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Optimal Robot Excitation and Identification
Jan Swevers, Chris Ganseman, Dilek Bilgin Tükel, Joris De Schutter, Member, IEEE,

and Hendrik Van Brussel, Fellow, IEEE

Abstract—This paper discusses experimental robot identifica-
tion based on a statistical framework. It presents a new approach
toward the design of optimal robot excitation trajectories, and
formulates the maximum-likelihood estimation of dynamic robot
model parameters. The differences between the new design ap-
proach and the existing approaches lie in the parameterization
of the excitation trajectory and in the optimization criterion. The
excitation trajectory for each joint is a finite Fourier series. This
approach guarantees periodic excitation which is advantageous
because it allows: 1) time-domain data averaging; 2) estimation
of the characteristics of the measurement noise, which is valuable
in case of maximum-likelihood parameter estimation. In addition,
the use of finite Fourier series allows calculation of the joint
velocities and accelerations in an analytic way from the measured
position response, and allows specification of the bandwidth
of the excitation trajectories. The optimization criterion is the
uncertainty on the estimated parameters or a lower bound for it,
instead of the often used condition of the parameter estimation
problem. Simulations show that this criterion yields parame-
ter estimates with smaller uncertainty bounds than trajectories
optimized according to the classical criterion. Experiments on
an industrial robot show that the presented trajectory design
and maximum-likelihood parameter estimation approaches com-
plement each other to make a practicable robot identification
technique which yields accurate robot models.

Index Terms—Identification, optimal excitation, robot dynam-
ics.

I. INTRODUCTION

T
HE KEY aspects in competitive manufacturing today

are quality, costs, and time. In this respect, off-line

programming supported by simulation, and accurate motion

control have become necessary. Accurate robot control and

realistic robot simulation require an accurate dynamic robot

model. The design of an advanced robot controller, such as

a computed torque or a computed velocity controller is based

on the robot model, and its performance depends directly on

the model accuracy. Robot simulation without dynamic robot

model cannot provide realistic execution time estimates, e.g.,

in the case of spot welding operations, where the time required
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to stop the robot end effector at the different spot welding

places depends on the robot dynamics.

Experimental robot identification is the only efficient way

to obtain accurate robot models as well as indications on

their accuracy, confidence and validity. The dynamic model

parameters provided by robot manufacturers are insufficient,

inaccurate, or often nonexisting, especially those dealing with

friction and compliance characteristics. Direct measurement

of the physical parameters is unrealistic, because of the com-

plexity of most robots.

Experimental robot identification deals with the problem

of estimating the robot model parameters from the response

measured during a robot experiment. It is well recognized that

reliable, accurate, and efficient robot identification requires

specially designed experiments. When designing an identi-

fication experiment for a robot manipulator, it is essential to

consider whether the excitation is sufficient to provide accurate

and fast parameter estimation in the presence of disturbances

such as measurement noise and actuator disturbances. Most

papers related to experimental robot identification measure

the influence of these disturbances on the parameter estimates

by the condition (number) [1] of the set of equations that

generate the parameters [2]–[4], and use this condition number

as the criterion for the optimization of the excitation. This

criterion is appropriate in a deterministic framework. This pa-

per approaches the excitation-trajectory optimization (and the

parameter estimation) within a stochastic (errors-in-variables)

framework.

Consistent parameter estimation requires accounting for

the statistical properties of the measurement noise. Errors-in-

variables estimation methods consider random disturbances

on both input and output measurements [5]. Several of these

methods exist [6]–[8], though only few of them have been ap-

plied to the estimation of dynamic robot parameters: Xi applies

the total least square (TLS) parameter estimation method to

the identification of the robot inertial parameters [9]. The TLS

estimate is consistent if the covariance matrix of the noise (dis-

turbances) on the elements of the regression matrix describing

the equation errors is proportional to the identity matrix [6].

This is not the case in the application of Xi [9] because of the

structure of the regression matrix. The generalized total least

squares (GTLS) method, which allows correlations between the

noise on the elements of the regression matrix, should be used

instead, provided that all errors are random variables and that

the covariance matrix can be calculated. The nonlinear depen-

dency of the regression matrix on the joint angle measurements

makes the calculation of the required covariance matrix very

1042–296X/97$10.00  1997 IEEE

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on August 17, 2009 at 10:39 from IEEE Xplore.  Restrictions apply. 



SWEVERS et al.: OPTIMAL ROBOT EXCITATION AND IDENTIFICATION 731

difficult, if not impossible. The maximum-likelihood estimator

is a consistent estimator even if the models are nonlinear in

the parameters and measurements, which occurs for example

if complicated nonlinear friction models are included in the

robot model. This method is therefore preferred to the TLS or

the GTLS method.

This paper (1) formulates the maximum-likelihood esti-

mation (MLE) of robot model parameters (Section II), (2)

presents a new approach toward the design of optimal robot

excitation trajectories (Section III), and (3) discusses the ap-

plication of the presented techniques for the experimental

identification of the first three axes of a KUKA IR 361

industrial robot (Section V). Section IV shows, by means of

simulations, that the maximum-likelihood parameter estima-

tor, is (asymptotically) efficient and unbiased, and that the

proposed trajectory optimization criterion yields parameter

estimates with smaller uncertainty bounds than robot excitation

optimized through minimization of the condition number.

II. ESTIMATION OF THE ROBOT PARAMETERS

The dynamic model of an -degree-of-freedom rigid robot is

linear in the friction coefficients and the parameters of the mass

distribution if they are combined in the so called barycentric

parameters [10]. After model reduction [11], the dynamic robot

model can be written as a minimal set of linear equations

(1)

is the -vector of the joint angles. is the -vector of

actuator torques. is the regression matrix,

depending on the joint angles, velocities, and accelerations.

is the number of independent robot parameters. is the

-vector containing the unknown barycentric parameters and

friction coefficients.

Robot identification deals with the problem of estimating

the model parameters [(1)] from the data measured during

a robot excitation experiment. In most cases, the data are

sequences of joint angles and motor currents, from which a

sequence of joint velocities, accelerations, and motor torques

are calculated. Actuator torques are assumed to be proportional

to the actuator current.

In system identification based on a statistical framework, it

is common to assume that the measured joint angles

and actuator torques for 1 to are corrupted by

independent zero-mean Gaussian noise , i.e.,

(2)

The noise-free joint angles and actuator torques

satisfy (1).

Remark 1: Considering a linear relation between the motor

current and torque is a first order approximation, which may

result in modeling errors. Extension of the robot model with

a model describing the relation between the motor torque and

the motor current eliminates these modeling errors, and yields

a robot model to which the trajectory design and maximum-

likelihood estimation methods which are presented below, are

still applicable.

Remark 2: Kinematic errors are deterministic and result in

systematic modeling errors and biased parameter estimates

if the joint angle measurements are not corrected using a

kinematic error-model. It is assumed that these errors are not

significant, or are compensated for. Inclusion of these (sys-

tematic) errors in [(2)] is not appropriate, because the

maximum-likelihood parameter estimation method described

below cannot account for systematic measurement errors since

it assumes random disturbances.

A. Maximum-Likelihood Parameter Estimation

This section formulates the maximum-likelihood estima-

tion of dynamical robot parameters, which is similar to the

maximum-likelihood estimation of geometrical robot param-

eters used for kinematic robot calibration and presented in

[12]–[14].

The maximum-likelihood estimate of the parameter

vector is given by the value of which maximizes the

likelihood of the measurement and for

to Since the noise on the different measurements is

independent and Gaussian, this corresponds to minimizing the

following quadratic cost function [12], [13], [15]:

(3)

with the noise on the measured joint angle and

the noise on the measured actuator torque .

and are their corresponding variances. It is assumed that

these variances are constant and known.

The minimization of criterion (3), taking into account (1),

is a nonlinear least squares optimization problem. Its practical

implementation requires that and be calculated

for every estimate of given the measured data and

This is not possible with the present formulation, since

the joint angles and actuator torques can not be

calculated based on the knowledge of only. The parameter

vector , i.e., the degrees of freedom of the maximum-

likelihood optimization problem, has to be extended with a

trajectory parameterization : and ).

This parameterization is related to the optimization of the

robot excitation, and is discussed in Section III. It allows

reformulation of the maximum-likelihood criterion (3) as

follows:

(4)

with
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and the th element of

and

(5)

This quadratic criterion has to be minimized in for a

given sequence of measured joint angles and actuator

torques This minimization can be performed using the

Gauss–Newton or the Levenberg–Marquardt method.

The MLE is invariant with respect to parameter vector

scaling and consequently data scaling, consistent, asymptot-

ically unbiased, and asymptotically efficient [7], [15], i.e., the

covariance matrix of the MLE converges asymptotically to

with

(6)

where and represent the measured and exact data,

respectively, represents the MLE of This bound for the

covariance matrix is called the Cramér–Rao lower bound.

is called the Fisher information matrix. It is a measure of

the amount of information present in the measurements in

relation to the parameters. This means that the uncertainty on

the parameter estimates decreases if there is more information

available from the measurements.

This suggests an appropriate design criterion for robot

excitation trajectories: design a robot excitation trajectory

which “maximizes” the Fisher information matrix. This min-

imizes the theoretical lower bound on the uncertainty of the

parameter estimates, which can be reached asymptotically if

the parameters are estimated with the maximum-likelihood

estimator.

B. Linear Least Squares Parameter Estimation

The maximum-likelihood parameter estimation simplifies

significantly if the measured joint angles are free of noise.

This assumption can be justified by the fact that the noise

level on the joint angle measurements is much smaller than

the noise level on the actuator torque measurements. Under

this assumption, the trajectory parameter vector disappears

from the minimization criterion (3) and the MLE reduces to the

weighted linear least squares estimate for which the weighting

function is the reciprocal of the standard deviation of the noise

on the measured actuator torque values [7], [14], [15]:

(7)

with

...

and

... (8)

and is the diagonal covariance matrix of the measured

actuator torques. The covariance matrix of the MLE is

equal to

(9)

If noise on all actuator torque measurements has the same

standard deviation, the maximum-likelihood estimation re-

duces to the standard linear least squares estimation

(10)

Application of the standard linear least squares method if

the above-mentioned assumption of equal standard deviation is

not satisfied, corresponds to ignoring the statistical properties

of the disturbances, i.e., approaching the parameter estimation

within a deterministic framework rather than the statistical

(errors-in-variables) framework within which the maximum-

likelihood estimation approach is formulated. The condition

number of matrix is a measure for the sensitivity of the

least squares solution (10) to perturbations on the elements

of and provided that the matrix is well equilibrated [1],

[3]. The normalization of matrix , i.e., the division of the

columns of by their norm, takes care of the equilibration and

in addition improves the condition number. Consequently it is

better to estimate the model parameters using the normalized

matrix and rescale the estimated model parameters afterwards.

The condition number of the normalized matrix is therefore

an appropriate trajectory design criterion in the deterministic

framework.

III. GENERATION OF OPTIMAL ROBOT

EXCITATION TRAJECTORIES

The generation of an optimal robot excitation trajectory

involves nonlinear optimization with motion constraints (i.e.,

constraints on joint angles, velocities, and accelerations, and

on the robot end effector position in the cartesian space

in order to avoid collision with the environment and with

itself). Several approaches have been presented. They all

use a different trajectory parameterization. These parameters

are the degrees of freedom of the optimization problem.

Armstrong [16] describes an approach in which the degrees

of freedom are the points of a sequence of joint accelerations.

This approach is the most general one, but it results in a

large number of degrees of freedom, such that optimization

is cumbersome. The optimization is done by maximizing the

minimum singular value of the matrix [(8)]. Gautier [2],

[3] optimizes a linear combination of the condition number

and the equilibrium of the set of equations that generate the

parameters, i.e., of matrix The degrees of freedom are a

finite set of joint angles and velocities separated in time. The

actual trajectory is continuous and smooth, and is calculated by
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interpolating a fifth-order polynomial between the optimized

points, assuming zero initial and final acceleration. Only a very

small part, namely the finite set of joint angles and velocities,

of the final trajectory is optimized. As a result, the total smooth

trajectory cannot be guaranteed to satisfy all motion constraints

nor to be optimal with respect to the condition number or

the covariance matrix criterion. Adjusting the trajectory to fit

the motion constraints involves trial-and-error and is hardly

discussed in [2] and [3]. The practicability of this trajectory

design approach is therefore questionable. Otani [4] uses

trajectories which are a combination of a cosine and a ramp,

such that the joint velocities change sinusoidally between zero

and their maximum value. The degrees of freedom are the

frequency and amplitude of the sinusoidal movements for

each joint, together with the initial robot configuration. The

optimization criterion is the minimization of the condition

number of matrix

All existing design approaches are (implicitly) based on a

deterministic framework, since the excitation trajectory design

does not consider uncertainties on the measurements or the

parameter estimates. This section presents a new approach

toward the design of robot excitation trajectories which is

based on a statistical framework. It differs from the existing

methods in two aspects: the parameterization of the trajectory

and the optimization criterion.

A. Parameterization of the Robot Excitation Trajectory

The excitation trajectory for each joint is a finite sum

of harmonic sine and cosine functions, i.e., a finite Fourier

series. The angular position velocity and acceleration

trajectories for joint of a -degrees-of-freedom robot are

written as

(11)

with the fundamental pulsation of the Fourier series.

This Fourier series specifies a periodic function with period

The fundamental pulsation is common for

all joints, in order to preserve the periodicity of the overall

robot excitation. Each Fourier series contains

parameters, that constitute the degrees of freedom for the

optimization problem: and for to which are

the amplitudes of the cosine and sine functions, and which

is the offset on the position trajectory. The offset determines

the robot configuration around which excitation will occur.

The parameters for all joints are grouped into vector

This approach guarantees bandlimited periodic trajectories

and therefore allows:

• time-domain data averaging, which improves the signal-

to-noise ratio of the experimental data. This is extremely

important since motor current (torque) measurements are

very noisy.

• estimation of the characteristics of the measurement noise

[7]. This information is valuable in case of maximum-

likelihood parameter estimation. Section V-A discusses

the estimation of the noise variance in detail.

• specification of the bandwidth of the excitation trajecto-

ries, such that excitation of the robot flexibility can be

either completely avoided or intentionally brought about.

• calculation of joint velocities and accelerations from the

measured response in an analytic way. For this purpose,

the measured encoder readings are first approximated,

in a least squares sense, as a finite sum of sine and

cosine functions. This corresponds to taking the discrete

Fourier transform of the encoder readings and selecting

the main spectral lines. The Fourier transform does not

introduce leakage errors because of the periodicity of

the excitation. This frequency-domain approach toward

the differentiation of time series is simple, efficient, and

accurate.

None of the existing robot excitation methods possesses the

above mentioned features with the result that

• large data records, which are necessary in order to obtain

reliable parameter estimates, cannot be compressed and

result in large overdetermined sets of equations which

require large numbers of calculations to be solved;

• the calculation of joint velocities and accelerations re-

quires complex numerical differentiation techniques or

specially designed IIR filters [17]. This approach is less

accurate than the exact frequency-domain approach which

is only possible if the excitation is periodic;

• estimation of the noise characteristics requires extra ex-

periments;

• special precautions have to be taken, for example filtering

of the excitation trajectory, in order to avoid excitation of

the robot flexibility.

B. Optimization of the Parameterized Robot

Excitation Trajectory

The covariance matrix of the estimated model parameters is

the only correct experiment design criterion if the parameter

estimation is approached within a statistical framework [5].

If the joint angle measurements are free of noise, and if

the model parameters are estimated according to maximum-

likelihood criterion (7), the covariance matrix of the estimated

model parameters equals (9). Expression (9) does not depend

on the measurements or the estimated parameters. It depends

on the exact joint angles, velocities and accelerations which are

assumed to correspond to the designed excitation trajectory. As

a result, the optimization of the model parameter covariance

matrix as a function of the trajectory parameters does not

require the knowledge of the exact model parameter vector

The covariance matrix of the parameter estimates can not be

calculated if the actuator torque and joint angle measurements

are both corrupted by noise [7]. However, the covariance

matrix approaches the Cramér–Rao lower bound, i.e., the
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inverse of the Fisher information matrix [(6)], asymptotically

if the parameters are estimated with an efficient estimator,

for example a maximum-likelihood estimator. This suggests

taking the Cramér–Rao lower bound on the covariance matrix

instead of the covariance matrix itself as the robot excitation

design criterion. The Cramér–Rao lower bound or the Fisher

information matrix [(6)] depend only on parameter vector

(5), since the exact data, i.e., the exact joint angles, velocities

and accelerations and the exact actuator torques, can be

calculated from using (1) and (11). Hence minimization

of the Cramér–Rao lower bound in requires the knowl-

edge of the exact model parameter vector which however,

is not available. Nevertheless, a consistent estimate of the

Cramér–Rao lower bound can be calculated from a consistent,

i.e., a maximum-likelihood, estimate of

This suggests an iterative procedure in which the

Cramér–Rao lower bound is minimized as a function of the

trajectory parameters for successive maximum-likelihood

estimates of model parameter vector The iterative process

starts with an initial estimate of It results from initial

experimental data obtained from a robot excitation which has

been optimized according to the condition number of matrix

Based on the initial estimate of the Cramér–Rao lower

bound is minimized as a function of resulting in a new

excitation trajectory. Hence robot excitation and parameter

estimation can be repeated until convergence occurs.

The covariance matrix or its Cramér–Rao lower bound

cannot be optimized in matrix sense. They have to be re-

placed by a representative scalar measure. Ljung [5] presents

some possible scalar measures. with the

covariance matrix or its Cramér–Rao lower bound, is called

the d-optimality criterion and is the most appealing of these

measures: 1) its minimum is independent of the scaling

of the parameters and 2) it has a physically interpretation:

the determinant of is related to the volume of highest

probability density region for the parameters [15].

The minimization of the uncertainty on the estimated param-

eters or its lower bound is a complex nonlinear optimization

problem with motion constraints. The motion constraints are

limitations on the joint angles, velocities, and accelerations,

and on the robot end effector position in the cartesian space

in order to avoid collision with the environment and with

itself. This last type of constraint involves forward kinematics

calculations. All constraints are implemented as continuous

functions which are negative if the constraint is satisfied and

positive if it is violated.

IV. NUMERICAL EXAMPLE AND SIMULATION OF EXPERIMENT

This section shows, by means of simulations, that:

1) the proposed maximum-likelihood parameter estimator

is (asymptotically) efficient and unbiased;

2) that the excitation trajectory resulting from optimiza-

tion of the determinant of the covariance matrix yields

parameter estimates with smaller variances than robot

excitation optimized through minimization of the condi-

tion number.

Fig. 1. KUKA 361 IR robot.

The simulation uses a model of a KUKA IR 361 robot.

Only the first three axes are considered. Fig. 1 shows the

robot, its base coordinate system and coordinate

systems for the first three links: 1, 2, 3. The

inertial parameters of the links are related to their coordinate

systems.

• are the moments of inertia of link about

the and axis, respectively, 1, 2, 3.

• are the inertia products of link 1, 2, 3.

• is the position of the center of mass of link

in 1, 2, 3.

• is the position of the joint of link in

0, 1, 2.

• : is the mass of link 1, 2, 3.

The joint friction model includes viscous and Coulomb fric-

tion, represented by constant coefficients and , respec-

tively.

A. The Robot Model

The robot model has been derived according to the modified

Newton–Euler formalism [11]. Columns 2 and 3 of Table I

present the resulting minimal set of parameters after model

reduction and the values that are used for the simulation

experiments, respectively. The minimal robot model is given

by (1) for which is a 3 1 column vector, a 21

1 column vector, and a 3 21 matrix. The exact

actuator torques are calculated according to (1) using the

model parameters presented in Table I and an optimized

excitation trajectory. Section IV-B discusses the trajectory

optimization. Adding independent zero-mean Gaussian noise

to the exact actuator torques simulates torque measurement

noise. The variance of the noise is 25 26 and 10

for the actuator torques of joint 1, 2, and 3, respectively.

These values correspond to experimentally obtained noise

variance values. The joint angles are assumed to be free of

noise. Consequently, the MLE of the model parameters is

given by (7).
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TABLE I
DATA FOR THE SIMULATION EXPERIMENTS

B. Trajectory Optimization

The robot excitation trajectory is optimized according to

two criteria.

c1) The condition number of the normalized ma-

trix [(7)]. This criterion corresponds to the criterion

used in [2], [3], [4], except that matrix is scaled

with the reciprocal values of the standard deviation of

the noise on the actuator torques, and that the resulting

matrix is normalized. The scaling with the reciprocal

values of the standard deviation can be justified by

the fact that maximum-likelihood estimation, which

corresponds to weighted linear least squares in this

case, is used instead of standard linear least squares

estimation.

c2) is the information

matrix related to the maximum-likelihood estimation

of the parameters. It is equal to the inverse of the

covariance matrix of the parameter estimates [(9)].

Both optimization criteria are comparable with respect to

complexity of implementation and efficiency.

The motion constraints correspond to those of the KUKA

IR 361 in our laboratory environment.

• Joint angle limits (rad):

and 1.2.

• Joint velocity limits (rad/s): 1.45.

• Joint acceleration limits (rad/s ): 3.

• Limits on the height of the end effector (mm): 800 .

• The robot touches its base if 700 mm and

1800 mm. is the distance of the end effector from

the first robot axis. is the height of the end effector

above the ground. and are obtained from forward

kinematics calculations.

Fig. 2. Robot excitation trajectory optimized according to the criterion based
on the condition number (criterion 1) (solid line: axis 1, dashed line: axis 2,
dash-dotted line: axis 3).

The excitation trajectories are five-term Fourier series, yield-

ing 11 parameters for each joint. The fundamental frequency of

the trajectories is 0.1 Hz. The sampling rate for the simulation

is 150 Hz. The length of the data sequence is 1500 data

samples, i.e., one period of the trajectory.

The constrained optimizations are performed using the

“CONSTR” function of the Optimization Toolbox of Mat-

lab. This function uses a sequential quadratic programming

method. Reference [18] describes the Matlab implementation

of the constrained optimization in detail.

Fig. 2 shows the optimized excitation trajectories according

to the criterion based on the condition number. The iteration

process was stopped after 10 000 iterations, where it reached

a condition number equal to 4.15. The determinant of the

covariance matrix corresponding to this trajectory is equal to

1.76 10 Fig. 3 shows the optimized excitation trajectories

according to the criterion based on the determinant of the

covariance matrix. The iteration process was also stopped after

10 000 iterations, where it reached a determinant equal to 2.36

10 The condition number of the normalized matrix

corresponding to this trajectory is equal to 5.94. These values

show that both criteria result in small condition numbers.

The values for the determinant are different: the minimization

of the determinant criterion produces an excitation trajectory

which results in parameter estimates with smaller uncertainty

bounds.

Columns 3 and 4 of Table II shows the square root of the

diagonal elements of the covariance matrix [(9)] corresponding

to both trajectories and for criterion c1 and c2,

respectively). These elements are the standard deviations of

the maximum-likelihood model parameter estimates. These

columns show that all standard deviations corresponding to

the second criterion are smaller than the standard deviations

corresponding to the first criterion, except for parameters

2, 9, 16, 17, 20, and 21. The overall uncertainty on the

parameter estimates is measured by the determinant of the
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Fig. 3. Robot excitation trajectory optimized according to the criterion based
on the determinant of the covariance matrix (criterion 2) (solid line: axis 1,
dashed line: axis 2, dash–dotted line: axis 3).

covariance matrix, which is a measure for the volume of

highest probability density region for the parameters [15]. The

determinant of the covariance matrices (1.76 10 and 2.36

10 show that the overall uncertainty on the parameter

estimates is smaller for trajectory two than for trajectory one.

In order to check the (asymptotic) unbiasedness and effi-

ciency of the maximum-likelihood estimator, the parameter

estimation is simulated 200 times for the trajectory

shown in Fig. 3 and different sequences of zero-mean Gauss-

ian actuator torque noise. This enables the calculation of the

mean value and the standard deviation of the parameter

estimates (columns 2 and 5 of Table II, respectively):

for to

Subscript denotes the th element of the parameter vector.

Subscript denotes the th estimate of the parameter vector.

The parameter estimates are samples of a normal dis-

tribution with mean and standard deviation (see

Section II). is the th diagonal element of the covariance

matrix of the parameter estimates [(9)]. Their mean value

has a normal distribution, with mean and standard deviation

The 68% confidence interval for the mean value is

Column 6 of Table II shows the values Compari-

son of columns 3 (Table I), 2 and 6 (Table II) shows that 16 of

the 21 mean parameter values , i.e., 76%, lie within their

confidence interval. This shows that the MLE of is unbiased

for a data record of 1500 data samples. Shorter data records,

for example data records of 500 data samples, result in biased

estimates.

TABLE II
RESULTS OF THE SIMULATION EXPERIMENTS

The ratios have a distribution with degrees

of freedom. The 90% confidence interval equals

Column 5 of Table II shows the variance estimates

Comparison of columns 4 and 5 shows that 19 of the 21

ratios, i.e., 90%, lie within the confidence interval. This

shows that the MLE of is efficient for a data record of 1500

data samples. Shorter data records, for example data records of

500 data samples, result in parameter estimates for which the

covariance matrix is significantly larger that the Cramér–Rao

bound.

V. EXPERIMENTAL VERIFICATION

This section illustrates the presented robot excitation design

method and the maximum-likelihood estimation method by

means of identification experiments on the first three links of

a KUKA IR 361 industrial robot (see Fig. 1). The experimental

identification is based on the minimal model set described in

Section IV. The parameter set is extended with parameters that

measure the offset on the torque measurements and parameters

that model the spring which compensates the gravitation for

the second link [19]. Section V-A describes the experiments

and the data processing. Section V-B describes the estimation

of the parameters and Section V-C describes the validation of

the model.

A. Description of the Experiments and Data Processing

The first three links of the KUKA robot have been identi-

fied for two different excitation trajectories: (1) a trajectory

Authorized licensed use limited to: Katholieke Universiteit Leuven. Downloaded on August 17, 2009 at 10:39 from IEEE Xplore.  Restrictions apply. 



SWEVERS et al.: OPTIMAL ROBOT EXCITATION AND IDENTIFICATION 737

Fig. 4. Measured torque, estimated torque, and estimation residue.

which is optimized according to the condition number of

the normalized matrix [(7)], and (2) a trajectory

which is optimized according to [(9)].

Criterion two is based on the assumption that the measured

joint angles are free of noise and that (7) is the MLE. The

experimental results will show that the noise on the joint angle

measurements is not zero but small, and that its influence of

the MLE is negligible. Consequently, the assumption is valid.

Trajectory 1 yields a condition number equal to 47.3 and

a determinant equal to 5.26 10 Trajectory 2 yields a

condition number equal to 111.7 and a determinant equal to

1.85 10 These condition numbers are significantly higher

than the condition numbers obtained in Section IV due to the

parameters modeling the gravity compensation spring.

The models obtained using trajectory 1 and 2 are referred

to as models 1 and 2, respectively.

The motion constraints, the sampling frequency, and the

number of parameters and the fundamental frequency of the

excitation trajectory are the same as for the simulation experi-

ments (see Section IV-B). Data are collected after the transient

response of the robot has died out. The joint angle is measured

by means of an encoder mounted on the motor shaft, and the

actuator torque is measured indirectly by means of the motor

current. Analog eighth-order low-pass Butterworth filters1 with

a bandwidth of 40 Hz protect the sampling of the motor current

signal from aliasing errors. This filtering introduces amplitude

and phase distortions, which are corrected by prewhitening

the sampled motor current sequences [5]. Prewhitening also

removes the coloring and correlation of the measurement noise

1 The used filters are manufactured by: GEPA gmbH, 80 707 Münich,
Germany

introduced by the analog anti-aliasing filters. The formulated

maximum-likelihood parameter estimation method assumes

uncorrelated measurement noise. The prewhitening filters are

the inverse of the digital equivalents of the analog filters.

The digital equivalents are obtained by means of maximum-

likelihood frequency-domain identification based on measured

frequency response functions of the analog filters [7]. The

inversion of the digital equivalents is based on the extended

bandwidth zero phase error tracking method [18], [20].

Following the data prewhitening, the data sequences are

averaged over 16 periods in order to improve the signal-to-

noise ratio of the measurements. Fig. 4 shows the averaged

motor torque measurements. The variance of the noise on

the averaged joint angle and actuator torque measurements

is estimated by calculating the sample variance and dividing

it by 16

is equal to number of samples per period, i.e., 1500.

Subscript indicates the excitation period ( 1, 2, ,

16. and represent the averaged encoder and

motor torque measurements. Remark that the estimation of

the variance according to the above-mentioned equations and

the improvement of the signal to noise ratio through data

averaging are only possible because of the periodicity of the

excitation. The estimated variances are 1.1223 10 rad ,

8.2822 10 rad , 2.9061 10 rad for the position of,
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Fig. 5. Position, measured torque and estimation residue for the validation trajectory.

respectively, axes 1, 2, and 3 and 25.1086 N m , 25.9428

N m , and 9.8947 N m for the torque of, respectively, axes

1, 2, and 3.

B. Maximum-Likelihood Parameter Estimation

The optimization of criterion (4) is an iterative procedure

which starts with linear least squares estimates of the trajectory

and model parameters. The weighted least squares estimate of

the trajectory parameters is based on the averaged joint angle

measurements and (11). The linear least squares estimate of

the model parameters is based on the averaged actuator torque

measurements and (10) in which is calculated using the

estimated trajectory parameters instead of the averaged joint

angle measurements. Comparison of the maximum-likelihood

estimate and the initial weighted least squares estimate of

the model and trajectory parameters showed that there is no

difference between both and therefore the influence of the joint

angle noise on the MLE is negligible, which could be expected

from its small mean variance values.

Fig. 4 shows the measured and estimated actuator torques,

and the estimation residue for model 2. The estimation residues

for model 1 are comparable. However, we must bear in

mind that this comparison is not completely justified since

the two trajectories are not the same. The peaks in the

estimation residu occur at low joint angular velocity, which

indicates that the assumed friction model, which includes

viscous and Coulomb friction, is too simple. It can be expected

that including more advanced friction and gear models, as

described, e.g., in [21] and [22], results in smaller estimation

residus. Due to these modeling errors, the mean values of the

squared estimation residue (81.1050 N m , 88.8175 N m ,

and 23.1119 N m for, respectively, axes 1, 2 and 3) are

larger than the noise variances of the measured torques.

Despite modeling errors (stiction, backlash and flexibility in

the transmissions, kinematic errors) the estimated models are

accurate but biased.

As a result of this bias, the diagonal elements of matrix

[(9)], which is the covariance matrix of the

parameter estimates in the assumption that the estimation is

efficient and unbiased, are no longer valid estimates of the

parameter uncertainty. As a result the identified parameters do

not lie within the 3 uncertainty ranges.

C. Model Validation

The accuracy of the obtained parameter estimates can be

verified for a different validation trajectory by comparing the

measured torques and an estimate of these torques based on

the model and the measured position data.

The validation trajectory goes through 20 points randomly

chosen in the workspace of the robot. The robot moves with

maximum acceleration and deceleration between these points,

and comes to full stop in each point. The velocities and

accelerations are calculated by means of specially designed

filters [17].

Fig. 5 shows the position, the measured torque, and the

estimation residu for model 2. The torques are filtered with

a low pass filter with cutoff frequency of 10 Hz. This reduces

the noise on

• the measured torques, which is high due to the inverse

filtering to compensate the analog filter (cf. Section V-A)

and because data averaging is not possible here;
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• the estimated torque due to noise on the calculated

acceleration and velocity data

The mean squared torque estimation residu for the validation

trajectory is 45.0424 N m , 53.5891 N m , and 12.0303 N m

for the axes 1, 2, and 3. Model 1 yields mean squared torque

estimation residus which are approximately 20% larger than

the mentioned values, indicating that model 2 is more accurate

than model 1 with respect to its ability to predict the motor

torques based on joint angular position measurements. The

biasedness of the parameter estimates prevents formulating

statements with respect to the uncertainty on the parameter

of both models.

VI. CONCLUSION

The presented robot excitation design method generates

trajectories which aim at estimating the robot model parame-

ters with minimal uncertainty. In addition, the trajectories are

periodic and have a band-limited frequency contents. These at-

tractive properties simplify the analysis and conditioning of the

measurements, for example the estimation and improvement

of the signal-to-noise ratio.

The formulated maximum-likelihood estimation method

takes into account actuator torque and joint angle measurement

noise, i.e., combines the estimation of exact joint angles,

angular velocities and accelerations, with the estimation of

the robot parameters. Simulations show that the maximum-

likelihood estimation method is asymptotically unbiased and

efficient.

Experiments on an industrial robot show the practicability of

the presented trajectory design and parameter estimation meth-

ods: the obtained robot model is more accurate than the model

obtained using excitation trajectories designed according to the

more traditional condition number criterion.
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