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Abstract—We consider optimal resource allocation for wireless 
video sensors (WVSs), including the image sensor subsystem 
into the system analysis.  By assigning a power-rate-distortion 
(P-R-D) characteristic for the image sensor, we build a 
comprehensive P-R-D framework for WVS optimization. Within 
the scope of the developed framework, we solve the problem of 
how to allocate power among the image sensor, compression, 
and transmission modules of a WVS, to achieve the optimal 
reconstructed video quality under power and rate constraints. 
To demonstrate the optimization method, we further establish a 
P-R-D model for an image sensor based on pixel level         
sigma-delta (∑∆) image sensor design. A P-R-D performance 
analysis for a WVS verifies that including the image sensor in 
the system optimization procedure can improve the overall video 
quality and prolong the life-time of the wireless video network.   

I. INTRODUCTION  
In a typical video communication system, one of the major 

problems in system optimization is control of the system 
performance under bandwidth constraints. Rate-distortion   
(R-D) theory is usually applied to analyze system behavior 
within bandwidth limitations. The R-D characteristics of a 
system are used to solve the problem of finding the minimum 
number of bits to be transmitted to achieve a given level of 
distortion. 

A wireless video sensor network is a system that contains 
spatially distributed wireless video sensors (WVSs). The 
function of WVSs (sensor nodes) is to capture visual 
information about the environment, to compress the sensed 
data and to transmit the compressed data through the wireless 
medium. Three major modules of a WVS are therefore: image 
sensing, video compression, and wireless transmission.  

However, wireless video sensor networks operate under 
limited power supply. The available power plays an important 
role in the resulting video quality as well as in the life-time of 
the system. The problem of power allocation among the image 
sensor, compression, and transmission modules in the sensor 
nodes is an important problem in the system optimization. 
Because wireless networks are limited in both power and 

bandwidth, rate-distortion analysis is an insufficient tool for 
optimal resource allocation.  

This problem of the deficiency of R-D analysis for video 
sensor networks has been addressed in [1]. It is suggested that 
for optimal resource allocation, classical R-D analysis has to 
be extended to include additional resource constraints. A new, 
power-rate-distortion (P-R-D) analysis has to be applied for 
power and bit allocation in wireless video systems, where  the 
two different concepts of power consumption and R-D 
analysis must be merged together [1], [2].     

  In wireless local area networks (50-100m communication 
range) a significant portion of the total power of a WVS is 
consumed by the compression and transmission modules [3].  
To maximize video quality under power and rate constraints, a   
P-R-D model for the video compression module of a WVS is 
first developed in [3]. An optimization framework based on 
the P-R-D model of the video encoder is then used in [2] to 
analyze the power trade-off between the video encoding and 
wireless data transmission modules. However, simulation 
results from [4] indicate that in a 10-20m communication 
range, the camera can consume almost 50% more power than 
wireless transmission. Still, the image sensor subsystem of the 
WVS has not been included in the optimization procedure. 
One of the main reasons for excluding the imager from the 
system optimization is that it is not well understood how to 
incorporate image sensor characteristics within the existing 
video encoder optimization framework [4]. In addition, the 
power-quality trade-off of an image sensor depends strongly 
on the specific sensor design, which makes attempts to derive 
general specifications rather difficult.  

In a personal area network where communication is 
typically performed within 10m range, the power requirements 
for the transmission module are further reduced. In this case, 
resource allocation cannot be performed in an optimal way 
without incorporating the image sensor in the system analysis. 
We believe that if the compression module is designed to 
accept different data rates from the image sensor (pixel bit 
depth), controlling the output rate of the image sensor will 
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lead to improved power allocation. For example, if the sensor 
is included in power control, the power consumption and rate 
of the sensor can be reduced as the power budget decreases. 
Reducing the power consumption of the image sensor can 
increase overall video quality because more power can be 
allocated to the compression and transmission modules. In 
addition, a lower rate of the image sensor means that 
distortions of the compression module can be decreased due to 
the need for lower compression ratios. 

In order to build a comprehensive P-R-D framework for 
WVSs, we propose a P-R-D characteristic for an image 
sensor. This approach allows establishing an optimal solution 
for the power allocation problem for WVS containing 
arbitrary image sensor with changeable output rates. In 
Section II, we define and solve the optimization problem      
for WVS. Furthermore, an analytic P-R-D model for a   
sigma-delta (∑∆) imager is proposed in Section III. In Section 
IV, we perform P-R-D analysis for a WVS and discuss the 
optimization results. Our work is summarized in Section V. 

II. OPTIMAL POWER ALLOCATION 
In this section, the problem of optimal power allocation 

among the image sensor, compression, and transmission 
modules in a WVS is analyzed. Although we consider an 
image sensing application, the derived optimization method 
can also be utilized for other types of sensors.  

   A simple model of a WVS is shown in Fig. 1. The model 
consists of three modules:  image sensor, video compression, 
and transmission.  In our framework, we will assume that the 
relationship between the power, rate, and distortion of each 
module is well described. Power-rate-distortion functions are 
denoted as  ௦ܲ െ ܴ௦ െ ௦, ௖ܲܦ െ ܴ௖ െ ௖, and  ௧ܲܦ െ ܴ௧ െ ௧ܦ , 
for the sensor, compression, and transmission, respectively. 
We also assume that the total available power provided to a 
WVS and the target bit rate are known and equal to ܲ and  ܴ, 
respectively. The optimization problem can be defined as: 
How should power ܲ be allocated among the image sensor, 
compression, and transmission modules to minimize the 
overall distortion introduced for a given rate  ܴ? 

The most common measure for video quality is end-to-end 
distortion  ܦ, which represents the mean square error between 
the original and received picture frames [2]. Distortion in each 
module can be defined as the mean squared difference 
between the output and input frame of the module. Distortions 
introduced by the three modules are assumed to be 
independent, conditioned on given data rate ܴ௦ of the image 
sensor, so overall distortion is the sum of the distortions over 
all three subsystems.   

     We assume that no channel coding is applied so that the 
bit rates ܴ௖ and ܴ௧ are equal to the target bit rate ܴ (Fig.1). 
We also assume that the image sensor output rate ܴ௦ can be 
represented as a function of the power consumption ௦ܲ (as in 
the case of the ∑∆ imager discussed in Section III), so that the 
image sensor distortion ܦ௦ depends only on the power ௦ܲ. 
Hence, for a given rate ܴ, all three distortion functions can be 
described as a function of the power allocated to the 
corresponding module. In addition, the output rate of the 
image sensor determines the required compression ratio (since  

 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Wireless video sensor: power has to be optimaly allocated among 

the image sensor, compression, and transmission modules. 

the output rate of the compression module must be the target 
bit rate ܴ). Therefore, compression distortion is also a 
function of the image sensor rate, i.e., the image sensor power 
consumption. The optimization problem can be 
mathematically formulated as:  min௉ೞ,௉೎,௉೟ ܦ ( ௦ܲ, ௖ܲ , ௧ܲ) ൌ )௦ܦ ௦ܲ) ൅ )௖ܦ ௦ܲ, ௖ܲ) ൅ )௧ܦ ௧ܲ)            (1) 
  ݋ݐ ݐ݆ܾܿ݁ݑݏ  
 ௦ܲ ൅ ௖ܲ ൅ ௧ܲ ൌ ܲ.                                   (2) 

 
The solution to this problem provides the optimal power 

allocation for the image sensor, compression, and transmission 
modules such that overall distortion is minimized. In addition, 
for each power level  ܲ, the optimization procedure can be 
repeated to find an optimum rate ܴ that will provide minimum 
distortion. If the system is designed to support different target 
bit rates, controlling the output rate of the WVS can lead to 
improved video quality, as is shown in [2]. 

The optimal solution can be calculated using the Lagrange 
multiplier method. In this method, the optimization problem 
becomes the problem of finding the minimum of the 
unconstrained function ߉ ൌ )߉ ௦ܲ, ௖ܲ , ௧ܲ , λ) that is given in     
the form: 

߉  ൌ )௦ܦ ௦ܲ) ൅ )௖ܦ ௦ܲ, ௖ܲ) ൅ )௧ܦ ௧ܲ) ൅ λ( ௦ܲ ൅ ௖ܲ ൅ ௧ܲ െ ܲ), (3) 

 

where ߣ is a new variable called the Lagrange multiplier. If we 
assume that the distortion functions are differentiable 
functions, the necessary conditions for the solution to be 
optimal can be calculated from the system of equations:  

 ߲൫ܦ௦( ௦ܲ) ൅ )௖ܦ ௦ܲ, ௖ܲ)൯߲ ௦ܲ ൌ )௖ܦ߲ ௦ܲ, ௖ܲ)߲ ௖ܲ ൌ )௧ܦ߲ ௧ܲ)߲ ௧ܲ , (4) 
 ௦ܲ ൅ ௖ܲ ൅ ௧ܲ ൌ ܲ.   (5) 

 
Equalities (4) imply that for an optimal solution  ௦ܲכ, ௖ܲכ, ௧ܲכ, 
the tangents on the distortion functions ܦ௦( ௦ܲ) ൅ )௖ܦ ௦ܲ, ௖ܲܦ ,(כ௖( ௦ܲכ, ௖ܲ), and ܦ௧( ௧ܲ) must have the same slope. 
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III. P-R-D MODEL FOR ∑∆ IMAGE SENSOR 
     In this section, a P-R-D model for a specific image 

sensor is developed. A digital pixel sensor (DPS) architecture 
is considered, where analog-to-digital conversion is performed 
simultaneously at every pixel location. Due to a high degree of 
parallelism, the requirement for speed of conversion is 
relaxed, which translates into low power consumption. Low 
power consumption makes DPS suitable for applications that 
are limited in power supply, such as WVSs. 

A ∑∆ imager is a DPS architecture performing ∑∆ data 
conversion at each pixel site.  During the exposure time of the 
imager, a ∑∆ modulator reads charge from the photodiode ܱܴܵ (oversampling ratio) number of times, and each value is 
characterized with one bit (see Fig. 2). A decimation filter is 
then applied in order to convert the oversampled single-bit 
stream to the multi-bit samples at the frame rate. 

A ∑∆ imager is suitable for establishing a P-R-D model 
and it allows relatively simple power control. Power, rate, and 
performance of the imager can be controlled by changing the 
number of pixel values that are read every second.  In other 
words, ܱܴܵ can be used as a control parameter for P-R-D 
modeling and resource allocation, while keeping other design 
parameters such as power supply voltage fixed.  

To characterize the distortion within each pixel of a ∑∆ 
image sensor, we derive a R-D model for a pixel with respect 
to the quantization operation of the ∑∆ converter. A R-D 
characteristic of quantization is used to describe the ∑∆ 
conversion, where the rate corresponds to the effective 
number of bits (ܤܱܰܧ) provided by the ∑∆ converter. We 
also assume that signals read from the photodiodes have a 
Gaussian distribution with variance ߪ௜௝ଶ , for each pixel at 
position defined by indices i and j. The overall distortion 
introduced by the ∑∆ imager is then calculated as the average 
distortion introduced by the pixels of the frame: 

 

௦ܦ ൌ ܯ1ܰ ෍ ෍ ௜௝ଶߪ 2ିଶாேை஻ ൌெ
௝

ே
௜ ,ଶ2ିଶாேை஻ߪ (6) 

 

where NxM is the number of pixels in the image sensor array, 
and ߪଶ represents the variance of the picture frame. In 
addition, the maximum distortion cannot be greater than  ߪଶ. 
The actual output bit rate of the sensor in bits per pixel is an 
integer value, and hence the output rate of the sensor is ܤܱܰܧ 
rounded to the next largest integer value, i.e., ܴ௦ ൌ                                  .ۀܤܱܰܧڿ

In order to simplify the calculation of the ܤܱܰܧ of the ∑∆ 
imager, we consider a linear model of the ∑∆ modulator and 
that the decimation filter is an ideal low pass filter. In addition, 
we assume that the quantization noise is the only source of 
signal distortion. The ܤܱܰܧ at the output of an ideal ∑∆ 
converter can be readily calculated as shown in (7). 

ܤܱܰܧ  ൌ 12 logଶ ቆ3ܱܴܵଷߨଶ ቇ.                         (7) 

 

 

 

 

 

 
 

Figure 2.  A ∑∆ imager: charge from each photodiode is read by a ∑∆ 
modulator consisting of an integrator, a single bit comparator and                  

a digital-to-analog converter. 

Power consumption of the imager contains two 
components: static and dynamic. Static power consumption of 
a fully-digital pixel sensor often can be neglected with respect 
to the dynamic power. Dynamic power consumption is, to the 
first approximation, observed to be a linear function of the 
sampling frequency. Thus, the following can be written: 

 

௦ܲ ൌ ܱܴܱܴܵܵ௠௔௫ ௦ܲ௠௔௫,                               (8) 

 
where ௦ܲ௠௔௫ is the image sensor power consumption at the 
maximum output rate ܴ௦௠௔௫, i.e., at the maximum 
oversampling ratio ܱܴܵ௠௔௫ . Combining (6)-(8), we obtain     
a P-D characteristic for the ∑∆ image sensor: 

௦ܦ  ൌ ଶ3ܱܴܵ௠௔௫ߪଶߨ ଷ ൬ ௦ܲ௠௔௫௦ܲ ൰ଷ .                      (9) 

 

IV. P-R-D PERFORMANCE ANALYSIS  
      In order to verify the proposed P-R-D framework, we 

consider an example of a WVS network. We assume that 
WVSs are deployed in a small area (e.g. in a five meter range) 
and supplied with ∑∆ imagers designed to capture 8-bit 
grayscale images in CIF (352 x 288) format at 15 f/s. The 
video sequence is than compressed to reduce the bandwidth 
requirements, and the compressed bit stream is transmitted 
over the wireless medium at a rate of 1Mb/s.  

To describe the behavior of the compression module, we 
apply the P-R-D characteristic for power-scalable video 
encoding proposed in [2]. However, to account for the fact 
that the compression ratio depends on the output rate of the 
image sensor, we introduce a scaling factor ܴ௦௠௔௫ ܴ௦⁄  in the 
model, as described by the following expression: 

௖ܦ  ൌ ଶ2ିఒ೎ோೞ೘ೌೣோೞߪ ோቀ ௉೎௉೎೘ೌೣቁഋ೎ .                     (10) 

 

In (10), R is the data rate in bits per pixel, Pcmax is the 
maximum power consumption Pc allocated to the compression 
module, and ߣ௖ and ߤ௖ are model parameters. To simplify the 
analysis, we assume that the picture frame variance is the 
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same for all three modules and equals to  ߪଶ. We further 
neglect the non-stationarity of the video data and select model 
parameters to resemble typical behavior shown by the analysis 
in [2]. In particular, we set ߣ௖ ൌ 3 and  ߤ௖ ൌ 2/3. 

We assume that video content is not packetized and that 
transmission distortions come from bit errors that occur with 
probability ݌௕ . We propose a distortion model for the 
transmission module in the form ܦ௧ ൌ ௕/(1݌ଶߪ െ  ௕), so that݌
for ݌௕ ൌ 0.5 transmission distortion has a maximum value ߪଶ, 
and for ݌௕ ൌ 0 there is no distortion. To achieve a rate of 
1Mb/s, we assume that binary DPSK modulation is applied. 
Consequently, the bit error probability is ݌௕ ൌ ଵଶ ݁ିா್ೝ/ேబ , 
where ܧ௕௥ is the received energy per bit and ଴ܰ is the noise 
power spectral density. The distortion model can be rewritten 
in the form:  

௧ܦ   ൌ ଶ2݁ఒ೟௉೟ோߪ െ 1 ,                               (11) 

 

where the system parameter  ߣ௧ relates the received energy per 
bit to the transmitted energy  ௧ܲ/ܴ. We assume that the system 
is designed to provide bit error probability on the order of 10-5.  

The P-D characteristics for the image sensor, compression, 
and transmission modules of the WVS are shown in Fig. 3. 
The characteristics of the compression module are provided 
for two sensor output values, illustrating how distortions of the 
compression module can be reduced by decreasing the output 
rate of the image sensor. The shape of the P-D characteristic 
for the ∑∆ imager implies that the sensor should not be run at 
full capacity. The output rate of the ∑∆ image sensor should 
be lowered to reduce compression and transmission 
distortions, and then slightly changed if the available power 
budget decreases.  

Using our P-R-D optimization framework, we analyze 
how  minimum system  distortion  depends on  the total power  

 

 

 

 

 

 

 

 

 
 

Figure 3.  Power-distortion characteristics for sensing, compression, and 
transmission. Distortion is normalized to the maximum value  ߪଶ, and power 
consumption of each module is normalized to the maximum power allocated 

to the corresponding module (without optimization). 

 

 

 

 

 

 

 

 

 
Figure 4.  Minimum distortion of the WVS as a function of total power 

consumption.  

consumption. First, we consider the case when the fixed 
amount of power is allocated to the image sensor, and the 
optimization procedure is applied only to the compression and 
transmission modules. Numerical results are shown in Fig. 4 
for the case where the maximum total power is allocated to the 
modules in a ratio of   ௦ܲ: ௖ܲ: ௧ܲ ൌ 1:3:1. When the image 
sensor is not incorporated in the power control, it will work at 
full capacity even at low power levels. At 20% of the 
maximum total power, there is not enough power for 
compression and transmission operations, and hence no 
information about the video content is available. However, if 
the image sensor is included in the optimal power allocation 
(Fig. 4), at 20% of the maximum total power, a WVS can still 
produce images with relatively low distortion.  

V. CONCLUSION 
 In this paper, we introduce the concept of describing an 

image sensor with a P-R-D characteristic, and we use this to 
build a comprehensive P-R-D framework for optimal resource 
allocation and power control for WVSs.  Results from the     
P-R-D analysis of a WVS show that the proposed optimization 
method can be exploited to minimize system distortions and to 
prolong the life-time of a wireless video network. 
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