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Abstract

Robust, or model-independent properties of the variance swap are well-
known, and date back to Dupire [19] and Neuberger [37], who showed that,
given the price of co-terminal call options, the price of a variance swap
was exactly specified under the assumption that the price process is con-
tinuous. In Cox and Wang [11] we showed that a lower bound on the price
of a variance call could be established using a solution to the Skorokhod
embedding problem due to Root [45]. In this paper, we provide a construc-
tion, and a proof of optimality of the upper bound, using results of Rost
[46] and Chacon [9], and show how this proof can be used to determine a
super-hedging strategy which is model-independent. In addition, we out-
line how the hedging strategy may be computed numerically. Using these
methods, we also show that the Heston-Nandi model is ‘asymptotically
extreme’ in the sense that, for large maturities, the Heston-Nandi model
gives prices for variance call options which are approximately the lowest
values consistent with the same call price data.

1 Introduction

The classical approach to derivative pricing problems is to hypothesise a certain
model for the underlying asset, and to invoke the Fundamental Theorem of Asset
Pricing to identify arbitrage-free prices with discounted expectations under risk-
neutral measures. In this setting, market information, for example in the form
of traded ‘vanilla’ options, may be incorporated by choosing a parametrised
class of models, and determining the parameters by finding the best fit to the
observed prices.

An alternative approach to incorporating market information is to use the
traded options as part of a hedging strategy. This approach can be particularly
beneficial in the presence of model-risk, since, if carefully chosen, the hedging
properties of the strategy may still hold under a wide class of models. The
archetypal example of this is the hedging of a variance swap using a log-contract
due to Dupire [19] and Neuberger [37]. Suppose a (discounted) asset price has
dynamics under the risk-neutral measure:

dSt

St
= σt dWt, (1.1)
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where the process σt is not necessarily known. A variance swap is a contract
where the payoff depends on the realised quadratic variation of the log-price

process: 〈lnS〉T =
∫ T

0
σ2
t dt. Dupire and Neuberger observed that

d(lnSt) = σt dWt −
1

2
σ2
t dt

from which we conclude that

∫ T

0

σ2
t dt = 2 ln(S0) − 2 ln(ST ) + 2

∫
1

St
dSt.

It follows that one can replicate (up to a constant) the payoff of a variance swap
by shorting two log-contracts (that is, contracts which pay ln(ST ) at maturity),
and dynamically trading in the asset so as to always hold 2/St units of the asset.
The resulting portfolio will hedge the variance swap under essentially any model
of the form (1.1) (subject to very mild measurability and integrability conditions
on σt).

It follows that the price of a variance swap is essentially determined once one
observes the price of a log-contract. In practice, call options are more liquidly
traded, but the log contract can be statically replicated given a continuum of
call options, and so this information is more commonly used to determine the
price.

In this paper, we consider what can be said about the price of options
which pay the holder a function of the realised variance in the presence of
co-terminal call options. Two important examples of these contracts are the
variance call, which has payoff (〈lnS〉T −K)+ and the volatility swap, which

has payoff
√
〈lnS〉T −K. Unlike in the case of the variance swap, it is no longer

possible to provide a trading strategy which exactly replicates the payoff in any
model, however, we are able to provide both super- and sub-hedging strategies
which work for a large class of models, and therefore provide model-independent
bounds on the prices of such options. Our methods rely on techniques from the
theory of Skorokhod embeddings, and in particular, we need a novel proof of
optimality of some existing constructions. In one direction, the bounds have
been established in a preceding paper, Cox and Wang [11], and some of the
methods used in this paper for the other direction follow similar approaches,
although there remain substantial technical differences.

In addition to establishing theoretical bounds on the prices of these options,
we provide some numerical investigation of the bounds we obtain, and a jus-
tification of our numerical techniques. Finally, we are also able to establish,
using the optimality techniques of [11], a result relating to the extremality of
the Heston-Nandi model (the classical stochastic volatility model of Heston,
where the volatility and asset processes are perfectly anti-correlated). Essen-
tially, we show that for large maturities, under the Heston-Nandi model, the
price of a variance call option will closely approximate the lowest price possible
in the class of models which produce identical call prices. Given that the Heston
model is commonly used for pricing options on variance, and that calibration
can often lead to values of the correlation parameter close to −1, this suggests
that using this model for pricing variance options amounts to taking a strong
‘bet’ on which model most accurately reflects reality.
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The theme of model-independent, or robust, pricing is one that has received
a great deal of attention in recent years. The approach we take in this pa-
per can be traced back to Hobson [28], and more recent work, closely related
to variance options, includes Dupire [18], Carr and Lee [8], Davis, Ob lój, and
Raval [16], Cox and Wang [11] and Oberhauser and dos Reis [39]. In addition,
Hobson and Klimmek [29] consider variance swaps where the model may include
jumps — a case which we exclude. An alternative, related approach is based
on the uncertain volatility models of Avellaneda, Levy, and Parás [1]. Recent
papers which take this approach include Galichon, Henry-Labordere, and Touzi
[23], Possamäı, Royer, and Touzi [42] and Neufeld and Nutz [38]. We explain
how our results may be interpreted in this framework in Remark 4.8. Other
recent connected work in this direction includes Beiglböck, Henry-Labordère,
and Penkner [5] and Dolinsky and Soner [17], where connections with optimal
transport are established.

We proceed as follows: in Section 2 we introduce our financial setup, and
explain why the financial problem of interest can be related to the Skorokhod
embedding problem. This motivates Section 3, where we provide a characteri-
sation of the solution of Rost [46] and Chacon [9] to the Skorokhod embedding
problem. In Section 4 we give a novel proof of the optimality of these barri-
ers, and explain how these constructions may be used to derive superhedges for
certain options. In Section 5 we show how the solutions may be computed nu-
merically, and provide some graphical evidence of the behaviour of the hedging
strategies. In Section 6 we prove our optimality result for the Heston-Nandi
model.

2 Financial Motivation

To motivate our financial models, we begin with a fairly classical setup: we sup-
pose that there is a market which consists of a traded asset, with price St defined

on a probability space
(

Ω,F , (Ft)t≥0 ,P
)

, satisfying the usual conditions, with:

dSt

St
= rt dt+ σt dWt (2.1)

under some probability measure Q ∼ P, where P is the objective probability
measure, and Wt a Q-Brownian motion. In addition, we suppose rt is the
risk-free rate which we require to be known, but which need not be constant.
In particular, let rt, σt be locally bounded, progressively measurable processes
so that the integral in (2.1) is well defined, and so St is an Itô process. We
suppose that the process σt is not known (or more specifically, we aim to produce
conclusions which hold for all σt in the class described). Specifically, we shall,
at least initially, suppose:

Assumption 2.1. The asset price process, under some probability measure Q ∼
P, is the solution to (2.1), where rt and σt are locally bounded, predictable
processes.

We shall later see that some relaxation of this condition is possible, using
pathwise approaches to stochastic integration.

In addition, we need to make the following assumptions regarding the set of
call options which are initially traded:
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Assumption 2.2. We suppose that call options with maturity T , and at all
strikes {K : K ≥ 0} are traded at time 0, and the prices, C(K), are assumed
to be known. In addition, we suppose call-put parity holds, so that the price

of a put option with strike K is P (K) = e−
∫

T
0

rs dsK − S0 + C(K). We make
the additional assumptions that C(K) is a continuous, decreasing and convex

function, with C(0) = S0, C
′
+(0) = −e−

∫
T
0

rs ds and C(K) → 0 as K → ∞.

Many of these notions can be motivated by arbitrage concerns (see e.g. Cox
and Ob lój [14]). That there are plausible situations in which these assumptions
do not hold can be seen by considering models with bubbles (e.g. [13]), in
which call-put parity fails, and C(K) 6→ 0 as K → ∞. Let us define Bt =

e
∫

t
0
rs ds, and make the assumptions above. Since (classically) prices correspond

to expectations under Q, the implied law of B−1
T ST (which we will denote µ)

can be recovered by the Breeden-Litzenberger formula [7]:

µ((K,∞)) = Q∗(B−1
T ST ∈ (K,∞)) = −BTC

′
+(BTK). (2.2)

Here we have used Q∗ to emphasise the fact that this is only an implied probabil-
ity, and not necessarily the distribution under the actual measure Q. It can now
also be seen that the assumption that C ′

+(0) = −B−1
T is equivalent to assuming

that there is no atom at 0 — i.e. µ((0,∞)) = 1. In general, the equality here
could be replaced with an inequality (C ′

+(0) ≥ −B−1
T ) if one wished to consider

models with a positive probability of the asset being worthless at time T . We
do not impose the condition that the law of B−1

T ST under Q is µ, we merely
note that this is the law implied by the traded options. We also do not assume
anything about the price paths of the call options: our only assumptions are
their initial prices, and that they return the usual payoff at maturity. Finally,
it follows from the assumptions that µ is an integrable measure with mean S0.

Our goal is to now to use the knowledge of the call prices to find a lower or
upper bound on the price of an option which has payoff

F

(∫ T

0

σ2
t dt

)
= F (〈lnS〉T ) .

The term
∫ T

0
σ2
t dt is commonly referred to as the realised variance. There are a

number of pertinent examples which motivate us: the most common case, and
where the answer is well known, is the case of a variance swap, where the payoff
of the option is (〈lnS〉T −K). An obvious modification of this is the variance
call which has payoff (〈lnS〉T − K)+, and the corresponding variance put. In

addition, volatility swaps are traded, where the payoff is
√
〈lnS〉T −K. As well

as options written on the realised variance, there are classes of options which
trade on various forms of weighted realised variance: define

RV w
T =

∫ T

0

w(St) d 〈lnS〉t =

∫ T

0

w(St)σ
2
t dt

then many of the above options can be recast in terms of their weighted versions.
Common examples of these include options on corridor variance, where w(x) =
1{x∈[a,b]}, and the gamma swap [33], where w(x) = x. In fact, for a simplified
exposition, we will assume that the weight depends not on the spot price, but
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rather on the discounted spot price (or equivalently, the forward price). In the
case of most interest, where w(x) = 1, this makes no difference, as it would,
for example in an equity setting where the dividend yield and the interest rate
were the same; we also refer to Lee [34], where it is indicated how such an
approximation may be accounted for using a model-independent hedge involving
calls of all maturities, although this is beyond the general methodology described
in the article, where we will generally assume that only calls of one maturity
are observed.

Note we assume that our underlying price process, St, has continuous paths.
This is an important assumption, and our conclusions will not generally hold
otherwise. Hobson and Klimmek [29] consider related questions in the case
where the underlying asset may jump. We also assume that the payoff of the
option is exactly the realised quadratic variation, wheras in reality, financial
contracts will be written on a discretised version of the quadratic variation (for
example, the sum of squared daily log-returns); the effects of this approximation
are also considered by, for example, Hobson and Klimmek [29].

Our approach is motivated by the following heuristics. Consider the dis-
counted stock price:

Xt = e−
∫

t
0
rs dsSt = B−1

t St.

Under Assumption 2.1, Xt satisfies the SDE:

dXt = Xtσt dWt.

Let λ(x) be a strictly positive, continuous function, and define a time change

τt =
∫ t

0
λ(Xs)σ

2
s ds. Writing At for the right-continuous inverse, so that τAt

= t,

we note that W̃t =
∫ At

0
σsλ(Xs)

1/2 dWs is a Brownian motion with respect to

the filtration F̃t = FAt
, and if we set X̃t = XAt

, we have:

dX̃t = X̃tλ(X̃t)
−1/2 dW̃t. (2.3)

In particular, under mild assumptions on λ, X̃t is now a diffusion on natural
scale, and we note also that X̃0 = S0 and X̃τT = XT = B−1

T ST . It follows

that (X̃τT , τT ) = (B−1
T ST ,

∫ T

0
λ(Xs)σ

2
s ds), and therefore that (2.2), which im-

plies knowledge of the law of B−1
T ST , also tells us the law of X̃τT . The key

observation is that there is now a correspondence between the possible joint
laws of a stopped diffusion and its stopping time, and the joint laws of the (dis-
counted) asset price at a fixed time, and the weighted realised variance at that
time. Since we wish to find the extremal possible prices of options whose payoff

is F
(∫ T

0
w(Xt)σ

2
t dt
)

, if we take λ(x) ≡ w(x), the problem would appear to

be equivalent to that of finding a stopping time which maximises or minimises
EF (τ) subject to L(X̃τ ) = µ, where µ is the law of B−1

T ST inferred by the
market call prices. The general problem of finding a stopping time for a process
which has a given distribution is known as the Skorokhod Embedding problem,
and solutions with given optimality properties have been well studied in recent
years [2, 28, 12, 10] — for a survey of these results, we refer the reader to Hobson
[27]. In Cox and Wang [11], we established that a construction of a Skorokhod
embedding due to Root [45] corresponded to minimising payoffs of the above
form where F (·) is a convex increasing function. In this paper, we show that a
related construction, which can be traced back to work of Rost [46], and Chacon
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[9], maximises such payoffs. In addition, we shall show how these constructions
may be used to derive trading strategies, which will super- or sub-hedge in any
of the models under consideration, and are a hedge in the extremal model.

Finally, we will also briefly consider a similar problem where the option is
forward starting — so the payoff depends on the realised variance accumulated
between future dates T0 and T1. In this case, we assume that we observe call
prices at times T0 and T1, which correspond to distributions at times T0 and
T1. The implied distribution at time T0, ν say, can be interpreted as the law of
XT0

. Taking X̃t = XT0+τt , we get a problem similar to above, but with X̃0 ∼ ν
for some new probability measure ν. This setting will be considered further in
Remark 4.6.

3 Construction of Rost’s Barrier

3.1 Background

In this section, we recall some important results due to Rost and Chacon con-
cerning the construction of solutions to the Skorokhod embedding problem.
These results are established under fairly general assumptions on the underly-
ing process X̃t. One of the main goals of this section is to provide conditions
under which we can apply their results in our setting. We begin by recalling the
notion of a reversed barrier.

Definition 3.1 (Reversed Barrier ([40])). A closed subset B of [−∞,+∞] ×
[0,+∞] is a reversed barrier if

(i). (x, 0) ∈ B for all x ∈ [−∞,+∞];

(ii). (±∞, t) ∈ B for all t ∈ [0,∞];

(iii). if (x, t) ∈ B then (x, s) ∈ B whenever s < t.

Given a reversed barrier, we can construct a stopping time of a process X̃t

as τ = inf{t > 0 : (X̃t, t) ∈ B}. Then it is known that, given a measure
µ satisfying certain conditions, there exists a reversed barrier which embeds
the law µ, that is, such that X̃τ ∼ µ. Moreover, in the case where X̃t is a
diffusion, the reversed barrier has the property that the corresponding stopping
time minimises the capped expectation E [τ ∧ t] over solutions to the Skorokhod
embedding problem, for all t ≥ 0. Using the observation that

F (τ) = F (0) + τF ′(0) +

∫ ∞

0

F ′′(t) (τ − t)+ dt

and (τ − t)+ = τ −τ ∧ t, and the fact that Eσ depends only on the law of Xσ for
‘nice’ stopping times (a point we will elaborate on shortly), then it is immediate
that EF (τ) is maximised over such stopping times for all convex functions with
F ′(0) = 0.

These observations are essentially due to work of Rost and Chacon. In Rost
[46], the notion of a filling scheme stopping time was introduced for a general
Markov process, and this was shown to embed and have the optimality prop-
erty described. Later, Chacon [9]1 proved that in many cases, the filling scheme

1We note that Chacon calls what we refer to a reversed barrier as a barrier. We follow the
terminology established in Ob lój [40].
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stopping time would actually be almost-surely equal to a stopping time gener-
ated by a reversed barrier. More recent results concerning these constructions
can be found in [15].

Before proving our results characterising the reversed barriers, we recall some
important background. Given a probability distribution µ and a Markov process
X̃, the Skorokhod embedding problem is to find a stopping time τ such that
X̃τ ∼ µ. Motivated by the financial setting, we consider the case that

µ is a probability distribution with µ((0,∞)) = 1, (3.1)

and X̃ is a regular (see Rogers and Williams [44] for terminology relating to
one-dimensional diffusions) diffusion on I = (0,∞), which is a solution to (2.3),

with initial distribution X̃0 ∼ ν, for some given distribution ν, and a continuous
function λ on I which is strictly positive. Since 0 6∈ I, 0 is inaccessible for X̃t.

Recall that we wish to include the case of forward-starting options, in which
case X̃0 is assumed to have the law inferred from the call prices at the start date
of the contract. In the theory of Skorokhod embeddings, it is usually natural
to restrict to the class of minimal stopping times, however since X̃t is transient,
any embedding will be minimal. Moreover, for example by considering X̃t as a
time change of a Brownian motion stopped on hitting 0, if we restrict ourselves
to laws µ and ν which have the same mean, then any embedding of µ must have
(X̃t∧τ )t≥0 a uniformly integrable (UI) process, and moreover a necessary and
sufficient condition for the existence of an embedding is that

Uν(x) := −
∫

R

|y − x| ν(dy) ≥ −
∫

R

|y − x|µ(dy) =: Uµ(x) > −∞, (3.2)

for all x ∈ R. By Jensen’s inequality, such a constraint is clearly necessary
for the existence of an embedding; further, using time-change arguments, and
reducing to the Brownian case, it is the only restriction that is required. To
understand this notion in the financial setting, note that from (2.2) we deduce
that Uµ(x) = S0−2C(BTx)−x, giving an affine mapping between the function
Uµ(x) and the call prices.

For any given reversed barrier, we define D := (R× I)\B, and then one can
show that there exists a unique upper semi-continuous function R : I → [0,∞]
such that

D = {(x, t) : t > R(x)} and B = {(x, t) : 0 ≤ t ≤ R(x)}.

Then the stopping time of interest is:

τD = inf{t > 0 : (X̃t, t) /∈ D} = inf{t > 0 : t ≤ R(X̃t)},

and we will call such an embedding a Rost stopping time, or a Rost embedding.
We may also refer to D as a reversed barrier, with the meaning intended to be
inferred from the notation. Note that multiple barriers may solve the same stop-
ping problem: for example, if the target distribution contains atoms, the barrier
between atoms may be unspecified away from the starting point, provided it is
never beyond the ‘spikes’ of the atoms.

We can put together the work of Rost and Chacon in the specific case that
the underlying process is a regular diffusion on I, satisfying a certain regularity
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condition needed to ensure Chacon’s result holds. Specifically, we introduce the
set:

D =





λ ∈ C(I;R) :

λ is strictly positive and the solution to (2.3) de-
fines a regular diffusion on I, with transition den-
sity p(t, x, y) with respect to Lebesgue such that,
for any x0 ∈ I, c > 0, open set A contain-
ing x0 and ε > 0, there exists δ > 0 such that
| (p(x, x0, t) − p(x, x0, s))x

2
0λ(x0)−1| < ε whenever

|s− t| < δ and either x0 6∈ A or t > c.





(3.3)
Then we can prove the following result:

Theorem 3.2. Suppose µ and ν are probability measures on I such that (3.2)

holds, and suppose X̃t solves (2.3) for some λ ∈ D with X̃0 ∼ ν:

(i). if µ and ν have disjoint support, then there exists a reversed barrier D

such that X̃τD ∼ µ;

(ii). if µ and ν do not have disjoint support, then (on a possibly enlarged prob-
ability space) there exists a random variable S ∈ {0,∞}, and reversed

barrier D, such that X̃τD∧S ∼ µ.

Moreover, in both cases, the resulting embedding maximises EF (σ) over all stop-

ping times σ with X̃σ ∼ µ and Eσ = EτD < ∞, for any convex function F on
[0,∞).

That the condition Eσ = EτD is reasonable can be seen by considering

Q(X̃t) :=

∫ X̃t

x0

∫ y

x0

λ(z)z−2 dzdy =

∫ t

0

∫ xs

x0

λ(y)y−2 dydX̃s+
1

2
t+Q(X̃0). (3.4)

Noting that Q(x) is convex, we can take expectations along a localising sequence

and apply Fatou’s Lemma to see that, for any stopping time τ , Eτ ≥ EQ(X̃τ ),

the second term depending only on the law of X̃τ . For well behaved stop-
ping times (specifically, where EQ(X̃τ∧N ) → EQ(X̃τ )), we would in fact expect
equality here.

We also observe that there is a trivial extension of this result when F (·) is a
concave function, then −F (·) is a convex function, and so the resulting stopping
time minimises EF (σ) over the same class of stopping times.

Proof of Theorem 3.2. We first show that, under the conditions above, there
exists a filling scheme stopping time.

Standard time-change arguments, and reduction to the Brownian case show
that when µ and ν have the same mean, then (3.2) is both necessary and suf-
ficient for the existence of a Skorokhod embedding which solves the problem.
In addition, by Rost [46, Theorem 4], this is sufficient to deduce the existence
of a filling scheme stopping time: from the proof of this result, it is clear that
whenever an embedding exists, it can be taken as a filling scheme stopping time.

Now consider the case where µ and ν have disjoint support. Then Chacon
[9, Theorem 3.24] states that a filling scheme stopping time is a reversed barrier
stopping time provided:
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(i). X̃t is a standard Markov process, in duality with a standard Markov pro-
cess X̂t (we refer the reader to e.g. Blumenthal and Getoor [6, Defini-
tion VI.1.2]);

(ii). the transition measures relating to X̃t and X̂t have densities;

(iii). the transition density p(x, y, t) for X̃t satisfies an equicontinuity property:
for any x0 ∈ R, c > 0 and open set A containing x0, then given ε > 0, there
exists δ > 0 such that |p(x, x0, t) − p(x, x0, s)| < ε whenever |s − t| < δ
and either x0 6∈ A or t > c.

Since X̃t is a regular diffusion with inaccessible endpoints, it is its own dual pro-
cess, with respect to the speed measure (which is λ(x)x−2dx), see Fitzsimmons
[20, Remark 1.15]. Moreover, under these conditions, the transition density ex-
ists (e.g. Rogers and Williams [44, Theorem V.50.11]), and (3.3) guarantees
that (iii) holds.

Finally, suppose µ and ν are not disjointly supported. Then, using the
Hahn-Jordan decomposition, we can find disjoint, non-negative measures ν0
and µ0, such that ν0(A) ≤ ν(A), µ0(A) ≤ µ(A), for all A ∈ B(0,∞), and
µ− ν = µ0 − ν0. Since µ and ν are not disjoint, µ0 and ν0 are non-trivial. We
write in addition ν ∧ µ = ν − ν0, observing that also then ν ∧ µ = µ − µ0. By
enlarging the probability space if necessary, let Z be a uniform random variable
on (0, 1), independent of the process, and define the Radon-Nikodym derivative
f = d(ν ∧ µ)/ dν. Then if we set

S =

{
0, if Z ≤ f(X̃0);

∞, if Z > f(X̃0),

it follows that P(X ∈ A,S = 0) = (ν ∧ µ)(A). Now define the normalised
measures, ν∗(A) = ν0(A)/ν0((0,∞)) and µ∗(A) = µ0(A)/µ0((0,∞)), and con-
struct the reversed barriers for the initial distribution ν∗ and target distribution
µ∗. (It is straightforward to check that Uν0

(x) − Uµ0
(x) = Uν(x) − Uµ(x), and

therefore that the construction is possible.) However, it is now clear that this
embeds and is exactly the stopping time described in the statement of the the-
orem. Moreover, this description of the first step of the construction is exactly
the first step described in the construction of the filling scheme by Rost, so it
follows that this stopping time is a filling scheme stopping time.

The final statement is Chacon [9, Proposition 2.2].

It is clear that the above conditions include the main case of interest — the
case where λ(x) = 1, which is the case corresponding to options on realised
variance. For the point 0 to be inaccessible, we require

∫
0+
λ(x)x−1 dx = ∞

[44, Theorem V.51.2]. In principle, this would exclude, for example, the case
where λ(x) = x, the Gamma swap, however in practice, this case could be
approximated by taking λ(x) = x ∨ ε for some small ε > 0 . Note however that

in the case where λ(x) = x, X̃t is a Bessel process of dimension 0, and so in
particular, the process will hit zero with positive probability; this is not crucial,
since we assume our target measure has no atom of mass at 0, and so we would
expect the reversed barrier to stop the process before hitting zero, and therefore
the exact behaviour near zero should not affect the barrier substantially.
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3.2 Construction of reversed barriers

In this section, we show how the reversed barrier determined in Theorem 3.2
can be constructed. As above, we suppose that we have a time-homogeneous
diffusion, X̃t, such that:

dX̃t = σ(X̃t)dWt,

X̃0 ∼ ν,
(3.5)

so σ(x) = xλ(x)−1/2. In addition, we suppose that the diffusion coefficient,
σ : I → (0,∞) is a continuously differentiable function such that:

x2σ(x)−2 ∈ D, |σ(x)x−1| and |σ′(x)σ(x)x−1| are bounded on (0,∞), (3.6)

or equivalently, that λ : I → (0,∞) is continuously differentiable, and

λ(x) ∈ D, |λ(x)−1| and |λ′(x)λ(x)−2x| are bounded on (0,∞). (3.7)

Then our general problem is:

SEP∗(σ, ν, µ): Find an upper-semicontinuous function R(x) such that the

domainD = {(x, t) : t > R(x)} has X̃τD∧S ∼ µ, where X̃t is

given by (3.5), τD = inf{t > 0 : (X̃t, t) 6∈ D} = inf{t > 0 :

t ≤ R(X̃t)}, and S ∈ {0,∞} is an F0-measurable random

variable such that X̃0 ∼ ν ∧ µ on {S = 0}.

Here, the measure ν ∧ µ is as defined in the proof of Theorem 3.2. We restrict
ourselves to the case where Uν(x) ≥ Uµ(x). We will also introduce the notation
τ̄D = τD ∧ S.

Then we have the following result:

Theorem 3.3. Suppose (3.5) and (3.6) hold. Assume D solves SEP∗(σ, ν, µ).

Then u(x, t) = Uµ(x) + Eν
∣∣∣x− X̃t∧τ̄D

∣∣∣ is the unique bounded viscosity solution

to:

∂u

∂t
(x, t) =

(
σ(x)2

2

∂2u

∂x2
(x, t)

)

+

(3.8a)

u(0, x) = Uµ(x) − Uν(x). (3.8b)

Moreover, given the solution u to (3.8), a reversed barrier D which solves
SEP∗(σ, ν, µ) can be recovered by D = {(x, t) : u(x, t) > u(0, t)}.

Remark 3.4. In a recent paper, Oberhauser and dos Reis [39] make a very
similar observation, and they also use a viscosity solution approach to derive
existence and uniqueness in the Rost setting (unlike [11] where a variational
inequality-based approach is taken). They also work in the slightly more general
setting where the diffusion coefficient σ may depend both on time and space; it
seems very likely that the results should extend to this setting, but we observe
that the optimality of such a construction is no longer easily determined; given
that we are interested in the optimality properties of such processes, we restrict
ourselves to the time-homogenous case.
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We wish to use standard results on viscosity solutions from Fleming and
Soner [21]. The equation (3.8) is really a forward equation, rather than a back-
ward equation, which is the setting in [21]; however we can apply their results
to the function v(x, T − t) = −u(x, t), for a fixed T > 0. Since T is arbitrary,
the extension to an infinite horizon is straightforward.

Proof. We first note that since µ and ν are integrable, the function u is bounded,
both −Uµ(x) and h(x, t) = Eν |x − X̃t∧τ̄D | are convex, continuous functions,
and so their second derivatives (in x) exist as positive measures. Moreover,
−U′′

µ(x) = 2µ(dx), and we can also decompose hxx(x, t)/2 into two measures µ1
t

and µ2
t defined by:

∫
f(x)µ1

t (dx) = Eν
[
f(X̃t); t < τ̄D

]

∫
f(x)µ2

t (dx) = Eν
[
f(X̃τ̄D ); t ≥ τ̄D

]
.

In particular, since τ̄D embeds µ, we must have µ2
t (A) ≤ µ(A) for all A, and

µ2
t (A) = µ(A) for all A ⊆ {x|t ≥ R(x)}. In addition, µ1

t will be dominated
by the transition density of a diffusion (which exists by (3.3)) started with
distribution ν, and so will have a density f1(x, t) with respect to Lebesgue for
all t > 0, and since D is open, by a slight modification of Cox and Wang [11,

Lemma 3.3], it is easily checked that u(x, t) satisfies ∂u
∂t (x, t) = σ(x)2

2
∂2u
∂x2 (x, t) in

D. We observe also that f1(xn, tn) → 0 whenever (xn, tn) → (x, t) ∈ B, since
f1 is dominated by the density of a diffusion with initial law ν, killed if it hits
x before t, which also has this property.

The result now follows from Fleming and Soner [21, Proposition V.4.1], when
we observe that for t ≤ R(x), any smooth function w such that w− u is a local
minimum at (x, t) must have ∂w

∂t = 0. For t < R(x) this follows from observing

that Eν
∣∣∣x− X̃t∧τ̄D

∣∣∣ is constant in t whenever t < R(x). For t = R(x), we

observe that f1(x, t) can be made arbitrarily small in a ball near (x, t), and
∂2u
∂x2 = f1(x, t) in D. Hence, for such w, we have −wt +

(
σ2(x)wxx

)
+

≥ 0.

For smooth w such that w − u has a local maximum at (x, t), we first observe
that for t ≤ R(x), the argument above implies that uxx(x, t) ≤ 0, and so
wxx(x, t) ≤ 0 also. In addition, by Jensen’s inequality, u(x, t) is non-decreasing,
so wt(x, t) ≥ 0. It follows that −wt +

(
σ2(x)wxx

)
+
≤ 0.

It follows that u is indeed a bounded viscosity solution. To see that it is
unique, we apply Fleming and Soner [21, Theorem V.9.1] to u(t, ey) (noting also
the comment immediately preceding this proof). It is now routine to check that
(3.6) is sufficient to ensure that there is a unique bounded viscosity solution to
(3.8).

To conclude that a reversed barrier can be recovered from a solution u to
(3.8), we observe that Theorem 3.2 guarantees the existence of a reversed barrier
D, and by Jensen’s inequality, we see that D∗ = {(x, t) : u(x, t) > u(t, 0)} does
indeed define a reversed barrier. From the arguments above, we also conclude
that P(τ̄D = τ̄D∗) = 1, since X̃τ̄D is supported on the set where u(x, t) = u(x, 0),
and f(x, t) = 0 on this set also.

Remark 3.5. We observe also that the solution u(x, t) has an interpretation in
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terms of an optimal stopping problem [c.f. 11, Remark 4.4]. Fix T > 0 and set

v(x, t) = sup
τ∈[t,T ]

E(x,t)
[
Uµ(X̃τ ) − Uν(X̃τ )

]
,

where the supremum is taken over stopping times τ , and the expectation is taken
conditional on X̃t = x. Then standard results for optimal stopping problems
suggest that v(x, t) is the solution to the viscosity equation:

max

{
1

2
σ(x)2

∂2v

∂x2
(x, t) +

∂v

∂t
(x, t), v(x, t) − (Uµ(x) − Uν(x))

}
= 0,

v(x, T ) = Uµ(x) − Uν(x).

(3.9)

Now observe from the problem formulation that v(x, t) is certainly decreasing
in t (a stopping time which is feasible for t1 is also feasible for t0 < t1, with
the same reward). Using the fact that both the solution to (3.8) and (3.9) are
monotone in t, it is possible to deduce that v(x, T−t) solves (3.8), and u(x, T−t)
solves (3.9), so that they must be the same function.

4 Optimality of Rost’s Barrier, and superhedg-

ing strategies

4.1 Optimality via pathwise inequalities

For a given distribution µ, Theorem 3.2 says that Rost’s solution is the “maximal
variance” embedding. A slight generalisation of this result leads us to consider
the following problem:

OPT∗(σ, ν, µ): Suppose (3.1) and (3.2) hold, and X̃ solves (3.5). Find a

stopping time τ such that X̃τ ∼ µ and, for a given increas-
ing convex function F with F (0) = 0,

E
[
F (τ)

]
= sup

ρ:X̃ρ∼µ

E
[
F (ρ)

]
.

Our aim in this section is to find the super-replicating hedging strategy for
call-type payoffs on variance options, however it is not immediately obvious how
to recover such an identity directly from the proofs of the optimality criterion
given in Chacon [9]. Rather, we shall provide a ‘pathwise inequality’ which
encodes the optimality in the sense that we can find a supermartingale Gt, and
a function H(x) such that

F (t) ≤ Gt +H(X̃t) (4.1)

and such that, for Rost’s embedding τ̄D, equality holds in (4.1) and Gt∧τ̄D is
a UI martingale. It then follows that τ̄D does indeed maximise EF (τ) among
all solutions to the Skorokhod embedding problem, and further, using (4.1), we
can super-replicate call-type payoffs on variance options by a dynamic trading
strategy.
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Suppose that we have already found the solution to SEP∗(σ, ν, µ), τ̄D. De-
fine the function

M(x, t) = E(x,t) [f(τ̄D)] , (4.2)

where f is the left derivative of F and τ̄D is the corresponding hitting time
of B. Specifically, observe that X̃t is a Markov process, and we interpret the
expectation as the average of f(τ̄D) given that we start at X̃t = x, with τ̄D ≥ t.
At zero, given the possibility of stopping at time 0, it is not immediately clear
how to interpret the conditioning — it will turn out not to matter, but a natural
choice would be to replace τ̄D with τD. In the following, we shall assume:

M(x, t) is locally bounded on R× R+. (4.3)

Obviously, M(x, t) = f(t) whenever 0 ≤ t < R(x). Now given a fixed time
T > 0, and choosing S∗

0 ∈ (inf supp(µ), sup supp(µ)) (which is non-empty if µ
is non-trivial), we define

ZT (x) = 2

∫ x

S∗

0

∫ y

S∗

0

M(z, T )

σ(z)2
dz dy,

and in particular, Z ′′
T (x) = 2M(x, T )/σ2(x), and ZT is a convex function. Define

also

GT (x, t) = F (T ) −
∫ T

t

M(x, s) ds− ZT (x)

HT (x) =

∫ T

R(x)

[
M(x, s) − f(s)

]
ds+ ZT (x)

=

∫ T

R(x)∧T

[
M(x, s) − f(s)

]
ds+ ZT (x).

Q(x) =

∫ x

S∗

0

∫ y

S∗

0

2

σ(z)2
dz dy. (4.4)

Then we have the following results

Proposition 4.1. For all (x, t, T ) ∈ R+ × R+ × R+, we have,

{
GT (x, t) + HT (x) ≥ F (t), if t > R(x) ;

GT (x, t) + HT (x) = F (t), if t ≤ R(x) .
(4.5)

Lemma 4.2. Under the setting (3.1) – (3.2), suppose that the stopping time
τ̄D is the solution to SEP∗(σ, ν, µ). Moreover, assume f is bounded and

for any T > 0,
(
Q(X̃t); 0 ≤ t ≤ T

)
is a uniformly integrable family. (4.6)

Then for any T > 0, the process

(
GT (X̃t∧τ̄D , t ∧ τ̄D); 0 ≤ t ≤ T

)
is a martingale, (4.7)

and (
GT (X̃t, t); 0 ≤ t ≤ T

)
is a supermartingale. (4.8)
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We note that when σ(x) = x, so X̃t is geometric Brownian motion, then it

is straightforward to check that, for all T > 0, supt≤T E[Q(X̃t)
2] < ∞, and so

(4.6) is trivially satisfied provided E[Q(X̃0)2] <∞. Note also that since X̃t is a
local martingale bounded below, for any embedding τ which embeds µ we have
E[X̃τ ] = E[X̃τ̄D ]. It follows that if E[X̃τ̄D ] = E[X̃0], any embedding of µ is a
martingale, and not just a local-martingale.

Then the main result of this section follows.

Theorem 4.3. Suppose that τ̄D is the solution to SEP∗(σ, ν, µ), and (4.6)
holds, then τ̄D solves OPT∗(σ, ν, µ).

Proof. We first consider the case where E[τ̄D] = ∞. Since F (t) ≥ α + βt for
some constants α ∈ R and β ∈ R+, we must have E[F (τ̄D)] = ∞. The result is
trivial. So we always assume E[τ̄D] <∞.

Under the assumption E[τ̄D] < ∞, consider Q(·) given by (4.4). We have

(recall (3.4)) E[Q(X̃τ̄D )] = E[τ̄D] + E[Q(X̃0)] < ∞. Therefore, for all τ em-

bedding µ, E[τ ] = E[Q(X̃τ )] = E[Q(X̃τ̄D )] = E[τ̄D] + E[Q(X̃0)] < ∞. In the
remainder of this proof, we always assume E[τ ] = E[τ̄D] <∞.

We first assume f is bounded, since f is increasing,

there exists C <∞, such that lim
t→∞

f(t) = C. (4.9)

For T > 0, since M(·, T ) is also bounded by C, then

E[ZT (X̃t∧τ )] ≤ CE[Q(X̃t∧τ )] = C(E[t ∧ τ ] + E[Q(X̃0)]) <∞,

and the same argument implies E[ZT (X̃τ )] <∞. So E[ZT (X̃τ )|Ft] is a uniformly

integrable martingale, and by convexity, ZT (X̃t∧τ ) ≤ E[ZT (X̃τ )|Ft]. Therefore,

−C|T − (t ∧ τ)| ≤ F (T ) −GT (X̃t∧τ , t ∧ τ) ≤ C|T − (t ∧ τ)| + E[ZT (X̃τ )|Ft].

It follows that E[GT (X̃t∧τ , t ∧ τ)] → E[GT (X̃τ , τ)] as t → ∞. On the other
hand,

E

[
HT (X̃τ )

]
= E

[∫ T

T∧R(X̃τ )

[
M(X̃τ , s) − f(s)

]
ds

]
+ E

[
ZT (X̃τ )

]
< ∞.

The same arguments hold when τ is replaced by τ̄D, and then we have

E

[
HT (X̃τ )

]
= E

[
HT (X̃τ̄D )

]
and E

[
ZT (X̃τ )

]
= E

[
ZT (X̃τ̄D )

]
.

In addition, by Lemma 4.2, we have,

E

[
GT (X̃T∧τ̄D , T ∧ τ̄D)

]
≥ E

[
GT (X̃T∧τ , T ∧ τ)

]
.
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Combining the results above with (4.5), we have

EF (τ) ≤ E
[
GT (X̃τ , τ) +HT (X̃τ )

]

= E
[
GT (X̃T∧τ , T ∧ τ) +HT (X̃τ )

]
+ E

[
GT (X̃τ , τ) −GT (X̃T∧τ , T ∧ τ)

]

≤ E
[
GT (X̃T∧τ̄D , T ∧ τ̄D) +HT (X̃τ̄D )

]

+ E
[
GT (X̃τ , τ) −GT (X̃T∧τ , T ∧ τ)

]

= E
[
GT (X̃τ̄D , τ̄D) +HT (X̃τ̄D )

]
+ E

[
GT (X̃τ , τ) −GT (X̃T∧τ , T ∧ τ)

]

− E
[
GT (X̃τ̄D , τ̄D) −GT (X̃T∧τ̄D , T ∧ τ̄D)

]

= E
[
F (τ̄D)

]
+ E

[∫ T

T∧τ

M(X̃T∧τ , s) ds−
∫ T

τ

M(X̃τ , s) ds+ ZT (X̃T∧τ )

]

− E

[∫ T

T∧τ̄D

M(X̃T∧τ̄D , s) ds−
∫ T

τ̄D

M(X̃τ̄D , s) ds+ ZT (X̃T∧τ̄D )

]

= E
[
F (τ̄D)

]
+ E

[
1[τ>T ]

∫ τ

T

M(X̃τ , s) ds

]

− E

[
1[τ̄D>T ]

∫ τ̄D

T

M(X̃τ̄D , s) ds

]
+ E

[
ZT (X̃T∧τ ) − ZT (X̃T∧τ̄D )

]
.

(4.10)

Since f ≤ C, we have

0 ≤ E

[
1[τ>T ]

∫ τ

T

M(X̃τ , s) ds

]
≤ CE

[
1[τ>T ](τ − T )

]

= CE
[
τ − T ∧ τ

]
−→ 0, as T → ∞.

Similarly,

lim
T→∞

E

[
1[τ̄D>T ]

∫ τ̄D

T

M(X̃τ̄D , s) ds

]
= 0.

Now, by the fact that E[Q(X̃T∧τ )] = E[T ∧ τ ] + E[Q(X̃0)] and the convexity

of Q, Q(X̃T∧τ ) ≤ E[Q(X̃τ )|FT ], hence, Q(X̃t∧τ ) → Q(X̃τ ) in L1. Noting that

ZT (X̃T∧τ ) ≤ CQ(X̃T∧τ ) and ZT (X̃T∧τ ) → CQ(X̃τ ) a.s. as T → ∞, we have

lim
T→∞

E

[
ZT (X̃T∧τ )

]
= CE

[
Q(X̃τ )

]
<∞.

The same arguments hold when τ is replaced by τ̄D, and moreover, E[Q(X̃τ )] =

E[Q(X̃τ̄D )]. Now, let T go to infinity in (4.10), and we have

E
[
F (τ)

]
≤ E

[
F (τ̄D)

]
.

To observe that the result still holds when f is unbounded, observe that we
can apply the above argument to f(t) ∧N , and FN (t) =

∫ t

0
f(s) ∧N ds to get

E [FN (τ̄D)] ≥ E [FN (τ)], and the conclusion follows on letting N → ∞.

Now we turn to the proofs of Proposition 4.1 and Lemma 4.2.
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Proof of Proposition 4.1. If (x, t) ∈ D, i.e. t > R(x),

GT (x, t) +HT (x) =

∫ t

R(x)

M(x, s) ds+ F (R(x))

≥
∫ t

R(x)

f(s) ds+ F (R(x)) = F (t).

If (x, t) /∈ D, i.e. t ≤ R(x),

GT (x, t) +HT (x) = −
∫ R(x)

t

M(x, s) ds+ F (R(x))

= −
∫ R(x)

t

f(s) ds+ F (R(x)) = F (t).

Proof of Lemma 4.2. For s ≤ t ≤ T , by (4.6), the Meyer-Itô formula gives,

ZT (X̃t) − ZT (X̃s) =

∫ t

s

Z ′
T (X̃u) dX̃u +

∫ t

s

M(X̃u, T ) du.

By (4.6) and the fact f is bounded, it is easy to see that the family (ZT (X̃t); 0 ≤
t ≤ T ) is uniformly integrable. By the Doob-Meyer decomposition theorem (e.g.
Karatzas and Shreve [32, Theorem 4.10, Chapter 1]), the first term on the right-
hand side is a uniformly integrable martingale,

E
[
ZT (X̃t) − ZT (X̃s)

∣∣Fs

]
=

∫ t

s

E
[
M(X̃u, T )

∣∣Fs

]
du.

Then we have,

GT (X̃s, s) − E

[
GT (X̃t, t)

∣∣Fs

]

=

∫ T

t

E
[
M(X̃t, u)

∣∣Fs

]
du+

∫ t

s

E
[
M(X̃u, T )

∣∣Fs

]
du−

∫ T

s

M(X̃s, u) du

=

∫ T

t

E
[
M(X̃t, u)

∣∣Fs

]
du−

∫ T−t+s

s

M(X̃s, u) du

+

∫ t

s

E
[
M(X̃u, T )

∣∣Fs

]
du−

∫ T

T−t+s

M(X̃s, u) du

=

∫ T

t

{
E
[
M(X̃t, u)

∣∣Fs

]
−M(X̃s, u− (t− s))

}
du

+

∫ t

s

{
E
[
M(X̃u, T )

∣∣Fs

]
−M(X̃s, T − (t− u))

}
du.

Now, observe that X̃t is a Markov process, so we can write Yt for an independent
copy of X̃, and σ̄D for the corresponding hitting time of the reversed barrier,
and write X̃x for X̃ started at x. We have, for u ∈ (t, T ]:

E(x,u−(t−s))
[
f(τ̄D)|Fu

]
≤1[τ̄D≤u]f(u) + 1[τ̄D>u]E

(x,u−(t−s))
[
f(τ̄D)|Fu

]

=1[τ̄D≤u]f(u) + 1[τ̄D>u]E
(X̃x

t−s,u)
[
f(σ̄D)

]

≤M(X̃x
t−s, u). (4.11)
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Hence,

E
[
M(X̃t, u)

∣∣Fs

]
= EX̃sM(X̃t−s, u)

≥ E(X̃s,u−(t−s))
[
f(τ̃D)

]
= M(X̃s, u− (t− s)).

(4.12)

For u ∈ (s, T ), replacing u by T and t by u in (4.11) gives that

E(x,T−(u−s))
[
f(τ̄D) | FT

]
≤ M(X̃x

u−s, T ),

and hence,
E
[
M(X̃u, T )

∣∣Fs

]
≥ M(X̃s, T − (u− s)). (4.13)

It follows that

∫ t

s

{
E
[
M(X̃u, T )

∣∣Fs

]
−M(X̃s, T − (t− u))

}
du

=

∫ t

s

{
E
[
M(X̃u, T )

∣∣Fs

]
−M(X̃s, T − (u− s))

}
du ≥ 0.

Therefore,

GT (X̃s, s) − E

[
GT (X̃t, t)|Fs

]
≥ 0,

which implies (4.8).
On the other hand, as a part of (4.11),

1[τ̄D>u]E
(x,u−(t−s))

[
f(τ̄D) | Fu

]
= 1[τ̄D>u]E

(X̃x
t−s,u)

[
f(σ̄D)

]
,

and on {u < τ̄D} equality holds in the inequalities (4.12) and (4.13). Thus,
(4.7) follows.

For bounded f , although the pathwise inequality in this section GT (X̃t, t) +

HT (X̃t) ≥ F (t) holds for all T, t > 0, GT (X̃t, t) is a supermartingale only on
[0, T ]. For hedging purposes, we would really like to know: can we find a global

pathwise inequality G∗
t +H∗(X̃t) ≥ F (t), such that G∗

t is a supermartingale on
[0,∞] and a martingale on [0, τ̄D]? We now provide conditions where we can
find such G∗ and H∗.

We replace (4.9) by a stronger assumption: there exists some α > 1, such
that

for t sufficiently large, C ≥ f(t) ≥ C −O(t−α). (4.14)

Under this assumption, it is easy to check there exists a J(x, t) such that

J(x, t) = lim
T→∞

∫ T

t

[M(x, s) − f(s)] ds, (4.15)

then we define



G(x, t) = lim

T→∞
GT (x, t) = F (t) − J(x, t) − CQ(x);

H(x) = lim
T→∞

HT (x) = J(x,R(x)) + CQ(x).
(4.16)

17



Letting T → ∞ in (4.5),

{
G(x, t) +H(x) > F (t), if t > R(x);

G(x, t) +H(x) = F (t), if t ≤ R(x).
(4.17)

By the monotone convergence theorem, for all t > 0, E[
∫ T

t
[M(X̃t, s)−f(s)] ds] →

E[J(X̃t, t)] as T → ∞, and then by Scheffé’s Lemma,
∫ T

t
[M(X̃t, s)− f(s)] ds→

J(X̃t, t) in L1. On the other hand, since ZT (X̃t) → CQ(X̃t) in L1,

GT (X̃t, t)
L1

−−→ G(X̃t, t) and HT (X̃t)
L1

−−→ H(X̃t).

It follows that the process
(
G(X̃t, t); t ≥ 0

)
is a supermartingale and the process

(
G(X̃t∧τ̄D , t ∧ τ̄D); t ≥ 0

)
is a martingale (since the conditional expectation, as

an operator, is continuous in Lp for p ≥ 1). We then can show as before that
(if τ , τ̄D are integrable),

E [F (τ)] ≤ E

[
G(X̃τ , τ) +H(X̃τ )

]

≤ E

[
G(X̃τ̄D , τ̄D) +H(X̃τ̄D )

]
= E [F (τ̄D)] .

An example where (4.14) holds is the call-type payoff: F (t) = (t−K)+. We
see that for t > K, the left derivative f(t) = 1, and hence

J(x, t) =

∫ K

t

[M(x, s) − f(s)] ds,

we then repeat all arguments above to obtain the pathwise inequality and the
optimality result. On the other hand, the condition will fail if e.g. F (t) = t2.
Recall that a volatility swap corresponds to the choice of F (t) =

√
t, and that

we can consider concave functions by taking −F (t). This causes difficulties since
−F is not increasing, nor can we make it increasing by considering −F (t) +αt,
for some α > 0, since F ′(t) → ∞ as t→ ∞. However F (t) can be approximated
from both above and below by functions F 1(t) and F 2(t) which are concave,
and have bounded derivatives. (In the case of the upper approximation, we have
F 1(0) > 0, but this can be made arbitrarily small). An optimality result will
then follow in this setting — note also that the condition (4.14) will be satisfied
in this case.

4.2 Superhedging options on weighted realised variance

We now return to the financial context described in Section 2. Our aim is to use
the construction we produced for the proof of optimality in Section 4.1 to provide
a model-independent hedging strategy for derivatives which are convex functions
of weighted realised variance. We will suppose initially that our options are not
forward starting, so ν = δS0

.

We now define τ̄D as the embedding of µ for the diffusion X̃, and define
functions: G,H, J , and Q as in the previous section (so (4.14) holds). Our aim
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is to use (4.17), which now reads:

G(XAt
, t) +H(XAt

) = G(X̃t, t) +H(X̃t) ≥ F (t) = F

(∫ At

0

w(Xs)σ
2
s ds

)
,

(4.18)
to construct a super-replicating portfolio. We shall first show that we can con-
struct a trading strategy that super-replicates the G(X̃t, t) portion of the port-
folio. Then we argue that we are able, using a portfolio of calls, puts, cash and
the underlying, to replicate the payoff H(XT ).

Since (G(X̃t, t))t≥0 is a supermartingale, we do not expect to be able to
replicate this in a completely self-financing manner. However, by the Doob-
Meyer decomposition theorem, and the martingale representation theorem, we
can certainly find some process (φ̃t)t≥0 such that:

G(X̃t, t) ≤ G(X̃0, 0) +

∫ t

0

φ̃s dX̃s

and such that there is equality at t = τ̄D. Moreover, since (G(X̃t∧τ̄D , t∧ τ̄D))t≥0

is a martingale, and G is of C2,1 class in D (since M(x, t) is), we have:

G(X̃t∧τ̄D , t ∧ τ̄D) = G(X̃0, 0) +

∫ t∧τ̄D

0

∂G

∂x
(X̃s∧τ̄D , s ∧ τ̄D) dX̃s.

More generally, we would not expect ∂G/∂x to exist everywhere in D∁, however,
if for example left and right derivatives exist, then we could choose

φ̃t ∈
[
∂G

∂x
(x−, t), ∂G

∂x
(x+, t)

]

as our holding of the risky asset.

It follows then that we can identify a process
(
φ̃t; t ≥ 0

)
with

G(X̃τt , τt) ≤ G(X̃0, 0) +

∫ τt

0

φ̃s dX̃s = G(X0, 0) +

∫ t

0

φ̃τs dXs,

where we have used e.g. Revuz and Yor [43, Proposition V.1.4]. Finally, writing

φt = φ̃τt , then

G(Xt, τt) ≤ G(X0, 0) +

∫ t

0

φs dXs = G(X0, 0) +

∫ t

0

φs d
(
B−1

s Ss

)
. (4.19)

If we consider the self-financing portfolio which consists of holding φsB
−1
T units

of the risky asset, and an initial investment of G(X0, 0)B−1
T − φ0S0B

−1
T in the

risk-free asset, this has value Vt at time t, where d
(
B−1

t Vt
)

= B−1
T φt d

(
B−1

t St

)

and V0 = G(X0, 0)B−1
T , and therefore

VT = BT

(
V0B

−1
0 +

∫ T

0

B−1
T φs d

(
B−1

s Ss

)
)

= G(X0, 0) +

∫ T

0

φs dXs.
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We now turn to the H(XT ) component in (4.18). If H(x) can be written
as the difference of two convex functions (so in particular, H ′′( dK) is a well
defined signed measure) we can write:

H(x) = H(S0) +H ′
+(S0)(x− S0) +

∫

(S0,∞)

(x−K)+H
′′( dK)

+

∫

(0,S0]

(K − x)+H
′′( dK).

Taking x = XT = B−1
T ST we get:

H(XT ) = H(S0) +H ′
+(S0)(B−1

T ST − S0) +B−1
T

∫

(S0,∞)

(ST −BTK)+H
′′( dK)

+B−1
T

∫

(0,S0]

(BTK − ST )+H
′′( dK).

This implies that the payoff H(XT ) can be replicated at time T by ‘holding’
a portfolio of:

B−1
T

[
H(S0) − S0H

′
+(S0)

]
in cash;

B−1
T H ′

+(S0) units of the asset;

B−1
T H ′′( dK) units of the call with strike BTK for K ∈ (S0,∞);

B−1
T H ′′( dK) units of the put with strike BTK for K ∈ (0, S0],

(4.20)

where the final two terms should be interpreted appropriately. In practice, the
function H(·) can typically be approximated by a piecewise linear function,
where the ‘kinks’ in the function correspond to traded strikes of calls or puts,
in which case the number of units of each option to hold is determined by the
change in the gradient at the relevant strike. The initial cost of setting up such
a portfolio is well defined provided the integrability condition:

∫

(0,S0]

P (BTK)|H ′′|( dK) +

∫

(S0,∞)

C(BTK)|H ′′|( dK) < ∞, (4.21)

holds, where |H ′′|( dK) is the total variation of the signed measure H ′′( dK).
We therefore shall make the following assumption:

Assumption 4.4. The payoff H(XT ) can be replicated using a suitable portfolio
of call and put options, cash and the underlying, with a finite price at time 0.

We can therefore combine these to get the following theorem:

Theorem 4.5. Suppose Assumptions 2.1, 2.2 and 4.4 hold, and suppose F (·) is
a convex, increasing function with F (0) = 0 and the left derivative f(t) := F ′

−(t)
satisfies (4.14). Let M(x, t) and J(x, t) be given by (4.2) and (4.15), and are
determined by the solution to SEP∗(xw(x)−1/2, δS0

, µ), where µ is determined
by (2.2) and w ∈ D. We also define Q after (4.4), such that (4.6) holds and
then the functions G and H are given by (4.16).

Then there exists an arbitrage if the price of an option with payoff F (RV w
T )

is strictly greater than

B−1
T

[
G(S0, 0) +H(S0) +

∫

(S0,∞)

C(BTK)H ′′( dK)

+

∫

(0,S0]

P (BTK)H ′′( dK)
]
.

(4.22)
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Moreover, this bound is optimal in the sense that there exists a model which
is free of arbitrage, under which the bound can be attained, and the arbitrage
strategy can be chosen independent of the model.

Proof. According to the arguments above, our superhedge of the variance option
can be described as the combination of a static portfolio (4.20) and a self-
financing dynamic portfolio which consists of an additional B−1

T ψt units of the
risky asset and an additional initial cash holding of B−1

T (G(S0, 0) − ψ0S0). In
the case where G(x, t) is sufficiently differentiable, we can identify the process

ψt = ψ̃τt by

ψt =
∂G

∂x
(Xt, τt).

We observe that this strategy is independent of the true model. It is easy to see
that the total initial investment of this superhedge is given be (4.22).

In the case where G is not sufficiently differentiable, we first observe that
G(x, t) is continuous: note that Q(x) and F (t) are trivially so by (4.16), and
M(x, t) is continuous in D, and in D∁, and additionally at jumps of R(x): it
follows that M(xn, t) →M(x, t) as xn → x except possibly at a set of Lebesgue
measure zero, and hence G(x, t) is continuous.

Now consider G(x, t) on a bounded open set of the form O = (y0, y1) ×
(t0, t1). By continuity, G can be approximated uniformly on the boundary
∂O (or more relevantly, on the boundary where t > t0, ∂O+) by a smooth
function. Specifically, for fixed ε > 0, there exists a function Gε(x, t) such that
G(x, t) + ε ≥ Gε(x, t) ≥ G(x, t) on ∂O+. Moreover, the function

Gε(x, t) = E(x,t)
[
Gε(X̃τ∂O+

, τ∂O+
)
]

(4.23)

is C2,1 and a martingale on Ō, and so

Gε(X̃τ∂O+
, τ∂O+

) = Gε(X̃0, t0) +

∫ τ∂O+

t0

∂Gε

∂x
dX̃s.

Since G is a supermartingale, for (x, t) ∈ O, from (4.23) we have G(x, t) ≥
Gε(x, t) − ε.

Now observe that we can choose a countable sequence of such sets O1,O2, . . .
with each set centred at the exit point of the previous set, and such that any
continuous path is guaranteed to pass through only finitely many such sets
on a finite time interval. For any fixed δ > 0, we can take a sequence of
strictly positive ε1, ε2, . . . such that

∑
i εi = δ, and apply the arguments above

to generate a sequence of functions Gεi(x, t) on Oi. It follows that, given δ > 0,

we can always find a function ψ̃t such that

δ +G(X̃0, 0) +

∫ t

0

ψ̃t dX̃s ≥ G(X̃t, t).

Since δ was arbitrary, whenever the price of an option is strictly greater than
(4.22) , we can choose δ sufficiently small that the arbitrage still works. Finally,
we observe that at any time t ∈ [0, T ], the arbitrage strategy is worth at least
F (τt) ≥ F (0), so the strategy is bounded below, and hence admissible.

To see that this is the best possible upper bound, we need to show that there
is a model which satisfies Assumption 2.1, has law µ under Q at time T , and
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such that the superhedge is actually a hedge. But consider the stopping time
τ̄D for the process X̃t. Define the process (Xt; 0 ≤ t ≤ T ) by

Xt = X̃ t
T−t

∧τ̄D , for t ∈ [0, T ],

and then Xt satisfies the stochastic differential equation

dXs = σ̂sXsw(Xs)
−1/2 dWs = σ2

sXs dWs

with the choice of

σ̂2
s =

T

(T − s)2
1[ s

T−s
<τ̄D], σ2

s = σ̂2
sw(Xs)

−1/2. (4.24)

Since τ̄D <∞, a.s., then XT = X̃τ̄D , and

τT =

∫ T

0

w(Xs)σ
2
sds =

∫ T

0

T

(T − s)2
1[ s

T−s
<τ̄D] = τ̄D.

Hence St = XtBt is a price process satisfying Assumption 2.1 with

F

(∫ T

0

w(Xs)σ
2
t dt

)
= F (τ̄D).

Finally, it follows that at time T , the value of the hedging portfolio exactly
equals the payoff of the option.

Remark 4.6. The above result assumes that the option payoff depends on the
realised weighted variation computed between time 0 and a fixed time T . In
some situations, forward-starting versions of these derivatives may be traded.
Here, one is interested in the payoff of an option written on the variation ob-

served between a fixed time T0 > 0 and the maturity date T1:
∫ T1

T0
w(Xt)σ

2
t dt.

If one observes traded options at both T0 and T1, these again imply the (hy-
pothesised, risk-neutral) distributions at times T0, and T1, and it is reasonable
to suppose that the upper bound on the price of an option (for suitable, convex
F (·)) should correspond to the solution of SEP∗(σ, ν, µ) determined above. Let
G and H be the functions derived above. The question remains as to how one
includes the additional information at time T0 in the hedging strategy. (For
clarity, we suppose Bt = 1 for all t ≥ 0.)

In order to have the correct hedge for t ∈ [T0, T1], we need a portfolio of
call options maturing at time T1 with payoff H(XT1

). In addition to the payoff
at maturity, we need a dynamic portfolio worth (at least) G(Xt, τt), where now

τt =
∫ t

T0
λ(Xs)σ

2
s ds — specifically, recalling F (0) = 0, and Proposition 4.1, we

should have G(XT0
, 0) + H(XT0

) = 0. This implies that we need a portfolio
of call options with maturity T0 and with payoff −H(XT0

). Under a similar
assumption to Assumption 4.4, this is possible, and the resulting strategy will
give a superhedge which is a hedge under the optimal model corresponding to
the Rost embedding.

Strictly speaking, Theorem 4.5 is model-dependent: our arbitrage strategy
is specified in a way that is independent of the exact model, but some of the
underlying concepts — specifically the quadratic variation in the option payoff,
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and the stochastic integral term that is implemented in the hedge both depend
on an underlying probability space, and it could therefore be argued that the
strategies are not truly model-independent. In the following remarks, we briefly
outline how one might relax this assumption.

Remark 4.7. In a similar manner to recent work of Davis, Ob lój, and Raval
[16], we can formulate this result without any need for a probabilistic framework.
The difficulty in treating the previous arguments on a purely pathwise basis is
that we need to make sense of the stochastic integral term in (4.19), and the
quadratic variation in the option payoff. However, under mild assumptions on
the paths of St = B−1

t Xt, and a stronger assumption on G (specifically, that G
is C2,1)2, we can recover a pathwise result, based on a version of Itô’s formula
due to Föllmer [22].

Suppose we fix a sequence of partitions πn = {0 = tn0 ≤ tn1 ≤ tn2 ≤ · · · ≤
tnn = T} of [0, T ], such that supi≤n, |tni − tni−1| → 0 as n → ∞. Then we define
the class QV of continuous, strictly positive paths Xt such that

n∑

i=1

(
Xtni

−Xn
ti−1

Xn
ti−1

)2

δtni−1
= µn → µ where µ([0, t]) =

∫ t

0

σ2
s ds (4.25)

for some bounded measurable function σs : [0, T ] → R+. Here δt is the Dirac
measure at t, and the convergence is in the sense of weak convergence of measures
as n→ ∞, possibly down a subsequence.

Then, following the proof of the main theorem in Föllmer [22], an application
of Taylor’s Theorem to the terms G(Xtni

, τtni ) − G(Xtni−1
, τtni−1

), where τt =∫ t

0
λ(Xs)σ

2
s ds, gives

G(XT , τT ) −G(X0, 0) =
n∑

i=1

∂G

∂x

(
Xtni

−Xtni−1

)
+

n∑

i=1

∂G

∂t

(
τtni − τtni−1

)

+
1

2

n∑

i=1

∂2G

∂x2

(
Xtni

−Xtni−1

)2
.

It follows that, whenever Xt is a path in QV, then:

n∑

i=1

∂G

∂x

(
Xtni

−Xtni−1

)
→ G(XT , τT ) −G(X0, 0)

−
∫ T

0

σ2
s

(
λ(Xs)

∂G

∂t
+

1

2

∂2G

∂x2
X2

s

)
ds.

Recall that σ(x) = xλ−1/2(x), and since G ∈ C2,1 and a supermartingale for Xt

where Xt solves (3.5), the final integrand will be negative. We conclude that, in
the limit as we trade more often, for any Xt ∈ QV, we will have a portfolio which
superhedges. One could then recover the statement in the probabilistic setting
by observing that, almost surely, a path from a model of the form described by
Assumption 2.1 lies in QV.

2This would appear to be a very strong assumption on G. However, along the lines of [16],
it seems reasonable that the conclusions would hold in a milder sense; what seems harder is to
both provide a set of conditions under which these conclusions hold, and which can be verified
under relatively natural constraints on our modelling setup.
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Remark 4.8. An alternative approach that is still within a more general, model-
independent setting, but where we do not need to assume strong differentiabil-
ity conditions on G, can be constructed using the uncertain volatility approach,
originally introduced by Avellaneda, Levy, and Parás [1]. We base our presen-
tation on the paper of Possamäı, Royer, and Touzi [42].

Let Ω = {ω ∈ C([0, T ]; (0,∞)), ω(0) = X0} be a path space, equipped with
the uniform norm, ||ω|| = supt∈[0,T ] |ω(t)|, and let Xt(ω) = ω(t) be the canonical
process. Let P0 be the probability measure on Ω such that Xt is a standard
geometric Brownian motion (i.e. logXt has quadratic variation t). Let F be the
filtration generated by X.

Let He
loc(P0,F) be the set of non-negative, F-progressively measurable pro-

cesses αt such that exp

{
1

2

∫ ·

0
αs ds

}
is P0-locally integrable. Then for α ∈

He
loc(P0,F) we can define

Xα
t = exp

{∫ t

0

α1/2
s d log(Xs) −

1

2

∫ t

0

αs ds

}
.

In particular, under P0, Xα
t has 〈logX〉t =

∫ t

0
αs ds. Then we can define a

probability measure on Ω by Pα(Xt ∈ A) = P0(Xα
t ∈ A), or equivalently,

Pα = P0 ◦ (Xα
· )−1. It follows that there is a class of probability measures

P = {Pα : α ∈ He
loc(P0,F)} on the space (Ω,F). We aim to produce conclusions

which hold for all Pα, and we say that something holds P-quasi surely (q.s.) if
it holds P-a.s. for all P ∈ P.

We now have a filtered space (Ω,F), and a class of (non-dominated) prob-
ability measures P under which we can discuss trading strategies simultane-
ously. Observe that the variance process 〈logX〉t can be defined pathwise on
Ω using the results of Karandikar [31]: set an0 = 0, and ani+1 = inf{t ≥ ani :
| log(ω(t)) − log(ω(ani ))| ≥ 2−n}, and consider the process Vt(ω) defined by

Vt(ω) = lim
n→∞

n∑

i=0

(
log(ω(ani+1 ∧ t)) − log(ω(ani ∧ t))

)
(4.26)

if the limit exists, where the limit is taken in the sense of uniform convergence
on [0, T ] and defined to be zero otherwise. The limit exists Pα-a.s. for each
α, and when the limit exists, the limit is Ft measurable and Pα-a.s. equal to
〈logX〉t. If we write

NP = {E ⊂ Ω : ∃Ẽ ∈ F s.t. E ⊆ Ẽ, P(E) = 0 ∀ P ∈ P},

then the set of ω for which the limit in (4.26) fails is an element of NP . As
a result, we can make the process Vt adapted by considering the augmented
filtration:

F ′
t = Ft ∨NP , F′ = {F ′

t, t ≥ 0}.
Under this augmented filtration, the process Vt remains F′-progressively mea-
surable, and indeed is continuous; it follows that the trading strategy described
in the proof of Theorem 4.5 can be constructed, giving a càdlàg process ψt

which is continuous except at the times when the process (ω(t), Vt(ω)) exits
the sets O1,O2, . . .. Using the construction of Karandikar [31], we can again
define pathwise a process It, which agrees Pα-a.s. with the classical stochastic
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integral JP
t =

∫ t

0
ψs dXs. (Observe however that we may need to work in a Pα-

augmented filtration for this latter object to be defined). Since by Theorem 4.5
we have JP

T ≥ G(XT , 〈logX〉T ) − ε, it follows that IT ≥ G(XT , VT ) − ε P-q.s.,
and therefore the strategy we describe makes sense in the uncertain volatility
setting.

The fact that we have a concrete characterisation of ψt enables us to avoid
much of the technical difficulties that arise in [42] and related papers. However,
our results are in one sense also not quite so strong: we only obtain a strategy
which superhedges our payoff less some ε > 0. The results in [42] suggest that
this is unnecessary. However, our results are stronger in another direction: we
do not require any integrability restriction on the payoff of the option under
the class of models we consider — this constraint is already embedded in our
restriction to non-negative price processes.

5 Numerical Results

5.1 Numerical solution of the viscosity equation

An important goal is to use the results of the previous sections to find numerical
bounds, and their associated option prices and hedging strategies, corresponding
to the solutions of Rost and Root. The hardest aspect of this is finding the
numerical solution to the viscosity equation (3.8), and its equivalent for the
Root solution. The solution to the Rost viscosity equation is roughly equivalent
to solving a parabolic PDE inside the continuation region, while outside this
region we know the solution will be equal to the initial boundary condition.

The numerical solution is made harder by the fact that, particularly in the
case of the Rost solution, we expect the behaviour of the barrier near the initial
starting point to be very sensitive to any discretisation: in the case where the
starting measure is a point mass at X0, and the target measure also places mass
continuously (say) near X0, then we are looking for a barrier function R(x) with
R(X0) = 0, and a positive, but non-zero probability that R(Xt) > t for some
small time t. According to the law of the iterated logarithm, the behaviour
of the stopped process will be very sensitive to small changes in R(·). As a
result, a numerical method that can concentrate on this initial region would be
beneficial. On the other hand, the behaviour of the barrier at large times is also
of interest, although here we expect the numerics are likely to be less sensitive
to discretisation.

A second question concerns the convergence and stability of our numerical
methods. The theory behind the numerical approximation of viscosity equations
is fairly well understood — dating back to the methods of Barles and Souganidis
[3]. In this paper, we use the results of Barles and Jakobsen [4], which are suited
to our purposes. Since we wish to use a large range of time steps, and we look
to have non-equal grid point spacings, we will look to use an implicit method,
in order to provide unconditional stability of the numerical regime. The results
of [4] provide us with the necessary justification.

To outline the numerical method used, we consider a standard numerical
scheme, with un the (vector valued) approximation to u(x, t) evaluated at t = tn,

and at spatial positions x. We approximate Lu = σ(x)2

2
∂2u
∂x2 (x, t) using the

Kushner approximation described by [4], which ensures that the finite difference
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operator L can be written in the form (Lu)i =
∑

j cj(t
n, xi+j)(ui+j−ui), where

the cj ’s are non-negative and zero except on some finite subset of Z \ {0}. We
also need to assume that the measures µ and ν both have compact support and
the same mean, in which case u is constant and zero at the endpoints of x.

Then an implicit numerical scheme to solve (3.8) will take u0 = u(x, 0), and
solve iteratively

un+1 − un

tn+1 − tn
= max{Lun+1, 0}. (5.1)

The difficulty here arising from the fact that the maximisation depends on the
unknown un+1. We can rearrange this expression, writing z = un+1 − un, and
∆tn = tn+1−tn, to see that this is equivalent to the problem of finding z ≥ 0 such
that: (I−∆tnL)z−∆tnLun ≥ 0, and z⊺ ((I − ∆tnL)z− ∆tnLun) = 0. This is
a classical linear complementarity problem (LCP), and may be hard to solve (or
at least, may involve many evaluations of the matrix multiplication inside the
maximisation), however, at this point we can exploit the fact that the structure
of the solution implies that z will be zero at exactly the points where we are
in the barrier. Since the barrier should generally change relatively slowly, as an
initial supposition, it is likely that the spatial values where z = 0 for the previous
time-step are likely to be roughly the same at the next step. It follows that
a numerical scheme for solving LCPs which involves pivoting on a set of basis
variables may be very efficient at solving (5.1). The algorithm we will use for this
purpose is the Complementary Pivot (or Lemke’s) algorithm. We refer to Murty
[36] for details on the numerical implementation of the Complementary Pivot
algorithm. We note also that a similar method can be used to justify implicit
methods for the Root solution (the case of explicit solutions being justified
directly by the results of [39]).

5.2 Analysis of numerical evidence

Using the methods outlined above, we can analyse the solutions of Root and
Rost numerically. In general, we consider ν = δS0

and µ will be determined
by assuming that we observe prices of call options which are consistent with
a Heston market model. In general we will consider features of barriers un-
der Heston models since they permit relatively straightforward computation of
both call prices, and prices of variance options. In what follows, we take our
given prices to come from a Heston model with parameters: ρ = −0.65, v0 =
0.04, θ = 0.035, κ = 1.2, r = 0, ξ = 0.5, S0 = 2 (see (6.1) for the meaning of the
parameters).

Figure 1 shows the functions u(x, t) in both the Rost and Root solutions,
and their corresponding barrier functions. We can confirm that these func-
tions do indeed embed the correct distributions by simulation: we compute the
distribution of a process stopped on exit from the barrier and compute the
corresponding call prices empirically. In fact, it is more informative to plot
the implied volatility of the empirically obtained call prices. This is done in
Figure 2.

One can also consider the behaviour of the barriers in time. In Figure 3 we
plot the barriers for a sequence of call prices with increasing maturity.

Of course, our interest lies in the implied bounds of options on variance.
We first consider the case of a variance call. In Figure 4 we display the upper
bound on the price of a variance call derived in Section 4. As might be expected,
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Figure 1: Plots of the function u(x, t) (top) and the corresponding barriers
(bottom) for the Rost (left) and Root (right) barriers.

there is a substantial difference between the upper bound and the model-implied
price.

To see how the hedges constructed in perform in a given realisation, we can
simulate a path, and compute the values of the super- and sub-hedging strate-
gies along the realisation. In this example, we consider an option on variance
with payoff F (〈lnS〉T ), where F (t) = t(t ∧ vK). This is shown in Figure 5.
The main attraction of these hedging portfolios is that they remain super/sub-
hedges under a different model. For example, in Figure 6 we show how these
hedges behave if the path realisation comes from a Heston model with different
parameters. Here we set: ρ′ = 0.5, θ′ = 0.07 and κ′ = 2.4. To conclude, we show
that the sub- and super-hedges provide good model-robustness by computing
(empirically) the difference between the payoff of an option on variance, and the
corresponding super- or sub-hedge. This is shown in Figure 7, which also shows
the effect of model-misspecification on the distribution of the hedging error.

6 Extremality and the Heston-Nandi model

In this section, we consider a particular, commonly used model for asset prices
— the Heston-Nandi model — and show that it can have particularly bad im-
plications for the pricing of variance options.

The Heston-Nandi model [26] is the common Heston stochastic volatility
model [25], where the correlation ρ between the Brownian motions driving the
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Figure 2: The original call prices from which we obtained our barrier, and the
empirical call prices obtained by simulation for the Rost and Root barriers (left);
The implied volatility of the call prices (right). Note that numerically the Rost
barrier proves harder to correctly compute/simulate.
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Figure 3: We compare the barriers for multiple maturities. In this figure we
compute the barriers at equal spaced maturities of the underlying Heston model
(the last barrier corresponding to T = 1) for the Rost (left) and Root (right)
cases.

asset and the volatility processes is taken to be −1. Since in some asset classes,
ρ ≈ −1 is not abnormal (e.g. a Heston model calibrated to the S&P 500 typically
has ρ ≈ −0.9 ± 0.1, for example, see Guillaume and Schoutens [24]), and the
pricing of options on variance in Heston models is also common practice [30],
this may substantially bias the prices towards the extreme models.

The Heston model is given (under the risk-neutral measure) by:

dSt = rSt dt+
√
vtSt dBt,

dvt = κ(θ − vt) dt+ ξ
√
vt dB̃t,

(6.1)

where Bt and B̃t are Brownian motions with correlation ρ. The Heston-Nandi
model is the restricted case where ρ = −1, and so B̃t = −Bt. Note that vt = σ2

t

in our previous notation, so we are interested in options on
∫ T

0
vt dt

The simplification ρ = −1 allows for the following observation: using Itô’s
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Figure 4: A plot of the upper bound on the price of a Variance call for different
maturities (equally spaced, up to T = 1). For comparison, we also plot the
actual prices of the variance calls under the Heston model corresponding to the
shortest and longest maturities.

Lemma, we know

d(log(e−rtSt)) = −1

2
vt dt+

√
vt dBt

=

(
κθ

ξ
−
(
κ

ξ
+

1

2

)
vt

)
dt− 1

ξ
dvt.

Solving, we see that

log

(
e−rTST

S0

)
=

1

ξ
(v0 − vT ) +

κθ

ξ
T −

(
κ

ξ
+

1

2

)∫ T

0

vt dt. (6.2)

If we assume that the maturity time of our option, T , is sufficiently large, since
vT is mean reverting, (vT − v0) ≈ (θ− v0) will be small in relation to the other
terms on the right-hand side.

If we temporarily ignore the vT − v0 term, (6.2) tells us that, at time T , we
have ∫ T

0

vt dt ≈
(
κ

ξ
+

1

2

)−1 [
log

(
S0

ST

)
+
κθ

ξ
T

]
.

Writing

RT (x) =

(
κ

ξ
+

1

2

)−1 [
log

(
S0

x

)
+
κθ

ξ
T

]
, (6.3)

then we have

T ≈ inf

{
s ≥ 0 :

∫ s

0

vt dt ≥ RT (Xs)

}
.

This describes a barrier stopping time, corresponding to a Root stopping time,
with

DT = {(x, t) ∈ R× R+ : t < RT (x)} . (6.4)

29



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

4

6

8

10

12

14

16
x 10

−4

Time

V
a

lu
e

 

 

Intrinsic value

Superhedge (Rost)

Subhedge (Root)

Figure 5: A plot of a realisation of the intrinsic value of the option (F (〈lnS〉t),
and the value of the super-hedging and sub-hedging portfolios at time t, for
t ∈ [0, T ]. Here F (t) = t(t− vK), where vK = 0.01875.

So, ignoring the term in vT , we might conjecture that the corresponding model
minimises the value of a derivative which is a convex, increasing function of vT
over all models with the same law at time T .

This leads to the following result:

Theorem 6.1. Let M > 0 and suppose ξ, θ, κ, r > 0, ξ 6= 2κ are given param-
eters of a Heston-Nandi model, QHN . Suppose QT is the class of models Q

satisfying Assumption 2.1 and EQHN

(ST −K)+ = EQ(ST −K)+ for all K ≥ 0.
Then there exists a constant κ, depending only on M and the parameters

of the Heston-Nandi model, such that for all convex, increasing functions F (t)
with suitably smooth derivative f(t) = F ′(t) such that f(t), f ′(t) ≤M∗, and for
all T ≥ 0

EQHN

F (〈logS〉T ) ≤ inf
Q∈QT

EQF (〈logS〉T ) + κ. (6.5)

Note that the strength of the result depends on the fact that the constant κ
is independent of both T and F . In particular, 〈logS〉T should be both growing
in T and increasing in variance as T increases. That this does not appear in the
bound leads us to claim that QHN is asymptotically optimal.

In fact, the continuity assumptions can be trivially relaxed, and this leads
to the simple corollary:

Corollary 6.2. The conclusions of Theorem 6.1 hold where the class of func-
tions F considered is the set of variance call payoffs: FK(t) = (t−K)+ for all
K ∈ R+ and all maturity dates T > 0.

Proof. For fixed M∗, the function FK(t) can be approximated uniformly from
above and below by a suitably smooth function satisfying the conditions of
Theorem 6.1, independent of K. The result follows.
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Figure 6: A plot of a realisation of the intrinsic value of the option, as in
Figure 5, and the corresponding sub- and super-hedges, where the realisation
is taken from a different model to that under which the original hedge was
constructed.

The above result demonstrates that the seemingly strong assumptions on
the function F (t) required in Theorem 6.1 are not a big restriction: by allowing
a slightly larger constant, we can consider the class of functions which can be
approximated by such functions uniformly. As we will see, the exact smoothness
requirements on f(t) are that f(t) has a Hölder continuous second derivative
(although we believe that this assumption could be relaxed).

Our arguments rely on the construction of a barrier, and the proof of opti-
mality described in [11]. We recall some important definitions here. We suppose
that we are given a barrier function RT (x) as defined in (6.3), and consider the

geometric Brownian motion (X̃t) on this domain, with corresponding hitting
time τDT

, where DT is as defined in (6.4). Then we define the function

M(x, t) = E(x,t)f(τDT
) (6.6)

and observe that (under the assumptions of Theorem 6.1), we have M(x, t)

bounded. Since we consider the case where X̃ is geometric Brownian motion,
we can assume σ(x) = x in the formulae from [11].

Now define a function Z(x) by:

Z(x) = 2

∫ x

S0

∫ y

S0

M(z, 0)

z2
dz dy. (6.7)

So in particular, we have Z ′′(x) = 2M(x,0)
x2 and Z(x) is a convex function. Define

also:

G(x, t) =

∫ t

0

M(x, s) ds− Z(x), (6.8)

and

H(x) =

∫ RT (x)

0

(f(s) −M(x, s)) ds+ Z(x). (6.9)
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Figure 7: The (empirically computed) distribution of the hedging error for the
super-hedge (left) and sub-hedge (right). In the former case, a positive error
represents a surplus in the hedge, while in the latter case, a positive error
represents an underhedge. We also compare the tracking error with the tracking
error for the same strategy when our realised path is determined by the mis-
specified model of Figure 6.

Then (Cox and Wang [11, Proposition 5.1]) for all (x, t) ∈ R+ × R+:

G(x, t) +H(x) ≤ F (t) (6.10)

with equality when t = RT (x). In addition, if for any T > 0:

E

[∫ T

0

Z ′(X̃s)
2σ(X̃s)

2 ds

]
<∞, EZ(X̃0) <∞, (6.11)

then the process
G(X̃t∧τDT

, t ∧ τDT
) is a martingale, (6.12)

and
G(X̃t, t) is a submartingale. (6.13)

We collect some useful properties of these functions in the following lemma:

Lemma 6.3. Under the assumptions of Theorem 6.1, the functions Z(x), H(x)
and G(x, t) as defined above have the following properties:

(i). |∂G∂t (x, t)| ≤M∗ for all (x, t) ∈ R+ × R+.

(ii). G(X̃t, t) is a submartingale, with decomposition:

G(X̃t, t) = G(X̃0, 0) +

∫ t

0

X̃s

(∫ RT (X̃s)∧t

0

∂M

∂x
(X̃s, r) dr − Z ′(X̃s)

)
dX̃s

−
∫ t

0

γ(X̃s)1{s>RT (X̃s)}
ds,

where

γ(x) = f(RT (x)) − 1

2
x2
∂M

∂x
(x,RT (x)−)R′

T (x) ≥ 0

is a bounded function.
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Proof of Theorem 6.1. Let vt be the squared volatility process for the Heston-
Nandi price process St, and suppose we fix T > 0 (although we will want
our constants to be independent of T ). Define the time-change process τT =∫ T

0
vt dt, and let At be the right-inverse of τt. In particular, if we define as usual

X̃t = e−rAtSAt
, then X̃t is a geometric Brownian motion with fixed law µT at

time τT . Using (6.2) in (6.3) we get:

RT (X̃τT ) =

∫ T

0

vs ds+
1

ξ

(
κ

ξ
+

1

2

)−1

(vT − v0). (6.14)

Since the variance process vs is mean reverting E|vT − v0|, can be bounded
uniformly for all T by some constant depending only on the parameters of the
model and so in particular, there exists a constant κ1 such that

E|RT (X̃τT ) − τT | < κ1.

From the bound on f(t), it then follows that:

E[|F (τT ) − F (RT (X̃τT ))|] ≤M∗κ1. (6.15)

Similarly, using Lemma 6.3.(i), we get

E[|G(X̃τT , τT ) −G(X̃τT , RT (X̃τT ))|] ≤M∗κ1.

In addition, using the decomposition from Lemma 6.3.(ii), and noting that
γ(x) is bounded above by a constant, κ2 say, we have:

EG(X̃τT , τT ) ≤ G(X̃0, 0) + κ2E

[∫ τT

0

1{s>RT (X̃s)}
ds

]
.

Observe from the definition of τt, (6.3) and (6.2) evaluated at a general time
t = As:

{RT (X̃s) < s} =

{(
κ

ξ
+

1

2

)−1 [
κθ

ξ
(T −As) +

1

ξ
(vAs

− v0)

]
≤ 0

}

=

{
As ≥

κθT + vAs
− v0

κθ

}
⊆
{
As ≥

κθT − v0
κθ

}
.

Hence

E

[∫ τT

0

1{s>RT (X̃s)}
ds

]
≤ E

[∫ τT

0

1{As≥T−
v0
κθ

} ds

]
= E



∫ τT

τ
T−

v0
κθ

ds




= E

[
τT − τT−

v0
κθ

]
= E

[∫ T

T−
v0
κθ

vs ds

]
.

Again, since vs is mean reverting, the right-hand-side can be bounded indepen-
dently of T , and so

E

[
G(X̃τT , τT )

]
≤ G(X̃0, 0) + κ2 (6.16)

33



for some constant κ2.
Now, using (6.15) and the fact that (6.10) holds with equality when t =

RT (x), we have:

E [F (τT )] ≤ E

[
F (RT (X̃τT ))

]
+M∗κ1

= E

[
G(X̃τT , RT (X̃τT ))

]
+ E

[
H(X̃τT )

]
+M∗κ1

= E

[
G(X̃τT , τT )

]
+ E

[
H(X̃τT )

]
+ 2M∗κ1

≤ G(X̃0, 0) + E

[
H(X̃τT )

]
+ 2M∗κ1 + κ2

It remains for us to show that E

[
F (X̃σ)

]
≥ G(X̃0, 0) + E

[
H(X̃τT )

]
=

G(X̃0, 0) + E

[
H(X̃σ)

]
for any stopping time σ with X̃σ ∼ X̃τT .

We consider a localising sequence, σN ↑ σ, and note that we then have:

E

[
G(X̃σN

, σN )
]

≥ G(X̃0, 0), since G is a submartingale, and in addition,

E [F (σN )] ↑ E [F (σ)] since F (·) is increasing. On account of (6.10), it remains

only to show E

[
H(X̃σ)

]
≤ E

[
H(X̃σN

)
]
. We first observe that f is an in-

creasing and bounded function, and if f(t) = f(∞) for all t ≥ t0, for some
t0 ∈ R+, M(x, t) = f(t) for all t ≥ t0. Since also Z(x) ≥ 0 (Z(x) is convex
with Z(S0) = Z ′(S0) = 0), we must have H(x) bounded below. We can there-

fore apply Fatou’s Lemma to deduce E

[
H(X̃σ)

]
≤ E

[
H(X̃σN

)
]
. To remove

the assumption on f(t), we observe that, by smoothly truncating f , we can ap-
proximate F from below by an increasing sequence FN of functions which each

have constant derivative, and such that E
[
FN (X̃τT )

]
↑ E

[
F (X̃τT )

]
. Since each

approximation satisfies the bound, the same must be true in the limit.

Proof of Lemma 6.3. We first show (i). Observe that M(x,RT (x)) = f(RT (x)),
so in particular, M is continuous, and f(t) ≤ M(x, t) ≤ M∗ since M(x, t) is
increasing in t. It follows immediately that ∂G

∂t (x, t) = M(x, t) is continuous
and bounded, and in fact, is non-negative.

For (ii) we aim to use Peskir [41, Theorem 3.1]. We note that M(x, t) is
C2,1 in DT since it is a martingale (in particular, M is the (unique bounded)
solution to a parabolic initial-value boundary problem). In fact, by Lieberman
[35, Theorem 5.14], if we assume that f ′′(t) is bounded in a Hölder norm, it
follows that M(x, t) has Hölder-bounded first and second spatial derivatives,

and first time derivative. It is easy to check that G(x, t) =
∫ t

0
M(x, s) ds−Z(x)

is also C2,1 in DT as a consequence. Moreover, computing explicitly, we see
that ∂G

∂x (x, t) =
∫ t

0
∂M
∂x (x, s) ds − Z ′(x) is also continuous on D̄T . If we write

C = {(x, t) : RT (x) < t}, so C̄ ∪ D̄T = R+ × R+ with boundary RT (x) = t, we
see that on C,

G(x, t) =

∫ RT (x)

0

M(x, s) ds+

∫ t

RT (x)

f(s) ds− Z(x)

and again, G is C2,1 in C, and ∂G
∂x (x, t) is continuous on C̄.
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Considering the conditions required for Theorem 3.1 of [41], we observe that
(3.18), (3.19), (3.26), (3.30) and (3.33) of [41] have now been shown, and so the
theorem holds. Moreover, since the first spatial derivative of G is continuous
across the boundary, we do not get a local-time term on the boundary. Comput-

ing ∂G
∂t (x, t) +

1

2
σ(x)2 ∂2G

∂x2 (x, t) results in the expression for γ(x) stated, and we

observe that the boundary function RT (x) is a decreasing function of x, which
implies in turn that ∂M

∂x (x, t) is positive at the boundary (since f is increasing),
so γ(x) ≥ 0.

We finally show that γ(x) is bounded. By assumption, f is bounded, so
we need only consider the second term. We have M(x,RT (x)) = f(RT (x)),
and differentiating (recall that the derivatives of M(x, t) on DT are Hölder
continuous, and so extend continuously to the boundary) and rearranging we
get:

∂M

∂x
(x,RT (x)) = R′

T (x)

(
f ′(RT (x)) − ∂M

∂t
(x,RT (x))

)

Observing that (via a standard coupling argument)

P(x,t)(τDT
> t) ≥ P(x,t+δt)(τDT

> t+ δt)

whenever (x, t) ∈ DT (the later path sees a ‘bigger’ stopping region). It follows
that E(x,t+δt) [f(τDT

)] ≤ E(x,t) [f(τDT
+ δt)], and therefore that ∂M

∂t (x, t) ≤
supt∈R+

f ′(t) ≤M∗.
Recalling finally that σ(x) = x, and observing that R′

T (x) = −(κ/ξ +
1/2)−1x−1, we conclude that γ(x) is indeed bounded.
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Figure 8: The upper and lower model-independent bounds on the price of a vari-
ance call, plotted as functions of the correlation between the asset and volatility
processes. The constant line represents the price of the variance call under the
Heston model — this is constant, since the price is unaffected by the choice of
ρ.

We finish with some numerical evidence to support our conjecture. Figure 8
shows the upper and lower bounds on the price of a variance call, as determined
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using the numerical methods of Section 5, seen as a function of the parameter
ρ. In this example, we use the same parameters as before, but with T = 4. It is
notable that the lower bound and the price arising from the Heston model are
certainly close. It is also interesting to observe that it is not only the Heston-
Nandi model that seems to be close to extremal; rather this seems to be a more
general property of the Heston model. A good explanation of this fact eludes us,
but better understanding of this behaviour would appear to be both practically
relevant, and theoretically interesting.
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