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Optimal Resource Allocation for Network

Protection Against Spreading Processes
Victor M. Preciado, Michael Zargham, Chinwendu Enyioha, Ali Jadbabaie, and George Pappas

Abstract—We study the problem of containing spreading
processes in arbitrary directed networks by distributing pro-
tection resources throughout the nodes of the network. We
consider two types of protection resources are available: (i)
Preventive resources able to defend nodes against the spread-
ing (such as vaccines in a viral infection process), and (ii)
corrective resources able to neutralize the spreading after it
has reached a node (such as antidotes). We assume that both
preventive and corrective resources have an associated cost and
study the problem of finding the cost-optimal distribution of
resources throughout the nodes of the network. We analyze
these questions in the context of viral spreading processes in
directed networks. We study the following two problems: (i)
Given a fixed budget, find the optimal allocation of preventive
and corrective resources in the network to achieve the highest
level of containment, and (ii) when a budget is not specified,
find the minimum budget required to control the spreading
process. We show that both resource allocation problems can be
solved in polynomial time using Geometric Programming (GP)
for arbitrary directed graphs of nonidentical nodes and a wide
class of cost functions. We illustrate our approach by designing
optimal protection strategies to contain an epidemic outbreak
that propagates through an air transportation network.

I. INTRODUCTION

Understanding spreading processes in complex networks

and designing control strategies to contain them are relevant

problems in many different settings, such as epidemiology

and public health [1], computer viruses [2], or security of

cyberphysical networks [3]. In this paper, we analyze the

problem of controlling spreading processes in networks by

distributing protection resources throughout the nodes. In

our study, we consider two types of containment resources:

(i) Preventive resources able to protect (or ‘immunize’)

nodes against the spreading (such as vaccines in a viral

infection process), and (ii) corrective resources able to

neutralize the spreading after it has reached a node, such as

antidotes in a viral infection. In our framework, we associate

a cost with these resources and study the problem of finding

the cost-optimal distribution of resources throughout the

network to contain the spreading.

In the literature, we find several approaches to model

spreading mechanisms in arbitrary contact networks. The

analysis of this question in arbitrary (undirected) contact net-

works was first studied by Wang et al. [4] for a Susceptible-

Infected-Susceptible (SIS) discrete-time model. In [5],

Ganesh et al. studied the epidemic threshold in a continuous-

time SIS spreading processes. In both continuous- and

The authors are with the Department of Electrical and Systems Engi-
neering at the University of Pennsylvania, Philadelphia PA 19104.

discrete-time models, there is a close connection between

the speed of the spreading and the spectral radius of the

network (i.e., the largest eigenvalue of its adjacency matrix)

[6]. In contrast to most current research, we focus our

attention on the analysis of directed contact networks. From

a practical point of view, many real networks are more

naturally modeled using weighted and directed edges.

Designing strategies to contain spreading processes in

networks is a central problem in public health and net-

work security. In this context, the following question is

of particular interest: given a contact network (possibly

weighted and/or directed) and resources that provide partial

protection (e.g., vaccines and/or antidotes), how should one

distribute these resources throughout the networks in a cost-

optimal manner to contain the spread? This question has

been addressed in several papers. Cohen et al. [7] proposed

a heuristic vaccination strategy called acquaintance immu-

nization policy and proved it to be much more efficient

than random vaccine allocation. In [8], Borgs et al. studied

theoretical limits in the control of spreads in undirected

network with a non-homogeneous distribution of antidotes.

Chung et al. [9] studied a heuristic immunization strategy

based on the PageRank vector of the contact graph. In the

control systems literature, Wan et al. proposed in [10] a

method to design control strategies in undirected networks

using eigenvalue sensitivity analysis. Our work is related to

that in [11], where the authors study the problem of mini-

mizing the level of infection in an undirected network using

corrective resources within a given budget. In [12] a linear-

fractional optimization program was proposed to compute

the optimal investment on disease awareness over the nodes

of a social network to contain a spreading process. Also,

in [13], [14], the authors proposed a convex formulation

to find the optimal allocation of protective resources in an

undirected network using semidefinite programming (SDP).

Breaking the network symmetry prevents us from using

previously proposed approaches to find the optimal resource

allocation for network protection. In this paper, we propose a

novel formulation based on geometric programming to find

the optimal allocation of protection resources in weighted

and directed networks of nonidentical agents in polynomial

time.

The paper is organized as follows. In Section II, we intro-

duce notation and background needed in our derivations. We

state the resource allocation problems solved in this paper

in Subsection II-C. In Section III, we propose a convex

optimization framework to efficiently solve the allocation
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problems in polynomial time. Subsection III-A, present the

solution to the allocation problem for strongly connected

graphs. We extend this result to general directed graphs

(not necessarily strongly connected) in Subsection III-B. We

illustrate our results using a real-world air transportation

network in Section IV. We include some conclusions in

Section V.

II. PRELIMINARIES & PROBLEM DEFINITION

We introduce notation and preliminary results needed in

our derivations. In the rest of the paper, we denote by

R
n
+ (respectively, R

n
++) the set of n-dimensional vectors

with nonnegative (respectively, positive) entries. We denote

vectors using boldface letters and matrices using capital

letters. I denotes the identity matrix and 1 the vector of

all ones. < (z) denotes the real part of z 2 C.

A. Graph Theory

A weighted, directed graph (also called digraph) is defined

as the triad G , (V, E ,W), where (i) V , {v1, . . . , vn} is

a set of n nodes, (ii) E ✓ V ⇥V is a set of ordered pairs of

nodes called directed edges, and (iii) the function W : E !
R++ associates positive real weights to the edges in E . By

convention, we say that (vj , vi) is an edge from vj pointing

towards vi. We define the in-neighborhood of node vi as

N in
i , {j : (vj , vi) 2 E}, i.e., the set of nodes with edges

pointing towards vi. We define the weighted in-degree (resp.,

out-degree) of node vi as degin (vi) ,
P

j∈N in
i

W ((vj , vi))

(resp., degout (vi) ,
P

j∈N out
i

W ((vj , vi))). A directed

path from vi1 to vil in G is an ordered set of vertices�
vi1 , vi2 , . . . , vil+1

�
such that

�
vis , vis+1

�
2 E for s =

1, . . . , l. A directed graph G is strongly connected if, for

every pair of nodes vi, vj 2 V , there is a directed path from

vi to vj .

The adjacency matrix of a weighted, directed graph G,

denoted by AG = [aij ], is an n ⇥ n matrix defined

entry-wise as aij = W((vj , vi)) if edge (vj , vi) 2 E ,

and aij = 0 otherwise. Given an n ⇥ n matrix M , we

denote by v1 (M) , . . . ,vn (M) and λ1 (M) , . . . ,λn (M)
the set of eigenvectors and corresponding eigenvalues of

M , respectively, where we order them in decreasing order

of their real parts, i.e., < (λ1) � < (λ2) � . . . � < (λn).
We respectively call λ1 (M) and v1 (M) the dominant

eigenvalue and eigenvector of M . The spectral radius of

M , denoted by ρ (M), is the maximum modulus across all

eigenvalue of M .

In this paper, we only consider graphs with positively

weighted edges; hence, the adjacency matrix of a graph is

always nonnegative. Conversely, given a n⇥ n nonnegative

matrix A, we can associate a directed graph GA such that A
is the adjacency matrix of GA. Finally, a nonnegative matrix

A is irreducible if and only if its associated graph GA is

strongly connected.

B. Stochastic Spreading Model in Arbitrary Networks

A popular stochastic model to simulate spreading pro-

cesses is the so-called susceptible-infected-susceptible (SIS)

epidemic model, first introduced by Weiss and Dishon [15].

Wang et al. [4] proposed a discrete-time extension of the SIS

model to simulate spreading processes in networked popu-

lations. A continuous-time version, called the N-intertwined

SIS model, was recently proposed and rigorously analyzed

by Van Mieghem et al. in [6]. In this paper, we formulate our

problem using a further extension of the SIS model recently

proposed in [16]. We call this model the Neterogeneous

Networked SIS model (HeNeSIS).

This HeNeSIS model is a continuous-time networked

Markov process in which each node in the network can be

in one out of two possible states, namely, susceptible or

infected. Over time, each node vi 2 V can change its state

according to a stochastic process parameterized by (i) the

node infection rate βi, and (ii) its recovery rate δi. In our

work, we assume that both βi and δi are node-dependent

and adjustable via the injection of vaccines and/or antidotes

in node vi.
The evolution of the HeNeSIS model can be described

as follows. The state of node vi at time t � 0 is a binary

random variable Xi (t) 2 {0, 1}. The state Xi (t) = 0 (resp.,

Xi (t) = 1) indicates that node vi is in the susceptible (resp.,

infected) state. We define the vector of states as X (t) =
(X1 (t) , . . . , Xn (t))

T
. The state of a node can experience

two possible stochastic transitions:

1) Assume node vi is in the susceptible state at time

t. This node can switch to the infected state dur-

ing the (small) time interval [t, t+∆t) with a

probability that depends on: (i) its infection rate

βi > 0, (ii) the strength of its incoming connec-

tions
�
aij , for j 2 N in

i

 
, and (iii) the states of its

in-neighbors
�
Xj (t) , for j 2 N in

i

 
. Formally, the

probability of this transition is given by

Pr (Xi(t+∆t) = 1|Xi(t) = 0, X(t)) =
X

j∈N in
i

aijβiXj (t)∆t+ o(∆t), (1)

where ∆t > 0 is considered an asymptotically small

time interval.

2) Assuming node vi is infected, the probability of vi
recovering back to the susceptible state in the time

interval [t, t+∆t) is given by

Pr(Xi(t+∆t) = 0|Xi(t) = 1, X(t)) = δi∆t+o(∆t),
(2)

where δi > 0 is the curing rate of node vi.

This HeNeSIS model is therefore a continuous-time Markov

process with 2n states in the limit ∆t ! 0+. Unfortunately,

the exponentially increasing state space makes this model

hard to analyze for large-scale networks. To overcome

this limitation, we use a mean-field approximation of its

dynamics [17]. This approximation is widely used in the
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field of epidemic analysis and control [4]-[6],[10]-[18], since

it performs numerically well for many realistic network

topologies1. Using the Kolmogorov forward equations and

a mean-field approach, one can approximate the dynamics

of the spreading process using a system of n ordinary

differential equations, as follows. Let us define pi (t) ,

Pr (Xi (t) = 1) = E (Xi (t)), i.e., the marginal probability

of node vi being infected at time t. Hence, the Markov

differential equation [19] for the state Xi (t) = 1 is the

following,

dpi (t)

dt
= (1� pi (t))βi

nX

j=1

aijpj (t)� δipi (t) . (3)

Considering i = 1, . . . , n, we obtain a system of nonlinear

differential equation with a complex dynamics. In the fol-

lowing, we derive a sufficient condition for infections to die

out exponentially fast.

We can write the mean-field approximation of the HeN-

eSIS model in matrix form as

dp (t)

dt
= (BAG �D)p (t)� P (t)BAGp (t) , (4)

where p (t) , (p1 (t) , . . . , pn (t))
T

, B , diag(βi), D ,

diag (δi), and P (t) , diag(pi (t)). This ODE presents an

equilibrium point at p∗ = 0, called the disease-free equilib-

rium. In practice, the levels of infection in the population

are very small, allowing us to linearize the dynamics around

the disease-free equilibrium. Furthermore, it was proved in

[14] that the linearized dynamics upper-bounds the nonlinear

one. Therefore, we can stabilize the nonlinear dynamics

by stabilizing its linear approximation. More specifically,

a stability analysis of this ODE around the equilibrium

provides the following stability result [14]:

Proposition 1. Consider the mean-field approximation of

the HeNeSIS model in (3) and assume that AG � 0, βi, δi >
0. Then, if the eigenvalue with largest real part of BAG�D
satisfies

< [λ1 (BAG �D)]  �ε, (5)

for some ε > 0, the disease-free equilibrium (p∗ =
0) is globally exponentially stable, i.e., kp (t)k 
kp (0)kK exp (�εt), for some K > 0.

Remark 1. In the proof of Proposition 1 in [14], we show

that the linear dynamical system ṗ (t) = (BAG �D)p (t)
upper-bounds the dynamics in (3); thus, the spectral result in

(5) is a sufficient condition for the mean-field approximation

of the HeNeSIS model to be globally exponentially stable.

C. Problem Statements

We describe two resource allocation problems to con-

tain the spread of an infection by distributing protection

1Finding rigorous conditions on the network structure for the mean-field
approximation to be tight is a matter of current research in the community
and beyond the scope of this paper. For a recent study on the accuracy of
the mean-field approximation in realistic network topologies, see [19].

resources throughout the network. We consider two types

of protection resources: (i) preventive resources (or vaccina-

tions), and (ii) corrective resources (or antidotes). Allocating

preventive resources at node vi reduces the infection rate

βi. Allocating corrective resources at node vi increases

the recovery rate δi. We assume that we are able to,

simultaneously, modify the infection and recovery rates of

vi within feasible intervals 0 < β
i

 βi  β̄i and

0 < δi  δi  δ̄i. We consider that protection resources

have an associated cost. We define two cost functions,

the vaccination cost function fi (βi) and the antidote cost

function gi (δi), that account for the cost of tuning the

infection and recovery rates of node vi to βi 2
h
β
i
, β̄i

i
and

δi 2
⇥
δi, δ̄i

⇤
, respectively. In the rest of the paper we assume

that the vaccination cost function fi (βi) is monotonically

decreasing w.r.t. βi and the antidote cost function gi (δi) is

monotonically increasing w.r.t. δi.

In this context, we study two types of resource allocation

problems for the HeNiSIS model: (i) the rate-constrained

allocation problem, and (ii) the budget-constrained allo-

cation problem. In the rate-constrained problem, we find

the cost-optimal distribution of vaccines and antidotes to

achieve a given exponential decay rate in the vector of in-

fections, i.e., given ε, allocate resources such that kp (t)k 
kp (0)kK exp (�εt), K > 0. In the budget-constrained

problem, we are given a total budget C and we find the

best allocation of vaccines and/or antidotes to maximize the

exponential decay rate of kp (t)k, i.e., maximize ε (the decay

rate) such that kp (0)kK exp (�εt).
Based on Proposition 1, the decay rate of an epidemic

outbreak is determined by ε in (5). Thus, we can formulate

the rate-constrained problem, as follows:

Problem 2. (Rate-constrained allocation) Given the follow-

ing elements: (i) A (positively) weighted, directed network

G with adjacency matrix AG , (ii) a set of cost functions

{fi (βi) , gi (δi)}
n
i=1

, (iii) bounds on the infection and re-

covery rates 0 < β
i
 βi  βi and 0 < δi  δi  δi,

i = 1, . . . , n, and (iv) a desired exponential decay rate

ε > 0; find the cost-optimal distribution of vaccines and

antidotes to achieve the desired decay rate.

Given a desired decay rate ε, the rate-constrained allo-

cation problem can be stated as the following optimization

problem:

minimize
{βi,δi}

n
i=1

nX

i=1

fi (βi) + gi (δi) (6)

subject to < [λ1 (diag (βi)AG � diag (δi))]  �ε, (7)

β
i
 βi  βi, (8)

δi  δi  δi, i = 1, . . . , n, (9)

where (6) is the total investment, (7) constrains the decay

rate to ε, and (8)-(9) maintain the infection and recovery

rates in their feasible limits.
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Similarly, given a budget C, the budget-constrained allo-

cation problem is formulated as follows:

Problem 3. (Budget-constrained allocation) Given the fol-

lowing elements: (i) A (positively) weighted, directed net-

work G with adjacency matrix AG , (ii) a set of cost func-

tions {fi (βi) , gi (δi)}
n
i=1

, (iii) bounds on the infection and

recovery rates 0 < β
i
 βi  βi and 0 < δi  δi  δi,

i = 1, . . . , n, and (iv) a total budget C; find the cost-

optimal distribution of vaccines and antidotes to maximize

the exponential decay rate ε.

Based on Proposition 1, we can state this problem as the

following optimization program:

maximize
ε,{βi,δi}

n
i=1

ε (10)

subject to < [λ1 (diag (βi)AG � diag (δi))]  �ε, (11)
nX

i=1

fi (βi) + gi (δi)  C, (12)

β
i
 βi  βi, (13)

δi  δi  δi, i = 1, . . . , n, (14)

where (12) is the budget constraint.

In the following section, we propose an approach to solve

these problems in polynomial time for weighted and directed

contact networks, under certain assumptions on the cost

functions fi and gi.

III. A CONVEX FRAMEWORK FOR OPTIMAL RESOURCE

ALLOCATION

We propose a convex formulation to solve both the

budget-constrained and the rate-constrained allocation prob-

lem in weighted, directed networks using geometric pro-

gramming (GP) [20]. We first provide a solution for strongly

connected digraphs in Subsection III-A. We then extend

our results to general digraphs (not necessarily strongly

connected) in Subsection III-B.

We start our exposition by briefly reviewing some con-

cepts used in our formulation. Let x1, . . . , xn > 0 denote n
decision variables and define x , (x1, . . . , xn) 2 R

n
++.

In the context of GP, a monomial h(x) is defined as a

real-valued function of the form h(x) , dxa1

1 xa2

2 . . . xan
n

with d > 0 and ai 2 R. A posynomial function

q(x) is defined as a sum of monomials, i.e., q(x) ,PK
k=1

ckx
a1k
1 xa2k

2 . . . xank
n , where ck > 0.

In our formulation, it is useful to define the following

class of functions:

Definition 4. A function F : Rn ! R is convex in log-scale

if the function

F (y) , log f (expy) , (15)

is convex in y (where expy indicates component-wise

exponentiation).

Remark 5. Note that posynomials (hence, also monomials)

are convex in log-scale [20].

A geometric program (GP) is an optimization problem of

the form (see [21] for a comprehensive treatment):

minimize f(x) (16)

subject to qi(x)  1, i = 1, ...,m,

hi(x) = 1, i = 1, ..., p,

where qi are posynomial functions, hi are monomials, and f
is a convex function in log-scale2. A GP is a quasiconvex op-

timization problem [20] that can be transformed to a convex

problem. This conversion is based on the logarithmic change

of variables yi = log xi, and a logarithmic transformation of

the objective and constraint functions (see [21] for details

on this transformation). After this transformation, the GP in

(16) takes the form

minimize F (y) (17)

subject to Qi (y)  0, i = 1, ...,m,

bT
i y + log di = 0, i = 1, ..., p,

where Qi (y) , log qi(expy) and F (y) , log f (expy).

Also, assuming that hi (x) , dix
b1,i
1 x

b2,i
2 . . . x

bn,i
n , we obtain

the equality constraint above, with bi , (b1,i, . . . , bn,i),
after the logarithmic change of variables. Notice that, since

f (x) is convex in log-scale, F (y) is a convex function.

Also, since qi is a posynomial (therefore, convex in log-

scale), Qi is also a convex function. In conclusion, (17) is

a convex optimization problem in standard form and can be

efficiently solved in polynomial time [20].

As we shall show in Subsections III-A and III-B, we

can solve Problems 2 and 3 using GP if the cost functionPn
i=1

fi (βi) + gi (δi) is convex in log-scale. In practical

applications, we model the individual cost functions fi (βi)
and gi (δi) as posynomials. In practice, posynomials func-

tions can be used to fit any function that is convex in log-log

scale with arbitrary accuracy. Furthermore, there are well-

developed numerical methods to fit posynomials to real data

(see [21], Section 8, for a treatment about the modeling

abilities of monomials and posynomials).

In the following sections, we show how to transform

Problems 2 and 3 into GP’s. In our transformation, we use

the theory of nonnegative matrices and the Perron-Frobenius

lemma. Our derivations are different if the contact graph G
is strongly connected or not. We cover the case of G being

a strongly connected digraph in Subsection III-A and we

extend the theory to general digraphs in Subsection III-B.

A. GP for Strongly Connected Digraphs

In our derivations, we use Perron-Frobenius lemma, from

the theory of nonnegative matrices [22]:

2Geometric programs in standard form are usually formulated assuming
f (x) is a posynomial. In our formulation, we assume that f (x) is in the
broader class of convex functions in logarithmic scale.
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Lemma 6. (Perron-Frobenius) Let M be a nonnegative,

irreducible matrix. Then, the following statements about its

spectral radius, ρ (M), hold:

(a) ρ (M) > 0 is a simple eigenvalue of M ,

(b) Mu = ρ (M)u, for some u 2 R
n
++, and

(c) ρ (M) = inf
�
λ 2 R : Mu  λu for u 2 R

n
++

 
.

Remark 7. Since a matrix M is irreducible if and only if

its associated digraph GM is strongly connected, the above

lemma also holds for the spectral radius of the adjacency

matrix of any (positively) weighted, strongly connected

digraph.

From Lemma 6, we infer the following results:

Corollary 8. Let M be a nonnegative, irreducible matrix.

Then, its eigenvalue with the largest real part, λ1 (M), is

real, simple, and equal to the spectral radius ρ (M) > 0.

Lemma 9. Consider the adjacency matrix AG of a (posi-

tively) weighted, directed, strongly connected graph G, and

two sets of positive numbers {βi}
n
i=1

and {δi}
n
i=1

. Then,

λ1 (diag (βi)A� diag (δi)) is an increasing function w.r.t.

βk (respectively, monotonically decreasing w.r.t. δk) for

k = 1, . . . , n.

Proof: In the Appendix.

From the above results, we have the following result ([20],

Chapter 4):

Proposition 10. Consider the n⇥n nonnegative, irreducible

matrix M (x) with entries being either 0 or posynomials

with domain x 2 S ✓ R
k
++, where S is defined as S =Tm

i=1

n
x 2 R

k
++ : fi (x)  1

o
, fi being posynomials. Then,

we can minimize λ1 (M (x)) for x 2 S solving the following

GP:

minimize
λ,{ui}

n
i=1

,x
λ (18)

subject to

Pn
j=1

Mij (x)uj

λui
 1, i = 1, . . . , n, (19)

fi (x)  1, i = 1, . . . ,m. (20)

Based on the above results, we provide solutions to both

the rate-constrained and the budget-constrained problems.

1) Solution to the Budget-Constrained Allocation Prob-

lem for Strongly Connected Digraphs: Assuming that the

cost functions fi and gi are posynomials and the contact

graph G is strongly connected, the budget-constrained allo-

cation problem in 3 can be solved as follows:

Theorem 11. Consider the following elements: (i) A

strongly connected graph G with adjacency matrix AG =
[Aij ], (ii) posynomial cost functions {fi (βi) , gi (δi)}

n
i=1

,

(iii) bounds on the infection and recovery rates 0 < β
i


βi  βi and 0 < δi  δi  δi, i = 1, . . . , n, and (iv) a

maximum budget C to invest in protection resources. Then,

the optimal investment on vaccines and antidotes for node vi
to solve Problem 3 are fi (β

∗

i ) and gi

⇣
∆+ 1� bδ∗i

⌘
, where

∆ , max
�
δi
 n

i=1
and β∗

i ,bδ∗i are the optimal solution for

βi and bδi in the following GP:

minimize
λ,{ui,βi,bδi,ti}

n

i=1

λ (21)

subject to
βi

Pn
j=1

Aijuj + bδiui

λui
 1, (22)

nX

k=1

fk (βk) + gk (tk)  C, (23)

⇣
ti + bδi

⌘��
∆+ 1

�
 1, (24)

∆+ 1� δi  bδi  ∆+ 1� δi, (25)

β
i
 βi  βi, i = 1, . . . , n. (26)

Proof: First, based on Proposition 10, we have that

maximizing ε in (10) subject to (11)-(13) is equivalent

to minimizing λ1 (BAG �D) subject to (12) and (13),

where B , diag (βi) and D , diag (δi). Let us define

bD , diag
⇣
bδi
⌘

, where bδi , ∆ + 1 � δi and ∆ ,

max
�
δi
 n

i=1
. Then, λ1

⇣
BAG + bD

⌘
= λ1 (BAG �D) +

∆ + 1. Hence, minimizing λ1 (BAG �D) is equivalent

to minimizing λ1

⇣
BAG + bD

⌘
. The matrix BAG + bD is

nonnegative and irreducible if AG is the adjacency matrix

of a strongly connected digraph. Therefore, applying Propo-

sition 10, we can minimize λ1

⇣
BAG + bD

⌘
by minimiz-

ing the cost function in (21) under the constraints (22)-

(26). Constraints (25) and (26) represent bounds on the

achievable infection and curing rates. Notice that we also

have a constraint associated to the budget available, i.e.,Pn
k=1

fk (βk) + gk

⇣
∆+ 1� bδi

⌘
 C. But, even though

gk(δk) is a polynomial function in δk, gk

⇣
∆+ 1� bδk

⌘
is

not a posynomial in bδi. To overcome this issue, we can

replace the argument of gk by a new variable tk, along with

the constraint tk  ∆ + 1 � bδk, which can be expressed

as the posynomial inequality,
⇣
tk + bδk

⌘
/
�
∆+ 1

�
 1. As

we proved in Lemma 9, the largest eigenvalue λ1 (BA�D)
is a decreasing value of δk and the antidote cost function

gk is monotonically increasing w.r.t. δk. Thus, adding the

inequality tk  ∆+1�bδk does not change the result of the

optimization problem, since at optimality tk will saturate to

its largest possible value tk = ∆+ 1� bδk.

2) Solution to Rate-Constrained Allocation Problem for

Strongly Connected Digraphs: Problem 2 can be written as

the following optimization program:

Theorem 12. Consider the following elements: (i) A

strongly connected graph G with adjacency matrix AG =
[Aij ], (ii) posynomial cost functions {fi (βi) , gi (δi)}

n
i=1

,

(iii) bounds on the infection and recovery rates 0 < β
i


βi  βi and 0 < δi  δi  δi, i = 1, . . . , n,

and (iv) a desired exponential decay rate ε. Then, the

optimal investment on vaccines and antidotes for node

vi to solve Problem 2 are fi (β
∗

i ) and gi

⇣
e∆+ 1� eδ∗i

⌘
,
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where e∆ , max
�
ε, δi for i = 1, . . . , n

 
and β∗

i ,eδ∗i are the

optimal solution for βi and eδi in the following GP:

minimize
{ui,βi,eδi,ti}

n

i=1

nX

k=1

fk (βk) + gk (tk) (27)

subject to
βi

Pn
j=1

Aijuj + eδiui⇣
e∆+ 1� ε

⌘
ui

 1, (28)

⇣
ti + eδi

⌘.⇣
e∆+ 1

⌘
 1, (29)

e∆+ 1� δi  bδi  e∆+ 1� δi, (30)

β
i
 βi  βi, i = 1, . . . , n. (31)

Proof: (The proof is similar to the one for The-

orem 11 and we only present here the main differ-

ences.) Define eD , diag
⇣
eδi
⌘

where eδi , e∆ +

1 � δi and e∆ , max
�
ε, δi for i = 1, . . . , n

 
. Since

λ1

⇣
BAG + eD

⌘
= λ1 (BAG �D) + e∆ + 1, the spec-

tral condition λ1 (BAG �D)  �ε is equivalent to

λ1

⇣
BAG + eD

⌘
 e∆ + 1 � ε. From the definition of

e∆ we have that e∆ + 1 � ε > 0. Also, BAG + eD is

a nonnegative and irreducible matrix if G is a strongly

connected digraph. From (19), we can write the spectral

constraint λ1

⇣
BAG + eD

⌘
 e∆+ 1� ε as

βi

Pn
j=1

Aijuj + eδiui⇣
e∆+ 1� ε

⌘
ui

 1,

for ui 2 R++, λ 2 R, which results in constraint (28).

The rest of constraints can be derived following similar

derivations as in the Proof of Theorem 11.

In Subsections III-A1 and III-A2, we have presented two

geometric programs to find the optimal solutions to both the

budget-constrained and the rate-constrained allocation prob-

lems. In our derivations, we have made the assumption of

G being a strongly connected graph. In the next subsection,

we show how to solve these allocation problems for any

digraphs, after relaxing the strong connectivity assumption.

B. Solution to Allocation Problems for General Digraphs

The Perron-Frobenius lemma state that given a nonneg-

ative, irreducible matrix M , its spectral radius ρ(M) is

simple and strictly positive (thus, ρ (M) = λ1 (M)) and

the associated dominant eigenvector has strictly positive

components. Perron-Frobenius lemma is not applicable to

digraphs that are not strongly connected, since the associated

adjacency matrix is not irreducible. For weighted (possibly

reducible) digraphs, the statements in the Perron-Frobenius

lemma are weaken, as follows [22]:

Lemma 13. Let M be a nonnegative matrix. Then, the

following statements hold:

(a) ρ (M) � 0 is an eigenvalue of M (not necessarily

simple).

(b) Mu = ρ (M)u, for some u 2 R
n
+.

(c) ρ (M) = inf
�
λ 2 R : Mu  λu for u 2 R

n
+

 
.

Remark 14. Notice that in item (c), the components of u

are nonnegative (instead of positive). This is an issue if we

want to use Proposition 10, since the components of v must

be strictly positive to use GP. In what follows, we show how

to resolve this issue.

Let us define the function Z (u) , {i : ui = 0}, i.e., a

function that returns the set of indexes indicating the location

of the zero entries of a vector u = [ui].

Lemma 15. Consider a square matrix M . The following

transformations preserve the location of zeros in the domi-

nant eigenvector:

(a) Tα : M ! M + αI , for any α 2 R, and

(b) TR : M ! RM , for M � 0 and R = diag (ri),
ri > 0.

Proof: In the Appendix.

Proposition 16. Consider a nonnegative matrix A and two

diagonal matrices B = diag (bi) and D = diag (di) with

bi, di > 0. Then, the location of the zero entries of the

dominant eigenvector of BA�D are the same as those of

A, i.e., Z (v1 (BA�D)) = Z (v1 (A)).

Proof: In the Appendix.

Proposition 16 allows us to know the location of the

zeros of v1 (BAG �D) for any given graph AG � 0,

independently of the allocation of vaccines and antidotes

in the network. This location is determined by the set

Z (v1 (AG)) , ZG , which is the set of nodes with zero

eigenvector centrality [23]. Hence, we can exclude the

variables ui for i 2 ZG from the GP’s in Theorems 12 and

11. Hence, since the components in the set {ui : i 2 ZG} are

not part of the spectral conditions (22) and (28), we can split

the allocation problems into two different sets of decision

variables. We elaborate on this splitting in the following

subsections.

1) Rate-Constrained Allocation Problem for General

Digraphs: The set of decision variables in (27) split

into two sets: Vz , {ui,βi, eδi, ti}i∈ZG
and Vnz ,

{ui,βi, eδi, ti}i/∈ZG
. From (27), the following optimization

problem holds for the variables in Vz:

minimize
{βi,eδi,ti}

i∈ZG

nX

k=1

fk (βk) + gk

⇣
e∆+ 1� eδ∗i

⌘

subject to e∆+ 1� δi  bδi  e∆+ 1� δi,

β
i
 βi  βi, for i 2 ZG .

Thus, for fi decreasing and gi increasing, it is easy to verify

that the optimal infection and recovery rates are β∗

i = βi

and δ∗i = δi for all i 2 ZG . Those rates correspond to

the minimum possible value of investment on those nodes.
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In other words, nodes with zero eigenvector centrality [23]

receive the minimum possible value of investment.

On the other hand, for those decision variables in Vnz , we

can to adapt the GP formulation in Theorem 12, as indicated

in the following Theorem.

Theorem 17. Consider the following elements: (i) A pos-

itively weighted digraph with adjacency matrix AG , (ii)

posynomial cost functions {fi (βi) , gi (δi)}
n
i=1

, (iii) bounds

on the infection and recovery rates 0 < β
i
 βi  βi

and 0 < δi  δi  δi, i = 1, . . . , n, and (iv) a desired

exponential decay rate ε. Then, the optimal spreading and

recovery rate in Problem 2 are β∗

i = βi and δ∗i = δi for

i 2 ZG . For i/2 ZG , the optimal rates can be computed from

the optimal solution of the following GP:

minimize
{ui,βi,eδi,ti}

i/∈ZG

nX

k=1

fk (βk) + gk (tk) (32)

subject to
βi

P
j /∈ZG

Aijuj + eδiui⇣
e∆+ 1� ε

⌘
ui

 1, (33)

⇣
ti + eδi

⌘.⇣
e∆+ 1

⌘
 1, (34)

e∆+ 1� δi  bδi  e∆+ 1� δi, (35)

β
i
 βi  βi, for i/2 ZG . (36)

The optimal spreading rate β∗

i is directly obtained from the

solution, and the recovery rate is δ∗i = e∆ + 1 � eδ∗i , where
e∆ , max

�
ε, δi for i = 1, . . . , n

 
.

Remark 18. Since, ui = 0 if and only if i 2 ZG , all the

decision variables in the above GP are strictly positive.

2) Budget-Constrained Allocation Problem for General

Digraphs: In this case, one can also use the splitting

techniques in Subsection III-B1 to show that for i 2 ZG the

optimal spreading and recovery rates are βi = βi and δi =
δi. This again corresponds to the minimum possible level

of investment for nodes with zero eigenvector centrality. We

therefore allocate a total amount equal to fi
�
βi

�
+ gi (δi)

on each one of the nodes with zero eigenvalue centrality. As

a result, we should allocate the remaining budget

C �
X

i∈ZG

fi
�
βi

�
+ gi (δi) , C (37)

to the set of nodes {vi 2 V : i /2 ZG}. Thus, the budget-

constrained allocation problem in 3 can be written as the

following GP for general digraphs:

Theorem 19. Consider the following elements: (i) A pos-

itively weighted digraph with adjacency matrix AG , (ii)

posynomial cost functions {fi (βi) , gi (δi)}
n
i=1

, (iii) bounds

on the infection and recovery rates 0 < β
i
 βi  βi

and 0 < δi  δi  δi, i = 1, . . . , n, and (iv) a maximum

budget C to invest in protection resources. Then, the optimal

spreading and recovery rate in Problem 3 are β∗

i = βi and

δ∗i = δi for i 2 ZG . For i/2 ZG , the optimal rates can be

computed from the optimal solution of the following GP:

minimize
λ,{ui,βi,bδi,ti}

i/∈ZG

λ (38)

subject to
βi

P
j /∈ZG

Aijuj + bδiui

λui
 1, (39)

X

k/∈ZG

fk (βk) + gk (tk)  C, (40)

⇣
ti + bδi

⌘��
∆+ 1

�
 1, (41)

∆+ 1� δi  bδi  ∆+ 1� δi, (42)

β
i
 βi  βi, i/2 ZG , (43)

where C is defined in (37), the optimal spreading rate β∗

i

is directly obtained from the solution, and the recovery rate

is δ∗i = ∆+ 1� bδ∗i , where ∆ , max
�
δi
 n

i=1
.

Theorems 17 and 19 solve the optimal resource allocation

problems herein described for weighted, directed networks

of nonidentical agents.

IV. NUMERICAL RESULTS

We apply our results to the design of a cost-optimal pro-

tection strategy against epidemic outbreaks that propagate

through the air transportation network [24]. We analyze real

data from the world-wide air transportation network and

find the optimal distribution of vaccines and antidotes to

control (or contain) the spread of an epidemic outbreak. We

consider both the rate-constraint and the budget-constrained

problems in our simulations. We limit our analysis to an air

transportation network spanning the major airports in the

world; in particular, we consider only airports having an

incoming traffic greater than 10 million passengers per year

(MPPY). There are 56 such airports world-wide and they

are connected via 1, 843 direct flights, which we represent

as directed edges in a graph. To each directed edge, we

assign a weight equal to the number of passengers taking

that flight throughout the year (in MPPY units).

The weighted, directed graph representing the air trans-

portation network under consideration has a spectral ra-

dius ρ (AG) = 9.46. In our simulations, we consider the

following bounds for the feasible infection and recovery

rates: δi = 0.1, δ̄i = 0.5 and β
i
= 2.1 ⇥ 10−2, β̄i =

4.2 ⇥ 10−3, for i = 1, . . . , 56. Notice that, in the absence

of protection resources, the matrix BAG �D in (5) has its

largest eigenvalue at λ1

�
β̄iAG � δiI

�
= 0.1 > 0; thus, the

disease-free equilibrium is unstable. We now find the cost-

optimal allocation of resources to stabilize the disease-free

equilibrium.

In our simulations, we use cost functions inspired by

the shape of the prototypical cost functions representing

probability of failure vs. investment in systems reliability

(see, for example, [25]). These cost functions are usually

quasiconvex and present diminishing returns. In our context,
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Fig. 1. Infection rate (in red, and multiplied by 20, to improve visualiza-
tion) and recovery rate (in blue) achieved at node vi after an investment
on protection (in abscissas) is made on that node.

the infection rate plays a role similar to the probability

of failure in systems reliability. Consequently, we have

chosen cost functions presenting these two features in our

illustrations. In particular, we consider the following cost

functions:

fi (βi) =
β−1

i � β̄−1

i

β−1

i
� β̄−1

i

, gi (δi) =
(1� δi)

−1
� (1� δi)

−1

�
1� δi

�−1
� (1� δi)

−1
.

(44)

Notice that we have normalized these cost functions to

have values in the interval [0, 1] when β
i
 βi  β̄i and

δi  δi  δ̄i. In Fig. 1, we plot these cost functions, where

the abscissa is the amount invested in either vaccines or

antidotes on a particular node and the ordinates are the infec-

tion (red line) and recovery (blue line) rates achieved by the

investment. As we increase the amount invested on vaccines

from 0 to 1, the infection rate of that node is reduced from

β̄i to β
i

(red line). Similarly, as we increase the amount

invested on antidotes at a node vi, the recovery rate grows

from δi to δ̄i (blue line). Notice that both cost functions

present diminishing marginal benefit on investment.

Using the air transformation network, the parameters, and

the cost functions specified above, we solve both the rate-

constrained and the budget-constrained allocation problem

using the geometric programs in Theorems 11 and 12. The

solution of the rate-constrained problem with ε = 10−3

is summarized in Fig. 2. In the left subplot, we present a

scatter plot with 56 circles (one circle per airport), where

the abscissa of each circle is equal to gi (δ
∗

i ) and the

ordinate is fi (β
∗

i ), namely, the investments on correction

and prevention on the airport at node vi, respectively. We

observe an interesting pattern in the allocation of preventive

and corrective resources in the network. In particular, we

have that in the optimal allocation some airports receive

no resources at all (the circles associated to those airports

are at the origin of the scatter plot); some airports receive

only corrective resources (indicated by circles located on

top of the x-axis), and some airports receive a mixture of

preventive and corrective resources. In the center and right

subplots in Fig. 2, we compare the distribution of resources

with the in-degree and the PageRank3 centralities of the

nodes in the network [23]. In the center subplot, we have

a scatter plots where the ordinates represent investments on

prevention (red +’s), correction (blue x’s), and total invest-

ment (the sum of prevention and correction investments, in

black circles) for each airport, while the abscissas are the

(weighted) in-degrees4 of the airports under consideration.

We again observe a nontrivial pattern in the allocation of

investments for protections. In particular, for airports with

incoming traffic less than 5 MPPY, no resources are invested

at all, while for airports with incoming traffic between 5
MPPY and 8 MPPY, only corrective resources are needed.

Airports with incoming traffic over 8 MPPY receive both

preventive and corrective resources. In the right subplot in

Fig. 2, we include a scatter plot of the amount invested on

prevention and correction for each airport versus its PageR-

ank centrality in the transportation network. We observe that,

although there is a strong correlation between centrality and

investments, there is no trivial law to achieve the optimal

resource allocation based on centrality measurements solely.

For example, we observe in Fig. 2 how some airports receive

a higher investment on protection than other airports with

higher centrality. Hence, it is not always best for the most

central nodes to receive the most resources. In [26], the

authors expand on this phenomenon and propose digraphs

in which resources allocated in the most central nodes have

no effect on the exponential decay rate; these resources are

effectively wasted.

Using Theorem 11, we also solve the budget-constrained

allocation problem. We have chosen a budget that is a 50%

extra over the optimal budget computed from Problem 2 with

ε = 10−3. With this extra budget, we achieve an exponential

decay rate of ε∗ = 0.342. The corresponding allocation of

resources is summarized in Fig. 3. The subplots in this figure

are similar to those in Fig. 2, and we only remark the main

differences in here. Notice that, given the extra budget, there

are no airports with no investment on protection resources

(as indicated by the absence of circles at the origin of the

left subplot). Also, the center subplot indicates that all the

airports receive a certain amount of corrective resources,

although not all of them receive preventive resources (such

as those with a (weighted) in-degree less than 4 MPPY). The

scatter plot at the right illustrates the relationship between

investments and PageRank centrality.

3The PageRank vector r, before normalization, can be computed as r =
(I−αAGdiag(1/ deg

out
(vi)))

−1
1, where 1 is the vector of all ones and

α is typically chosen to be 0.85.
4It is worth remarking that the in-degree in the abscissa of Fig. 2 accounts

from the incoming traffic into airport vi coming only from those airports
in the selective group of airports with an incoming traffic over 10 MPPY.
Therefore, the in-degree does not represent the total incoming traffic into
the airport.
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Fig. 2. Results from the rate-constrained allocation problem. From left to right, we have (a) a scatter plot with the investment on correction versus
prevention per node, (b) a scatter plot with the investment on protection per node and the in-degrees, and (c) a scatter plot with the investment on
protection per node versus PageRank centralities.

Fig. 3. Results from the budget-constrained allocation problem. From left to right, we have (a) a scatter plot with the investment on correction versus
prevention per node, (b) a scatter plot with the investment on protection per node and the in-degrees, and (c) a scatter plot with the investment on
protection per node versus PageRank centralities.

V. CONCLUSIONS

We have studied the problem of allocating protection re-

sources in weighted, directed networks to contain spreading

processes, such as the propagation of viruses in computer

networks, cascading failures in complex technological net-

works, or the spreading of an epidemic in a human popula-

tion. We have considered two types of protection resources:

(i) Preventive resources able to ‘immunize’ nodes against

the spreading (e.g. vaccines), and (ii) corrective resources

able to neutralize the spreading after it has reached a node

(e.g. antidotes). We assume that protection resources have

an associated cost and have then studied two optimization

problems: (a) The budget-constrained allocation problem,

in which we find the optimal allocation of resources to

contain the spreading given a fixed budget, and (b) the

rate-constrained allocation problem, in which we find the

cost-optimal allocation of protection resources to achieve a

desired decay rate in the number of ‘infected’ nodes.

We have solved these optimal resource allocation problem

in weighted and directed networks of nonidentical agents

in polynomial time using Geometric Programming (GP).

Furthermore, the framework herein proposed allows simul-

taneous optimization over both preventive and corrective

resources, even in the case of cost functions being node-

dependent.

We have illustrated our approach by designing an optimal

protection strategy for a real air transportation network. We

have limited our study to the network of the world’s busiest

airports by passenger traffic. For this transportation network,

we have computed the optimal distribution of protecting

resources to contain the spread of a hypothetical world-

wide pandemic. Our simulations show that the optimal dis-

tribution of protecting resources follows nontrivial patterns

that cannot, in general, be described using simple heuristics

based on traditional network centrality measures.

APPENDIX

Proof of Lemma 9. We define the auxiliary matrix M ,

diag (βi)A � diag (δi) + ∆I , where ∆ , max {δi}. Thus,

λ1 (M) = λ1 (diag (βi)A� diag (δi))+∆. Notice that both

M and MT are nonnegative and irreducible if G is strongly

connected. Hence, from Lemma 6, there are two positive

vectors v and w such that

Mv = ρv,

wTM = ρwT ,

where ρ = ρ (M) = λ1 (M), and v, w are the right and left

dominant eigenvectors of M . From eigenvalue perturbation

theory, we have that the increment in the spectral radius of

M induced by a matrix increment ∆M is [22]

ρ (M +∆M)� ρ (M) = wT
∆Mv + o (k∆Mk) . (45)

To study the effect of a positive increment in βk in the

spectral radius, we define ∆B = ∆βkeke
T
k , for ∆βk > 0,
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and apply 45 with ∆M = ∆BA. Hence,

ρ (M +∆M)� ρ (M) = ∆βkw
T eke

T
kAv + o (k∆βkk)

= ∆βkwka
T
k v + o (k∆βkk) > 0,

where aTk = eTkA and the last inequality if a consequence

of ∆βk, wk, and aTk v being all positive. Hence, a positive

increment in βk induces a positive increment in the spectral

radius.

Similarly, to study the effect of a positive increment in δk
in the spectral radius, we define ∆D = ∆δkeke

T
k , for

∆δk > 0. Applying 45 with ∆M = �∆D, we obtain

ρ (M +∆D)� ρ (M) = �∆δkw
T eke

T
k v + o (k∆δkk)

= �∆δkwkvk + o (k∆δkk) < 0.

⌅

Proof of Lemma 15. The proof of (a) is trivial and valid

for any square matrix M . To prove (b), we consider the

eigenvalue equations for M and RM , i.e., Mu = λ1 (M)u
and RMw = λw, where u = v1 (M) = [ui] and

w = v1 (RM) = [wi]. We expand the eigenvalue equations

component-wise as,

nX

j=1

mijuj = λui, (46)

nX

j=1

rimijwj = λwi, (47)

for all i = 1, . . . , n. We now prove statement (b) by proving

that vi = 0 if and only if wi = 0.

If ui = 0, then (46) gives
P

j mijvj = 0. Since mij , vi �
0, the summation

P
j mijvj = 0 if and only if the following

two statements hold: (a1) mij > 0 =) vj = 0 and (a2)

vj > 0 =) mij = 0. Since ti > 0, these two statements

are equivalent to: (b1) timij > 0 =) vj = 0 and (b2)

vj > 0 =) timij = 0. Statements (b1) and (b2) are true if

and only if
P

j (timij)wj = 0 = wi, where the last equality

comes from (47). Hence, we have that vi = 0 () wi = 0;

hence, Z (u) = Z (w).

⌅

Proof of Proposition 16. Our proof is based on the

transformations defined in Lemma 15. Starting from a matrix

BA�D, we then apply the following chain of transforma-

tions:

(i) Tα (BA�D) = BA + ∆, for α = max {di}.

Hence, ∆ = max {di} I �D and BA+∆ � 0.

(ii) TR (BA+∆) = ∆
−1BA+ I , for R = ∆

−1.

(iii) Tα

�
∆

−1BA+ I
�
= ∆

−1BA, for α = �1.

(iv) TR

�
∆

−1BA
�
= A, for R = B−1

∆.

From Lemma 15, these transformations preserve the location

of the zeros in the dominant eigenvector. Thus, the input to

the first transformation, BA�D, and the output to the last

transformation, A, satisfy Z (v1 (BA�D)) = Z (v1 (A)).

⌅
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