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Abstract—The target of an oligopolistic generating company
in a pool-based electric power market is to maximize its profits
using two related instruments at hand: 1) its ability to modify the
market-clearing price and 2) its capability to alter its own produc-
tion level. Power balance is not an issue for the generating com-
pany; the independent system operator ensures power balance con-
sidering generator and demand bids through any market-clearing
procedure. This paper proposes a mathematical model to deter-
mine the output of the generators owned by an oligopolistic gen-
erating company so that its profit is maximized for a one-day to
one-week time horizon. An efficient solution technique to solve the
resulting large-scale discontinuous nonlinear mixed-integer opti-
mization problem is reported. A case study that illustrates the pro-
posed model and the solution technique developed is analyzed in
detail.

Index Terms—Electric power market, market power, oligo-
polistic generating company, power pool, price–quota function,
stepwise nonlinear mixed-integer optimization.

I. INTRODUCTION

QUITE a few of present day pool-based electric power mar-
kets present an oligopolistic structure. This is the case of
the electric markets of England and Wales [1] and main-

land Spain [2]. Through either the Independent System Operator
(ISO) or the Power Exchange (PX), the market ensures power
balance considering generator and demand bids [3]. The role of
a multi-machine generating company (GENCO) is therefore not
to ensure power balance at minimum cost but to submit bids to
the ISO with the target of maximizing its own benefits.

The motivation of this paper is twofold. First, to provide
the Regulator with a tool to measure the market power of an
oligopolistic GENCO (O-GENCO). Using that information the
Regulator can set up operation rules to prevent an unfair be-
havior from O-GENCOs. Secondly, to provide the O-GENCO
with a tool to maximize its profits, within the regulatory
framework, by adequately modeling its market power.

In an electricity market, an O-GENCO has two coupled in-
struments available to maximize its benefits: 1) its ability to
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modify the market-clearing price as a result of its market power
and 2) its capability to alter its own production level of energy
and reserve. The manner in which an O-GENCO should produce
to maximize its profits, is a complex dynamic decision problem
which is addressed in this paper. For a time horizon varying
from one day to one week, this problem can be formulated as
a large-scale nonlinear discontinuous (stepwise) mixed-integer
optimization problem with exploitable structure. The solution of
this problem provides the O-GENCO with sound information
to elaborate its bidding strategy. The proposed solution tech-
nique is an efficient coordinate-descent technique [4] coupled
with mixed-integer linear programming techniques [5] yielding
an efficient and accurate solution procedure. The elaboration
of the actual bidding strategy taking into account the reactions
of competitors is a related problem, which is, however, outside
the scope of this paper. Furthermore, no network constraints are
considered in this paper. This paper provides the following.

1) A characterization of how the market-clearing price
changes with the production level (quota) of the
O-GENCO. The market–quota at hourof an O-GENCO
is defined as its total production in that hour.

2) A formulation and characterization of the problem whose
solution provides the O-GENCO production strategy to
maximize its profits.

3) A computationally efficient solution procedure for the
complex problem formulated in 2).

4) The analysis of a realistic case study.
It should be emphasized that the proposed model explicitly

recognizes and takes advantage of the discontinuous stepwise
dependency of the market-clearing price with the production
quota of an O-GENCO. The model developed assumes that
every GENCO (oligopolistic or otherwise) has available,
through forecasting or simulation, its corresponding hourly
price–quota curves, i.e., the functions that relate, for every
hour, the market-clearing price (price) and the total production
of the GENCO (quota). The model can be used in a market
including one or several O-GENCOs, as well as any number
of nonoligopolistic GENCOs. If several O-GENCOs compete
in a given market, forecasting accuracy of the above curves
deteriorates, but the formulation provided remains as stated.

Although the technical literature is rich in references on the
modeling of electric power markets [1], [3], [6]–[11], so far, not
great attention has been paid to the oligopolistic case in power
engineering journals. Besides, most references treating the
oligopolistic case do so using standard microeconomic frame-

0885-8950/02$17.00 © 2002 IEEE



CONEJOet al.: OPTIMAL RESPONSE OF AN OLIGOPOLISTIC GENERATING COMPANY 425

works not particularly adapted to the power industry [12]. In
addition, [13] provides an empirical study of the market power
in the electricity market of England and Wales. From a power
industry perspective, [7] and [14] provide models that simplify
the relationship between the market–quota of the O-GENCO
and the market-clearing price. Further relevant simplifications
are also introduced in order to solve the resulting optimization
problem. The modeling and the solution technique proposed in
this paper require neither relevant modeling nor computational
simplifications.

This paper is organized as follows. Section II provides a de-
tailed formulation of the problem, free of important simplifying
assumptions. The price–quota dependence is first analyzed and
then the profit maximization problem for an O-GENCO is for-
mulated in detail. In Section III the proposed solution technique
is described. In Section IV a case study is analyzed. In Sec-
tion V some relevant conclusions are drawn. The cost function
and the operating constraints of the thermal units are stated in
Appendix A. An illustrative example is solved in Appendix B.

II. FORMULATION

The price–quota dependency is first analyzed and then the
profit maximization problem of an O-GENCO is stated.

A. Price–Quota Dependence

In current pool-based electricity markets every generator
submits a list of bidding power blocks and their corresponding
prices to the ISO for every hour of the planning horizon. The
ISO uses either a single- or a multiround market-clearing
mechanism. Examples of single-round markets are the ISO
of England and Wales [1] and the one of mainland Spain [2].
A formal description of bidding systems and market-clearing
mechanisms is provided in [3]. Under general nonrestrictive
assumptions, the market-clearing price results in a stepwise
monotonically decreasing function of the market–quota of the
O-GENCO. If several O-GENCOs participate in the market
the above statement remains true. The discontinuous nature of
this curve is the result of using either single- or multiple-block
bids. The decreasing behavior is a consequence of the dif-
ferent costs of the generating units of the O-GENCO. If the
O-GENCO offers no power for a given hour the resulting
market-clearing price is high because the cheap units of the
O-GENCO are not allocated to produce. On the other hand,
if the O-GENCO offers all its available units at prices close
to their corresponding marginal costs, the market-clearing
price decreases as a result of the cheap units provided by the
O-GENCO and allocated to produce. In between these two
extreme possibilities, the market-clearing price for any given
hour is a stepwise monotonically decreasing function of the
power-quota of the O-GENCO. It should be noted that the
above price–quota behavior also occurs for all GENCOs, but it
is particularly relevant for O-GENCOs.

The price–quota curves can be determined by using infor-
mation of previous competitors’ bidding behavior. In the elec-
tricity market of mainland Spain, aggregate bidding (offer and
demand) curves are available on-line (http://www.omel.es); in

the Californian market (before the 2001-crack), this informa-
tion was available with a three-month delay. Alternatively, a
market simulator can be used to estimate these curves. For the
remaining of this paper price–quota curves are assumed known.
These price–quota curves are also called residual demand curves
[3].

The actual price–quota curve faced by an individual market
participant is equal to the consumer demand function minus the
sum of all the price-quantity bid functions offered by the rest
of the competitors. Following the dynamic Cournot equilibrium
concept formulated by Borensteinet al. [15], the market agents
can be classified as follows.

• Price Takers: Their offer is not needed to match the
demand. Slight variations in their bids result in slight
changes in the market price. They are also called “com-
petitive fringe.”

• O-GENCOs: Without them the demand cannot be covered.
They have a big impact over the price due to their market
power.

In a real market both types of agents would compete against
each other, and their respective bidding strategies would be quite
different. Since the market demand can be matched without any
given price taker, its optimal price/quantity bid would be in a
certain spot of its corresponding price–quota curve. It should
also be noted that a price taker has no power to significantly alter
the market-clearing price. If an O-GENCO decides not to pro-
duce, the market price becomes the unserved energy price, since
its presence is essential to cover the market demand. Further-
more, the O-GENCO has the ability to alter the market-clearing
price by fixing its own production level, i.e., its spot in the
price–quota curve. An O-GENCO typical price–quota curve is
provided in the case study (Fig. 2).

B. Profit Maximization Problem

The profit maximization problem of an O-GENCO is formu-
lated as the following.

maximize

(1)

subject to

(2)

(3)

where is the power unit index; is the time period index;
is the total production cost of unit in period ;

is the power produced by unitin period [ is the vector of
all s]; is the market–quota (power production) of the
O-GENCO in period [ is the vector of all s]; is
the market-clearing price for a level of production (quota)
by the O-GENCO in period [ is the vector of all s];

is the set of time periods; is the set of power units owned
by the O-GENCO, and is the set of production constraints of
power unit .
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It should be noted that the optimization variables are
s, s and s. Note, however, that variables

s are straightforwardly obtained from variables s.
The objective function (1) expresses the profit of the

O-GENCO, which is equal to its revenue minus its production
cost. Its revenue is equal to the market-clearing price (which
depends on the O-GENCO production–quota) times its power
production (market–quota). Its cost function is described in
Appendix A. It should be noted that this objective function is
discontinuous and nonlinear. It could be modified to include
reserve related revenues in case that simultaneous energy and
reserve electric power markets co-exist.

The block of constraints (2) simply expresses, for every time
period, that the sum of the production of every unit belonging
to the O-GENCO is equal to the power output of the O-GENCO
as a whole (quota).

The block of constraints (3) expresses in a compact way the
operating constraints, for every time period, of every unit be-
longing to the O-GENCO, i.e., minimum up and down times,
ramp rate limits and generation limits. These constraints are fur-
ther described in Appendix A.

The above large-scale optimization problem cannot be solved
by direct application of standard optimization software. This is
a consequence of its discontinuous, nonlinear, and large-scale
nature.

III. SOLUTION TECHNIQUE

Problem (1)–(3) is large-scale because the number of units
of the O-GENCO and the number of time periods of the plan-
ning horizon can both be high. For instance, thirty units and a
time horizon of one day hour by hour result in a problem with
thousands of variables and constraints. The above problem is
nonlinear because the production cost is a nonlinear function of
the power production and because of the product of variables
and . It is mixed-integer because the modeling of the start-up
and shut-down of the units requires the use of binary variables
(see Appendix A). In addition, it is discontinuous because the
market-clearing price is a stepwise function of the O-GENCO
total production.

It should be emphasized that the market-clearing price is a
stepwise function of the O-GENCO market–quota (its total pro-
duction). This fact is reflected in the notation for prices where

indicates the price corresponding to theth step of the
O-GENCO price–quota function in hour(see Fig. 2 in the case
study).

It should be noted that the number of steps of the
market-clearing price is small for reasonably small changes in
the market–quota, e.g., a variation of 20% in the market–quota
typically results in no more than 10 price–quota steps. As
a consequence of this small number of steps, a coordinate
descent solution algorithm [4] coupled with mixed-integer
linear programming [5] is suitable to solve problem (1)–(3).

In the algorithm below, it should be noted that subscript
denotes the considered time periods, i.e., the 24 hours of the
day. However, dynamic subscriptis used in the algorithm in
order to consider time periods one at a time.

The proposed solution technique works as follows.

Step 0) An initial market-clearing price is fixed for every
hour . The time period counter
is initialized, i.e., . In any iteration, all time
periods are considered one at a time. The iteration
counter is also initialized, i.e., .

Step 1) For every possible price of the market-clearing
price at time period the problem below (4)–(8)
is solved. Therefore, if the price–quota function for
hour has different steps, problems need to
be solved in this step of the algorithm

maximize

(4)

subject to

(5)

(6)

(7)

(8)

where s are fixed market-clearing prices, and
and are respectively the lower and upper bounds
of the market–quota for those prices.

Step 2) The step price corresponding to the problem whose
solution produces maximum profit in Step 1 is deter-
mined, ; the corresponding objective function
value is . Market-clearing price in hour is up-
dated as . Therefore, only the th price
of the price–quota curve for houris used until hour

is considered again. Market–quota bounds are also
updated: , .

Step 3) Being the number of hours of the time horizon,
if the objective function has not improved during
the last time periods, then the solution has been
reached, STOP. Otherwise, update counters: if

then, ; else, if , then ,
and go back to Step 1.

The consistency between the market-clearing price and the
O-GENCO quota is explicitly enforced while solving problems
(4)–(8) through constraints (7) and (8).

A flowchart of this algorithm is shown in Fig. 1.
Two computational considerations are in order.

1) The number of steps of the price–quota function may
change from hour to hour, reflecting differences in hourly
demands. This is taken into account in step 1 of the above
algorithm.

2) If the number of steps of the price–quota function is large,
a window strategy can be used so that only the neigh-
boring steps of the current step are considered. This re-
sults in lower computational burden without typically al-
tering the quality of the solution attained.

After fixing market-clearing price values the resulting
problem (4)–(8) can be efficiently solved because it is a
mixed-integer linear programming problem with a moderate
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Fig. 1. Solution technique flowchart.

number of binary variables. Available software to address this
problem includes CPLEX [16].

It should be noted that the above algorithm is a coordinate de-
scent algorithm (coupled with a mixed-integer linear program-
ming algorithm), being every coordinate the multi-step (multi-
value) market-clearing price at every time period.

IV. CASE STUDY

A power pool comprising 80 bidding units is considered. Data
for these units are based on the 1996 IEEE RTS [17]. The con-
sidered O-GENCO owns 20 of these units ranging from base-
loaded plants to peakers. Data for the O-GENCO units is pro-
vided in Table I. The remaining units act as price takers. Data
for these price taker units is also provided in Table I.

In this table, “Type” indicates the unit type; “ ”
provides the number of units belonging to the O-GENCO and
the remaining number of units, respectively; “” and “ ”
are the capacity and the minimum power output, respectively;
“ ,” “ ,” “ ,” and “ ” are respectively the marginal cost
in $/MWh for the first, second, third, and fourth power blocks
of every unit; “ ” is the up and down ramp limit; “ ” is
the start-up cost; and “ ” and “ ” are the minimum
up and down time, respectively. A planning horizon of 1-day
hour by hour is considered.

The O-GENCO price–quota curve for every hour is ob-
tained by simulating the pool market-clearing mechanism
and assuming that all units (including those belonging to

TABLE I
GENERATING UNITS DATA

Fig. 2. Price–quota curve for the hour of highest demand.

the O-GENCO) bid at their corresponding marginal cost. A
4-block bidding curve is assumed for every unit. After bidding,
the market is cleared using an economic dispatch algorithm
(simple auction mechanism). It should be noted that alternative
procedures can be used to obtain or estimate price–quota
curves. The 12-step price–quota curve for the hour of the
highest demand is shown in Fig. 2.

The problem described is solved using the proposed coordi-
nate descent algorithm coupled with a mixed-integer linear pro-
gramming solver. For the reported case study the whole plan-
ning horizon was considered three times, using windows of dif-
ferent sizes, and resulting in the solution of 405 problems. Using
CPLEX under GAMS [16], total computing time in a PEN-
TIUM-based PC with 132 MB of RAM was 2 h and 16 min.
The maximum benefit for the O-GENCO is $423 182.

For every hour, the demand, the optimal production of the
O-GENCO as a whole and the market-clearing price is shown
in Fig. 3.

Fig. 4 depicts the hourly production of the O-GENCO against
its competitors. The following comments are in order. During
hours 11–14, 16–22 the O-GENCO does exercise its market
power lowering its production and therefore raising the price,
which results in higher total profits for the O-GENCO. During
the remaining hours, and due to a relatively low demand, the
O-GENCO has no room to exercise its market power to its own
benefit and therefore it behaves mostly as a price taker.
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Fig. 3. Demand and O-GENCO optimal production in [GWh] (left vertical
axis). Market-clearing price in [$/MWh] (right vertical axis).

Fig. 4. O-GENCO market–quota (black).

Fig. 5. O-GENCO production and production range to maintain best prices.

Fig. 5 further illustrates the oligopolistic behavior of the
O-GENCO. This figure shows the actual production for every
hour ( ) and the range of production of the O-GENCO (stairs
plots) to maintain its most favorable price. Note that in each
of the previously mentioned hours the O-GENCO produces
the maximum power which allows it to keep its most favorable
price. If these most favorable prices are changed (increased or
decreased), the O-GENCO total benefit decreases.

V. CONCLUSION

This paper provides a rigorous modeling of the maximum
profit problem faced by an oligopolistic generating company in

a competitive electric power market built around a pool. The
price–quota curve of the oligopolistic generating company is
stepwise and therefore discontinuous. Thus, the resulting max-
imum profit problem is discontinuous, nonlinear and mixed-in-
teger. Its structure suggests a coordinate-descent solution proce-
dure coupled with mixed-integer linear programming. This so-
lution technique, which has been efficiently implemented, has
been tested in quite a few different case studies and proved ef-
ficient and accurate.

APPENDIX A

The running cost of a thermal unit and its technical constraints
are described in this Appendix. The running cost is ex-
pressed as

(A1)

where represents the fixed cost of unit[$/h], is the
piecewise linear variable cost [$/h], denotes the start-up
cost of unit [$], is the shut-down cost of unit[$],
is a 0/1 variable which is equal to 1 if unitis on-line in period

, denotes the 0/1 variable which is equal to 1 if unitis
started-up at the beginning of period, and is the 0/1 vari-
able which is equal to 1 if unit is shut-down at the beginning
of period .

Equation (A1) express the running cost of unitin period
as the sum of a fixed term, different from zero if the unit

is committed, plus the variable cost, the start-up cost, and the
shut-down cost.

The piecewise linear variable cost is formulated as

(A2)

(A3)

(A4)

where represents the power produced by unitin period
using the th power block [MW], is the size of the th

power block of unit [MW], is the minimum power output
of unit [MW], is the number of blocks of the piecewise
linear variable cost function, denotes the slope of block
of the variable cost of unit[$/MWh], and is the set of power
blocks.

Constraints (A2) express the variable cost of unitin period
as the sum of the corresponding terms of the piecewise lin-

earization. Constraints (A3) state that the power output of unit
in period is the sum of the power generated using each block
plus the minimum power output. Constraints (A4) set the of the
power generated in each block. This power should be greater
than 0 and less than the size (in MW) of each block. This formu-
lation assumes that the cost is monotonically increasing. Non-
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convex costs can be easily modeled by using additional binary
variables [18].

The set of production constraints of power unit is pre-
sented in the following[19], [20]:

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

where is the minimum down time of unit [h], the
capacity of unit [MW], the ramp-down limit of unit
[MW/h], the ramp-up limit of unit [MW/h], the
shut-down ramp limit of unit [MW/h], the start-up ramp
limit of unit [MW/h], the minimum up time of unit [h],

the maximum available power output of unitin period
[MW], the minimum available power output of unit

in period [MW], the number of periods unithas been
on ( ) or off ( ) at the end of period. For unit consistency, it
should be noted that time periods of 1 h are considered.

Constraints (A5) force every thermal unit to work below its
maximum available power output, and above its minimum avail-
able power output. Constraints (A6) state that the maximum
available power output in every period depends on ramp rate
limits. Constraints (A7) update the minimum available power
output taking into account the ramp rate limits. Constraints (A8)
and (A9) enforce feasibility in terms of minimum up and min-
imum down time constraints, respectively. The remaining con-
straints preserve the logic of running, start-up, and shut-down
status changes.

From a mathematical point of view, the above formulation of
the problem is mixed-integer and nonlinear. However, a linear
formulation of , which has been presented recently in [18],
makes it possible to solve this problem using a mixed-integer
linear programming technique. It is not reproduced here for lack
of space.

APPENDIX B

An example to clarify the algorithm described in Section III
is provided below. For this example, an O-GENCO including
two generators and a time-horizon of three hours is considered.
Technical data regarding the two units is shown in Table II. Note

TABLE II
SMALL EXAMPLE: GENERATING UNITS DATA

TABLE III
SMALL EXAMPLE: PRICE–QUOTA CURVES DATA

TABLE IV
SMALL EXAMPLE: EVOLUTION OF THE ALGORITHM

that the running cost of each unit is represented by using only
one linear block. For the sake of clarity, start-up cost, minimum
up times and minimum down times are not considered.

Table III shows the price–quota curves for the three hours.
Note that prices are in [$/MWh] and quota-blocks of the
O-GENCO in [MW]. Regarding hour 1, Table III is interpreted
as: if production of the O-GENCO is between 0 and 100 MW,
the price obtained in the market is $40/MWh; if production
of the O-GENCO is between 100.1 and 150 MW, the price
obtained in the market is $38/MWh; and so on.

In this example, the algorithm of Section III works as follows.

Step 0) Initialize iteration counter . Initialize
hour counter . Use the first price from the
price–quota curve of each hour to initialize price
vector: (40, 40, 40). Initialize best step-number

. Initialize best Profit .
Step 1) Solve problem (4)–(8) for all possible price vectors

obtained by substituting the values of theth (1st) el-
ement in with all possible values defined at the cor-
responding price–quota curve; that is, solve problem
(4)–(8) for four different price vectors: (40,
40, 40), (38, 40, 40), (35, 40, 40), and

(25, 40, 40).
Step 2) Choose the best value ofas the new . In this

case, the highest profit was obtained for (38,
40, 40), and is $7980. The price vector is updated
as: (38, 40, 40).

Step 3) Last time that the profit improved in the previous
step, therefore, the algorithm should continue; up-
date , and go to Step 1.
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Step 1) Solve problem (4)–(8) for all possible values of the
th (2nd) price; that is, solve problem (4)–(8) with

four different price vectors: (38, 40, 40),
(38, 36, 40), (38, 33, 40) and

(38, 25, 40).
Step 2) Choose the best value ofas the new . In this

case, the highest profit was obtained using
(38, 36, 40); becomes $8160. is updated as:

(38, 36, 40).
The algorithm continues as stated in Table IV. The optimal

solution is obtained in iteration 3. Optimal prices are $35/MWh,
$33/MWh and $40/MWh, respectively. Optimal profit is $8500
and optimal productions for the O-GENCO are 270 MW, 230
MW, and 180 MW, respectively.
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