ⊂ H. The aggregate load at each bus

satisfies:

si(t) =
∑

h∈Hi

∑

a∈Ah

sh,a(t), ∀i ∈ N \ {0}, ∀t ∈ T . (8)

Given the radial distribution network G, the feeder voltage

V0, and the impedances {zij}(i,j)∈E , then the other variables

including the power flows, the voltages, the currents, and the

bus loads satisfy the following physical laws for all branches

(i, j) ∈ E and all t ∈ T .

• Ohm’s law:

Vi(t)− Vj(t) = zijIij(t); (9)

• Power flow definition:

Sij(t) = Vi(t)I
∗
ij(t); (10)

• Power balance:

Sij(t)− zij |Iij(t)|
2 −

∑

k:(j,k)∈E

Sjk(t) = sj(t). (11)

Using (9)–(11) and in terms of real variables, we have [17]:

∀(i, j) ∈ E , ∀t ∈ T ,

pj(t) =Pij(t)− rijℓij(t)−
∑

k:(j,k)∈E

Pjk(t), (12)

qj(t) =Qij(t)− xijℓij(t)−
∑

k:(j,k)∈E

Qjk(t), (13)

vj(t) = vi(t)−2 (rijPij(t) + xijQij(t))

+ (r2ij + x2
ij)ℓij(t), (14)

ℓij(t) =
Pij(t)

2 +Qij(t)
2

vi(t)
, (15)

where ℓij(t) := |Iij(t)|2 and vi(t) := |Vi(t)|2.

Equations (12)–(15) define a system of equations in the

variables (P(t),Q(t),v(t), l(t), s(t)), where P(t) := (Pij(t),
(i, j) ∈ E), Q(t) := (Qij(t), (i, j) ∈ E), v(t) := (vi(t), i ∈
N \ {0}), l(t) := (ℓij(t), (i, j) ∈ E), and s(t) := (si(t), i ∈
N \ {0}). The phase angles of the voltages and the currents are

not included. But they can be uniquely determined for radial

distribution networks [10].

E. DR Model

The objective of the LSE is to deliver reliable and high-

quality power to the customers through the distribution net-

work. However, during peak hours, the system demand may

exceed the capacity or the LSE may need to use expensive

generations to guarantee reliability. The voltages may also

deviate significantly from their nominal values, which reduces

power quality. Thus, in this paper, we study DR aiming at

keeping the system demand under a certain limit while meeting

the voltage tolerance constraints during peak hours.

A DR event can be defined by a schedule and a demand limit

(Td, smax), where Td ⊆ T is the schedule which specifies the

start time and the end time of the DR event and smax is the

demand limit imposed by either the system capacity or the LSE

according to the supply.

Given the DR event, the system demand constraint can be

modeled as:

|s0(t)| ≤ smax, ∀t ∈ Td, (16)

where s0(t) is the total complex power injected to the distribu-

tion system and it is given by:

s0(t) =
∑

j:(0,j)∈E

S0j(t), ∀t ∈ T . (17)

We also consider the voltage tolerance constraints in the

distribution network which keep the magnitudes of the voltage

at each load bus within a certain range during a DR event:

V min
i ≤ |Vi(t)| ≤ V max

i , ∀i ∈ N \ {0}, ∀t ∈ Td. (18)

The allowed voltage range for different distribution systems can

be found in the standard [18].

The objective of the proposed DR scheme is to find a set of

optimal demand vectors to maximize the aggregate utilities of

the appliances in the households and minimize the power losses

in the distribution network subject to the appliance operational

constraints, the power flow constraints, the system demand

constraint, and the system operational constraints (voltage

tolerances).

We define P := (P(t), t ∈ T ), Q := (Q(t), t ∈ T ), v :=
(v(t), t ∈ T ), l := (l(t), t ∈ T ), sh,a := (sh,a(t), t ∈ T ), and

s := (sh,a, h ∈ H, a ∈ Ah). The residential DR can be formu-

lated as an OPF problem.

OPF:

max
P,Q,v,l,s

∑

h∈H

∑

a∈Ah

Uh,a(ph,a)− κ
∑

t∈T

∑

(i,j)∈E

rijℓij(t)

s.t. (1)−(4), (8), (12)−(18),

where Uh,a(ph,a) is defined by (5)–(7); (1)–(4) are the appli-

ance operational constraints; (8), (12)–(15) are the power flow

constraints; (16) and (17) are the system demand constraints;

(18) is the voltage tolerance constraint; and κ is a parameter

to trade off between customer utility maximization and power

loss minimization. A large κ means that the LSE is more self-

interested in minimizing the power losses rather than maximiz-

ing the customer utilities.

III. DISTRIBUTED DR SCHEME

In this paper, we focus on developing a scalable distributed

DR scheme rather than a centralized scheme due to the large

number of appliances that need to be managed by the scheme.

Moreover, the proposed DR scheme also needs to protect the

privacy for the residential customers. To design such a dis-

tributed DR scheme, we relax the previous OPF problem to be

a convex problem and propose a distributed algorithm to solve

it. The convexity of the relaxed OPF problem guarantees the

convergence of the distributed algorithm.
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A. Convexification of OPF

The previous OPF problem is non-convex due to the

quadratic equality constraint in (15) and thus is difficult to

solve. Moreover, most decentralized algorithms require con-

vexity to ensure convergence [19]. We therefore relax them to

inequalities:

ℓij(t) ≥
Pij(t)

2 +Qij(t)
2

vi(t)
, ∀(i, j) ∈ E , ∀t ∈ T . (19)

Now we consider the following convex relaxation of OPF.

OPF-r:

max
P,Q,v,l,s

∑

h∈H

∑

a∈Ah

Uh,a(ph,a)− κ
∑

t∈T

∑

(i,j)∈E

rijℓij(t)

s.t. (1)−(4), (8), (12)−(14), (16)−(19).

OPF-r provides an upper bound to OPF. For an optimal

solution of OPF-r, if the equality in (19) is attained at the

solution, then it is also an optimal solution of OPF. We call

OPF-r an exact relaxation of OPF if every solution to OPF-r is

also a solution of OPF, and vice versa.

The sufficient conditions under which OPF-r is an exact

relaxation of OPF for radial distribution networks have been

derived in previous works [11]–[13]. Roughly speaking, if the

bus voltage is kept around the nominal value and the power

injection at each bus is not too large, then the relaxation is exact.

For detailed conditions, please refer to [11]. More sufficient

conditions can be found in [12], [13]. Those conditions are

verified to hold for many IEEE standard distribution networks

and real-world networks. When OPF-r is an exact relaxation of

OPF, we can focus on solving the convex optimization problem

OPF-r. In this paper, we assume that the conditions for exact

relaxation of OPF to OPF-r specified in [11]–[13] hold for

the radial distribution network and therefore OPF-r is an exact

relaxation of OPF and strong duality holds for OPF-r.

B. Distributed Algorithm

To solve OPF-r in a centralized way, it requires not only the

distribution network information but also the private informa-

tion of the appliances (i.e., utility functions and schedules). In

order to protect customer privacy and make the DR scalable,

we propose a distributed DR scheme to solve the OPF-r prob-

lem using the predictor corrector proximal multiplier (PCPM)

algorithm (refer to [20] or the Appendix for details).

Initially set k ← 0. The HEM in each household h ∈ H sets

the initial demand schedule skh,a for each appliance a ∈ Ah ac-

cording to its preferable demand schedule. The HEM then com-

municates its aggregate demand schedule skh :=
∑

a∈Ah
skh,a

to the LSE. In the meantime, the LSE randomly chooses the

initial ski (t) := pki (t) + iqki (t) and two virtual control signals

{μk
i (t)}t∈T , {λk

i (t)}t∈T for each bus i ∈ N \ {0}.

At the beginning of the k-th step, the LSE sends two

DR control signals μ̂k
i (t) := μk

i (t) + γ(
∑

h∈Hi
pkh(t)− pki (t))

and λ̂k
i (t) := λk

i (t) + γ(
∑

h∈Hi
qkh(t)− qki (t)) to the HEMs in

households h ∈ Hi for all t ∈ T , where γ is a positive constant.

Then,

• The HEM in each household h ∈ Hi solves the following

problem for each appliance a ∈ Ah.

DR-household:

max
sh,a

Uh,a(ph,a)−
(

µ̂k
i

)T

ph,a −
(

λ̂
k

i

)T

qh,a

−
1

2γ

∥

∥ph,a − pk
h,a

∥

∥

2
−

1

2γ

∥

∥qh,a − qk
h,a

∥

∥

2

s.t. (1)−(4),

where µ̂k
i := (μ̂k

i (t), t ∈ T ) and λ̂
k

i := (λ̂k
i (t), t ∈ T ).

The optimal s∗h,a is set as sk+1
h,a .

• The LSE solves the following problem for each time t ∈ T .

DR-LSE:

max
P(t),Q(t),

v(t),l(t),s(t)

(

µ̂k(t)
)T

p(t) +
(

λ̂
k
(t)

)T

q(t)

− κ
∑

(i,j)∈E

rijℓij(t)−
1

2γ

∥

∥p(t)− pk(t)
∥

∥

2

−
1

2γ

∥

∥q(t)− qk(t)
∥

∥

2

s.t. (12)−(14), (16)−(19),

where µ̂k(t) := (μ̂k
i (t), i ∈ N \ {0}) and λ̂

k
(t) :=

(λ̂k
i (t), i ∈ N \ {0}). The optimal s∗(t) is set as sk+1(t).

At the end of the k-th step, the HEM in household

h communicates its aggregate demand schedule sk+1
h :=

∑

a∈Ah
sk+1
h,a to the LSE and the LSE updates μk+1

i (t) :=μk
i (t)+

γ(
∑

h∈Hi
pk+1
h (t)−pk+1

i (t)) and λk+1
i (t) :=λk

i (t)+γ(
∑

h∈Hi

qk+1
h (t)− qk+1

i (t)) for all i ∈ N \ {0} and all t ∈ T . Set k ←
k + 1, and repeat the process until convergence.

Algorithm 1—The Proposed Distributed DR Scheme.

1: initialization k ← 0. The HEM sets the initial skh,a and

returns the aggregate demand schedule skh to the LSE.

The LSE sets the initial μk
i (t), λ

k
i (t) and the initial ski (t)

randomly.

2: repeat

3: The LSE updates μ̂k
i (t) and λ̂k

i (t) and sends the DR

control signals µ̂k
i and λ̂

k

i to the HEMs in the house-

holds h ∈ Hi.

4: The HEM in each household calculates a new demand

schedule sk+1
h,a for each appliance a ∈ Ah by solving

the DR-household problem.

5: The LSE computes a new sk+1(t) for each time t ∈ T
by solving the DR-LSE problem.

6: The HEM communicates the aggregate demand sched-

ule sk+1
h to the LSE.

7: The LSE updates μk+1
i (t) and λk+1

i (t).
8: k ← k + 1.

9: until convergence
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A complete description of the proposed DR scheme can be

found in Algorithm 1. When γ is small enough, the above

algorithm will converge to the optimal solution of OPF-r which

is also the optimal solution of OPF if the relaxation is exact,

and (
∑

h∈Hi
pkh(t)− pki (t)) and (

∑

h∈Hi
qkh(t)− qki (t)) will

converge to zero [20]. As we can see, the LSE and the HEMs

in the households interactively communicate to compute the

optimal demand schedule. Therefore, the two-way communica-

tions network in the distribution system is crucial to implement

the proposed DR scheme. Notice that after the LSE and the

customers jointly compute the optimal demand schedule over

t ∈ T , the LSE only controls the demands during the DR period

according to the optimal schedule over t ∈ Td. The customers

may or may not follow the optimal demand schedule exactly for

the rest of the time T \ Td.

In the proposed DR scheme, the private information of

the customer including the utility functions Uh,a(ph,a) and the

appliance operational constraints (1)–(4) appears only in the

DR-household problem which is solved by the HEM owned

by the customer. The LSE solves the DR-LSE problem using

the system information, including the power flow constraints

(12)–(14) and (19), the system demand constraints (16) and

(17), the voltage tolerance constraints (18), and the power

losses
∑

(i,j)∈E rijℓij(t). Therefore, there is no appliance-level

information gathered by the LSE and customer privacy can be

protected in the DR process.

IV. PERFORMANCE EVALUATION

In this section, we demonstrate the proposed DR scheme by

applying it to an IEEE standard distribution system. We first

describe the distribution system used in the simulation and give

the parameters of the scheme. Then, we present the simulation

results of the proposed DR scheme and discuss the interesting

effects that we observe from the simulation.

A. Simulation Setup

We use the IEEE 13-node test feeder [14] as the power distri-

bution system which is shown in Fig. 2.1 We assume that there

are 10 households connected to each load bus. In the simulation,

a day starts from 8 am. The time interval ∆t in the model is

one hour and we denote a day by TD := {8, 9, . . . , 24, 1, . . . , 7}
where each t ∈ TD denotes the hour of [t, t+ 1]. The schedul-

ing horizon T used by the LSE to calculate the optimal DR

strategy is chosen to be T := {ts, ts + 1, . . . , 7} ⊆ TD, where

ts is the time that the DR event starts.

A total of 6 different appliances including ACs, EVs, wash-

ers, dryers, lighting, and plug loads are considered in the simu-

lation. The power factor of each appliance ηh,a(t) is assumed to

1In order to exemplify the effect of DR on both the households and the
distribution network, we made several changes to the standard IEEE 13-node
test feeder: the inline transformer between node 633 and node 634 is omitted,
the switch between node 671 and node 692 is closed, and the line lengths are
increased by 5 times. The feeder has a nominal voltage of 4.16 kV. Since
our focus is on residential customers, we assume that there is a secondary
distribution transformer at each load bus which scales the voltage down to
120/240 V to serve multiple households.

Fig. 2. The modified IEEE standard distribution system.

Fig. 3. Outside temperature of a day.

be constant and its value is selected randomly from [0.8, 0.9].

We further assume that there is a preferable demand schedule

(i.e., the baseline power consumption without any DR incen-

tives) for each appliance denoted by p
pref
h,a := (pprefh,a (t), t ∈ T ).

Detailed descriptions for the appliances are given as follows.

1) ACs: An AC is a thermostatically controlled appliance.

Let T out
h (t) denote the outside temperature. We assume that the

indoor temperature evolves according to [7]:

T in
h (t) = T in

h (t− 1) + α
(

T out
h (t)− T in

h (t− 1)
)

+ βph,a(t),
(20)

where α and β are the thermal parameters of the environment

and the appliance, respectively. α is a positive constant and

β is positive if the AC is running in the heating mode or

negative in the cooling mode. Using (20), we define the utility

of an AC as Uh,a(T
in
h (t), T comf

h (t)) := ch,a − bh,a(T
in
h (t)−

T comf
h (t))2, where bh,a and ch,a are positive constants.

In the simulation, we choose the thermal parameters as α =
0.9 and β is chosen randomly from [−0.008,−0.005]. The

outside temperature of the day is given in Fig. 3 which is a

typical summer day in Southern California. For each household,

we assume the comfortable temperature range to be [70 F, 79 F]

and the most comfortable temperature T comf
h (t) is chosen ran-

domly from [73 F, 76 F]. The maximum and minimum power

are pmax
h,a = 4 kW and pmin

h,a = 0 kW, respectively.

2) EVs: An EV is a deferrable load. We assume that the EV

arriving time th,e is randomly chosen from [17, 19]. It starts
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charging immediately after arriving and must finish charging

before t = 6. The maximum and minimum charging rates are

pmax
h,a = 3 kW and pmin

h,a = 0 kW, respectively. The maximum

charging requirement Emax
h,a is chosen randomly from [20 kWh,

24 kWh] and Emin
h,a is chosen randomly from [15 kWh,

18 kWh]. The utility function is in the form of Uh,a(ph,a) :=

bh,a(
∑

t∈T ph,a(t))−
∑

t∈T t|ph,a(t)− p
pref
h,a (t)|+ ch,a.

3) Washers: A washer is a deferrable load. Its starting time

th,w is chosen randomly from [th,e, 20]. It must finish its job

within 2 hours. The maximum and minimum power are pmax
h,a =

700 W and pmin
h,a = 0 W, respectively. The maximum energy re-

quirement Emax
h,a is chosen randomly from [900 Wh, 1200 Wh]

and Emin
h,a is chosen randomly from [600 Wh, 800 Wh]. The

utility function takes the same form as that of an EV.

4) Dryers: A dryer is a deferrable load. It starts working at

th,w + 2 and must finish before t = 1. The maximum and min-

imum power are pmax
h,a = 5 kW and pmin

h,a = 0 kW, respectively.

The maximum energy requirement Emax
h,a is chosen randomly

from [7.5 kWh, 10 kWh] and Emin
h,a is chosen randomly from

[4 kWh, 5 kWh]. The utility function takes the same form as

that of an EV.

5) Lighting: Lighting is an interruptible load. Its working

time is [19, 24] ∪ [1, 7]. The maximum and minimum power

are pmax
h,a = 1.0 kW and pmin

h,a = 0.5 kW, respectively. The

utility function takes the form of Uh,a(ph,a(t), t) := ch,a −

bh,a(ph,a(t)− p
pref
h,a (t))2.

6) Plug Loads: Plug loads include other common household

appliances such as TVs, home theaters, PCs, etc. They belong

to interruptible loads. The maximum and minimum power

are pmax
h,a = 500 W and pmin

h,a = 0 W, respectively. The utility

function takes the same form as that of lighting.

B. Case Study

We simulate our proposed DR scheme in the modified IEEE

standard distribution system. The voltage at the feeder V0 is

assumed to be fixed at 4.16 kV and there are no voltage

regulators or capacitors on the distribution lines. The minimum

allowed voltage at each load bus V min
i is set to be 4.05 kV

[18]. The parameters in our proposed DR scheme are chosen

as κ := 0.01 and γ := 0.25.

We use the preferable schedules of the appliances as the

baseline in the simulation. More specifically, the AC keeps

the indoor temperature to the most comfortable temperature

T comf
h (t) all day. The EV, the washer, and the dryer run at their

maximum power pmax
h,a (t) until the maximum energy require-

ment Emax
h,a is met. Lighting and the plug loads use the power

as they request.

The load profile of the feeder |s0(t)| without DR is shown by

the dashed line in Fig. 4. It can be seen that the system demand

is low for most of the day. The peak starts at t = 19 and lasts

until t = 23. The dashed line in Fig. 5 shows the minimum bus

voltage in the distribution network over time. It can be seen that

the minimum bus voltage is below the voltage rating during the

peak hours. By comparing Fig. 4 with Fig. 5, we can find that

there is a significant correlation between the load level and the

voltage drop. The higher the demand is, the more significant the

voltage drop is.

Fig. 4. Load profile of the feeder |s0(t)| without and with DR.

Fig. 5. Minimum bus voltage profile without and with DR.

To simulate a DR event, we need to choose the DR param-

eters including the demand limit smax and the schedule Td. In

our simulation, we assume that the LSE imposes a demand limit

of smax = 0.6 MVA during the time period [19, 24]. The DR

period is chosen in a way to prevent the rebound effect which

will be discussed later.

The simulated load profile of the feeder |s0(t)| with DR

is shown by the solid line in Fig. 4. Note that the LSE only

controls the demands during the peak hours (shown by red).

The load profile after the DR ends is based on the optimal

demand schedules produced by our proposed DR scheme. The

customers may or may not follow the optimal demand sched-

ules. From Fig. 4, it can be seen that our proposed DR scheme

can effectively manage the appliances of the households in

the distribution network to keep the system demand under the

demand limit during the DR event. The solid line in Fig. 5

shows the minimum bus voltage profile with DR. We can see

that in addition to keep the system demand below the limit, our

proposed DR scheme is also able to maintain the bus voltage

levels within the allowed range during the DR event.

Fig. 6 shows the load profile of the appliances in one of the

households without and with DR. Both load shifting and load

shedding can be found in the figure: the deferrable loads (the

EV and the dryer) are shifted and the total energy that the dryer

consumes is reduced. If we compare the daily system demand

without and with DR, we can find a demand reduction of

0.05 MVA which is about 3% of the daily system demand.
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Fig. 6. Load profile of the appliances in one of the households without and
with DR.

Fig. 7. Dynamics of DR-household: the aggregate real power at bus 8.

Fig. 8. Dynamics of DR-LSE: the real power injected to the system p0.

Figs. 7 and 8 show the dynamics of the proposed dis-

tributed DR scheme. As we can see from the figures, both

DR-household and DR-LSE converge fast in the simulation.

For all the simulations, we also verify that the solution to the

centralized OPF-r problem is the same as the solution to the

distributed algorithm using the CVX package [21]. We further

verify that the equality in (19) is attained in the optimal solution

to OPF-r, i.e., OPF-r is an exact relaxation of OPF.

Fig. 9. Aggregate load profile of the households at each bus without DR.

Fig. 10. Aggregate load profile of the households at each bus with DR.

C. Discussions

1) Location Effect: Figs. 9 and 10 show the aggregate load

profile of the households at each load bus |si(t)| without and

with DR, respectively. By comparing the two figures, it can be

found that the loads at the buses far away from the feeder (buses

5–10) contribute more than the loads at the buses close to the

feeder (buses 1–4) to the demand reduction in the DR event.

The shifted demands from on-peak hours to off-peak hours are

largely from the buses far away from the feeder.

The reason for this location effect is due to both the power

loss minimization and the voltage regulation in DR. The power

loss and voltage drop along the distribution line are related to

not only the load level but also the length of the line. As the

length of the distribution line increases, the impedance of the

line increases, leading to a higher power loss and voltage drop.

Therefore, in order to decrease the total power injection into

the distribution system, which includes both the total power

consumption and the power losses, and also to meet the voltage

tolerance constraints, the households at the buses far away from

the feeder must shed or shift more demands than the households

at the buses close to the feeder. This location effect implies

a potential fairness issue in DR since the impacts of DR on

the households are not the same. The LSE may need to set

the DR incentives given to the households differently based on

their locations in the network. Mechanisms to compensate such

location discrimination can be developed in the future.

2) Rebound Effect: In the previous simulation, we use the

DR schedule [19, 24]. An interesting rebound effect of DR
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Fig. 11. Rebound effect of DR.

can be observed if we reduce the DR period by one hour. The

simulation result using the new schedule [19, 23] is shown

in Fig. 11. It can be seen from the figure that although our

proposed DR scheme is effective to keep the system demand

below the demand limit during the DR period [19, 23], it creates

a rebound peak about 0.8 MVA at t = 24 right after the DR

event ends. The rebound effect is not desirable because the new

peak brings the same problems to the system as the old peak.

The reason for this rebound effect is that when the DR shifts

the peak demands to off-peak periods, it may create another

peak. The rebound effect shown in our simulation suggests that

the LSE should choose the DR parameters (i.e., the demand

limit and the DR schedule) carefully when designing a DR

event. Since the demand limit is usually determined by the

system capacity and the power supply, the freedom of the

design lies mainly in the DR schedule. Both the load profile and

the voltage profile need to be considered when determining the

DR schedule because the time needed for the demand reduction

and the voltage regulation may not be the same. A protection

time period may also be needed in the DR schedule to prevent

the rebound effect. In our pervious simulation, the protection

period is one hour. Heuristic methods can be developed for the

LSE to set the length of the protection period in the future.

V. CONCLUSION

In this paper, we study residential DR with consideration of

the underlying AC power distribution network and the associ-

ated power flow and system operational constraints. This resi-

dential DR is modeled as an OPF problem. We then relax the

non-convex OPF problem to be a convex problem and propose

a distributed DR scheme for the LSE and the households to

jointly compute an optimal demand schedule. Using an IEEE

test distribution system as an illustrative example, we demon-

strate two interesting effects of DR. One is the location effect,

meaning that the households far away from the feeder tend to

reduce more demands in DR. The other is the rebound effect,

meaning that DR may create a new peak after the DR event ends

if the DR parameters are not chosen carefully. The two effects

suggest certain rules we should follow when designing a DR

program. Future work includes designing compensation mech-

anisms for the location discrimination and heuristic methods to

deal with the rebound effect.

APPENDIX

INTRODUCTION TO PCPM

In this paper, we develop a distributed DR scheme using

the predictor corrector proximal multiplier (PCPM) algorithm

[20]. PCPM is a decomposition method for solving convex

optimization problem. At each iteration, it computes two prox-

imal steps in the dual variables and one proximal step in the

primal variables. We give a very brief description of the PCPM

algorithm below.

Consider a convex optimization problem with separable

structure of the form:

min
x∈X ,y∈Y

f(x) + g(y) (21)

s.t. Ax+By = c. (22)

Let z be the Lagrangian variable for the constraint (22).

The steps of the PCPM algorithm to solve the problem are

given as follows:

1) Initially set k ← 0 and choose the initial (x0,y0, z0)
randomly.

2) For each k ≥ 0, update a virtual variable ẑk := zk +
γ(Axk +Byk − c) where γ > 0 is a constant step size.

3) Solve

xk+1 = argmin
x∈X

{

f(x) +
(

ẑk
)T

Ax+
1

2γ

∥

∥x− xk
∥

∥

2
}

,

yk+1 = argmin
y∈Y

{

g(y) + (ẑk)TBy +
1

2γ

∥

∥y − yk
∥

∥

2
}

.

4) Update zk+1 := zk + γ(Axk+1 +Byk+1 − c).
5) k ← k + 1, and go to step 2 until convergence.

It has been shown in [20] that the above algorithm will

converge to a primal-dual optimal solution (x∗,y∗, z∗) for a

sufficient small positive step size γ as long as strong duality

holds for the convex problem (21).
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