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Abstract. We construct optimally robust port-Hamiltonian realizations of a given rational
transfer function that represents a passive system. We show that the realization with a maximal
passivity radius is a normalized port-Hamiltonian one. Its computation is linked to a particular
solution of a linear matrix inequality that defines passivity of the transfer function, and we provide
an algorithm to construct this optimal solution. We also consider the problem of finding the nearest
passive system to a given non-passive one and provide a simple but suboptimal solution.
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1. Introduction. We consider realizations of linear dynamical systems that are
denoted as positive-real or passive and their associated transfer functions. In par-
ticular, we study positive real transfer functions which play a fundamental role in
systems and control theory: they represent e. g., spectral density functions of stochas-
tic processes and arise in spectral factorizations. Positive-real transfer functions form
a convex set, and this property has lead to the extensive use of convex optimization
techniques in this area [8]. Passive systems and their relationships with positive-real
transfer functions are well studied, starting with the works [18, 22, 29, 30] and the
topic has recently received considerable attention in the context of port-Hamiltonian
(pH) system models, [24, 27].

In this paper we show that in the set of continuous-time pH realizations of positive-
real transfer functions, there is a subset that achieves optimal robustness, in the sense
that their passivity radius is maximal. Considering the Laplace transform of the linear
time-invariant system

(1.1)
ẋ = Ax+Bu, x(0) = 0,
y = Cx+Du,

denoted as M := {A,B,C,D}, the transfer function is given by

(1.2) T (s) = D + C(sI −A)−1B.

Here u : R → C
m, x : R → C

n, and y : R → C
m are vector-valued functions denoting,

respectively, the input, state, and output of the system. Denoting real and complex
n-vectors (n × m matrices) by R

n, Cn (Rn×m, Cn×m), respectively, the coefficient
matrices satisfy A ∈ C

n×n, B ∈ C
n×m, C ∈ C

m×n, and D ∈ C
m×m.

We restrict ourselves to systems which are minimal, i. e., the pair (A,B) is con-
trollable (for all s ∈ C, rank [ sI −A | B ] = n), and the pair (A,C) is observable (i. e.,
(AH, CH) is controllable). Here, the Hermitian transpose and the transpose of a vec-
tor or matrix V is denoted by V H and V T, respectively, and the identity matrix is
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2 V. MEHRMANN AND P. VAN DOOREN

denoted by In or I if the dimension is clear. Throughout this article we will use the
following notation. We denote the set of Hermitian matrices in C

n×n by Hn. Positive
definiteness (semidefiniteness) of A ∈ Hn is denoted by A > 0 (A ≥ 0). The real and
imaginary parts of a complex matrix Z are written as ℜ(Z) and ℑ(Z), respectively,
and ı is the imaginary unit. We consider functions over Hn, which is a vector space
if considered as a real subspace of Rn×n + ıRn×n.

The paper is organized as follows. In Section 2 we characterize the classes of
passive systems and of port-Hamiltonian (pH) systems. We then show in Section 3
the relevance of pH systems in estimating the passivity radius of passive systems and
construct in Section 4 realizations with optimal robustness margin for passivity. In
Section 5 we describe an algorithm to compute this optimal robustness margin. In
Sections 6 and 7 we show how to use these ideas to estimate the distance to the set
of passive systems and to the set of stable systems.

2. Passive systems and port-Hamiltonian realizations. The concepts of
positive-realness and passivity are well studied. We briefly recall some important
properties following [28], and refer to the literature for a more detailed survey. Con-
sider a continuous-time system as in (1.1) and its transfer function T (s) as in (1.2).
The transfer function T (s) is called positive-real if the matrix-valued rational function

Φ(s) := T H(−s) + T (s)

is positive semidefinite for s on the imaginary axis, i. e., Φ(ıω) ≥ 0 for all ω ∈ R and
it is called strictly positive-real if Φ(ıω) > 0 for all ω ∈ R.

For X ∈ Hn and a system M = {A,B,C,D}, we consider the matrix function

(2.1) W (X,M) :=

[

−AHX −X A CH −X B
C −BHX DH +D

]

,

which we also denote by W (X), when it is clear from the context which model we
refer to. If T (s) is positive-real, then there exists X ∈ Hn such that the linear matrix
inequality (LMI)

(2.2) W (X) ≥ 0

holds. In this context we will make frequent use of the sets

X
>

:= {X ∈ Hn |W (X) ≥ 0, X > 0} ,(2.3a)

X
≫

:= {X ∈ Hn |W (X) > 0, X > 0} .(2.3b)

A system M := {A,B,C,D} is called passive if there exists a state-dependent storage
function, H(x) ≥ 0, such that for any t1, t0 ∈ R with t1 > t0, the dissipation inequality

(2.4) H(x(t1))−H(x(t0)) ≤
∫ t1

t0

ℜ(y(t)Hu(t)) dt

holds. If for all t1 > t0, the inequality in (2.4) is strict then the system is called
strictly passive.

If DH+D is invertible, then the minimum rank solutions of (2.2) in X
>

are those
for which rankW (X) = rank(DH+D) = m, which in turn is the case if and only if the
Schur complement of DH +D in W (X) is zero. This Schur complement is associated
with the continuous-time algebraic Riccati equation (ARE)

(2.5) Ricc(X) := −XA−AHX − (CH −XB)(DH +D)−1(C −BHX) = 0.
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Solutions X to (2.5) yield a spectral factorization of Φ(s), and each solution corre-

sponds to an invariant subspace spanned by the columns of U :=
[

In −XT
]T

that
remains invariant under multiplication with the Hamiltonian matrix

(2.6) H :=

[

A−B(DH +D)−1C −B(DH +D)−1BH

CH(DH +D)−1C −(A−B(DH +D)−1C)H

]

,

i. e., U satisfies HU = UAF for a closed loop matrix AF = A − BF with F :=
(DH +D)−1(C −BHX), see e.g., [11].

We can also associate with Φ a system pencil

(2.7) S(s) :=





0 A− sIn B
AH + sIn 0 CH

BH C DH +D



 .

Then the Schur complement of S(s) is the transfer function Φ(s) and the generalized
eigenvalues of S(s) are the zeros of Φ(s). The properties of the system can, however,
be checked in a much more numerically robust way using the pencil S(s) rather than
the matrix H. This is, in particular, true if DH +D is singular or ill-conditioned, see
[6] for a detailed analysis and appropriate algorithms.

A special class of realizations of passive systems is that of port-Hamiltonian sys-
tems.

Definition 2.1. A linear time-invariant port-Hamiltonian (pH) system has the
state-space form

(2.8)
ẋ = (J −R)Qx+ (G−K)u,
y = (G+K)HQx+ (S +N)u,

and the system matrices satisfy the symmetry conditions

V :=

[

J G
−GH N

]

= −VH, W :=

[

R K
KH S

]

= WH ≥ 0, Q = QH > 0.

Port-Hamiltonian systems were introduced from a different point of view in [24], but
they also have a storage function and satisfy a dissipation inequality, and hence they
are passive. Thus, there must be a coordinate transformation between a passive
system and a representation (2.8) as a pH system. We briefly recall the construction
of such a possible transformation.

Consider a minimal state-space model M := {A,B,C,D} of a passive linear
time-invariant system and let X ∈ X

>

be a solution of the LMI (2.2). We then use a
symmetric factorization X = THT , which implies the invertibility of T , and define a
new realization

{AT , BT , CT , DT } := {TAT−1, TB,CT−1, D}

so that
[

T−H 0
0 Im

] [

−AHX −XA CH −XB
C −BHX DH +D

] [

T−1 0
0 Im

]

=

[

−AT −BT

CT DT

]

+

[

−AH

T CH

T

−BH

T DH

T

]

≥ 0.(2.9)
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We can then use the Hermitian and skew-Hermitian part of the matrix

S :=

[

−AT −BT

CT DT

]

to define the coefficients of a pH representation via
[

R K
KH S

]

:=
S + SH

2
≥ 0,

[

J G
−GH N

]

:=
S − SH

2
.

This construction yields Q = In because of the chosen factorization X = THT . Note
that the factor T is unique up to a unitary factor U , since THUHUT = THT , but this
factor U will not affect the results described in this paper.

There is a lot of freedom in the representation of the system, since we could
have used any matrix X from the set X

>

, or we could have chosen a representation
where Q was not the identity matrix. In the remainder of this paper, we will restrict
ourselves to pH models where Q = In. The freedom remaining is thus the choice
of the matrix X from X

>

, which we will use to make the representation ’maximally’
robust or well-conditioned to perturbations.

Remark 2.2. We stress that when the model M is real, then all the definitions
and properties discussed above still hold. Moreover, the sets X

>

and X
≫

can be
constrained to be real without altering any of the results, since the real part Xℜ

of a Hermitian matrix X is symmetric and positive (semi-)definite whenever X is
Hermitian and (semi-)definite. When the model M is real it therefore follows that
wheneverW (X) ≥ 0 (orW (X) > 0) then we also have thatW (Xℜ) ≥ 0 (orW (Xℜ) >
0), and it then suffices to verify these conditions over the real symmetric matrices only.
When doing that, the corresponding pH realizations will also be real. Finally, we point
out that the extremal solutions X− and X+ of the Riccati equations are also real when
the model M is real.

3. The passivity radius. Our goal to achieve robust pH representations of a
passive system can be realized in different ways. A natural measure for this optimality
is a large passivity radius ρM, which is the smallest perturbation (in an appropriate
norm) to the coefficients of a model M that makes the system non-passive. In this
section we recall and extend a few results on passivity radii from [5] that will be
employed in the next section.

Once we have determined a solution X ∈ X
>

to the LMI (2.2), we can determine
the representations (2.8) as discussed in Section 2 and the system is automatically
passive (but not necessarily strictly passive). For each such representation we can
determine the passivity radius and then choose the solution X ∈ X

>

which is most
robust under perturbations ∆M of the model parameters M := {A,B,C,D}. This
is a very suitable approach for perturbation analysis, since as soon as we fix X, the
matrix

(3.1) W (X,M) =

[

0 CH

C DH +D

]

−
[

AHX +X A X B
BHX 0

]

is linear in the unknowns A,B,C,D and when we perturb the coefficients, then we
preserve strict passivity as long as

W (X,M+∆M) :=

[

0 (C +∆C)
H

(C +∆C) (D +∆D)H + (D +∆D)

]

−
[

(A+∆A)
HX +X (A+∆A) X (B +∆B)

(B +∆B)
HX 0

]

> 0.
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Hence, given X ∈ X
≫

, we can look for the smallest perturbation ∆M to our model
M that makes detW (X,M+∆M) = 0. To measure the size of the perturbation ∆M

of a state space model M we will use the Frobenius norm or the spectral norm

‖∆M‖F :=

∥

∥

∥

∥

[

∆A ∆B

∆C ∆D

]∥

∥

∥

∥

F

, ‖∆M‖2 :=

∥

∥

∥

∥

[

∆A ∆B

∆C ∆D

]
∥

∥

∥

∥

2

,

and we use also the following X-passivity radius, which was introduced in [5] and
gives a bound for the usual passivity radius.

Definition 3.1. For X ∈ X
≫

the X-passivity radius is defined as

ρM(X) := inf
∆M∈Cn+m,n+m

{‖∆M‖ | detW (X,M+∆M) = 0} .

Note that in order to compute ρM(X) for the model M, we must have a matrix
X ∈ X

≫

, since W (X,M) must be positive definite to start with and also X should be
positive definite to obtain a state-space transformation from it. The following relation
between the X-passivity radius and the usual passivity radius was also given in [5].

Lemma 3.2. The passivity radius for a given model M satisfies

ρM := sup
X∈X

≫

inf
∆M∈Cn+m,n+m

{‖∆M‖| detW (X,M+∆M) = 0} = sup
X∈X

≫

ρM(X).

We now provide an exact formula for the X-passivity radius based on a one-parameter
optimization problem. For this, we rewrite the condition W (X,M+∆M) > 0 as

[

−X 0
0 Im

] [

A+∆A B +∆B

C +∆C D +∆D

]

+

[

AH +∆H

A CH +∆H

C

BH +∆H

B DH +∆H

D

] [

−X 0
0 Im

]

> 0.(3.2)

Setting

(3.3) Ŵ := W (X), X̂ :=

[

X 0
0 Im

]

, ∆S :=

[

−∆A −∆B

∆C ∆D

]

,

inequality (3.2) can be written as the LMI

(3.4) W (X,M+∆M) = Ŵ + X̂∆S +∆H

SX̂ > 0

as long as the system is still passive. In order to violate this condition, we need to find
the smallest ∆S such that detW (X,M + ∆M) = 0. The following theorem, based
on results of [21] and [5], gives the minimal perturbation ∆S in both the Frobenius
norm and the spectral norm. We point out that the definition of ∆S yields that
‖∆S‖2 = ‖∆M‖2 and ‖∆S‖F = ‖∆M‖F .

Theorem 3.3. Consider the matrices X̂, Ŵ in (3.3) and the pointwise positive
semidefinite matrix function

(3.5) M(γ) :=

[

γX̂Ŵ− 1
2

Ŵ− 1
2 /γ

]

[

γŴ− 1
2 X̂ Ŵ− 1

2 /γ
]
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in the real parameter γ. Then the largest eigenvalue λmax(M(γ)) is a unimodal func-
tion of γ, (i.e. it is first monotonically decreasing and then monotonically increasing
with growing γ). At the minimizing value γ, M(γ) has an eigenvector z, i.e.

M(γ)z = λmaxz, z :=

[

u
v

]

,

where ‖u‖22 = ‖v‖22 = 1. The minimum norm perturbation ∆S is of rank 1 and is
given by ∆S = uvH/λmax. It has norm 1/λmax both in the spectral norm and in the
Frobenius norm.

In [5] also the following simple bound for λmax was derived.

Corollary 3.4. Consider the matrices X̂, Ŵ in (3.3) and the pointwise positive
semidefinite matrix function M(γ) as in (3.5). The largest eigenvalue of M(γ) is also
the largest eigenvalue of

γ2Ŵ− 1
2 X̂2Ŵ− 1

2 + Ŵ−1/γ2.

An upper bound for λmax is given by λmax ≤ 2
αβ

where α2 := λmin(Ŵ ) and β2 =

λmin(X̂
−1Ŵ X̂−1). The corresponding lower bound for ‖∆S‖2 and ‖∆S‖F is given by

ρM(X) = min
γ

‖∆S‖2 = min
γ

‖∆S‖F ≥ αβ/2.

The following theorem, also proven in [5], constructs a rank one perturbation which
makes the matrix W∆M

singular and therefore gives an upper bound for ρM (X).

Theorem 3.5. Let M = {A,B,C,D} be a given model and assume that we are
given a matrix X ∈ X

≫

, then the X-passivity radius ρM(X) is bounded by

αβ/2 ≤ ρM(X) ≤ αβ/(1 + |vHw|),

where u, v and w are vectors of norm 1, satisfying

α2 := λmin(Ŵ ), β2 = λmin(X̂
−1Ŵ X̂−1), Ŵ− 1

2 v = v/α, Ŵ− 1
2 X̂u = w/β.

Moreover, if v and w are linearly dependent, then ρM(X) = αβ/2.

The following corollary shows how these results can be applied to pH systems.

Corollary 3.6. If for a given system M we have that X = In then the corre-
sponding representation of the system is port-Hamiltonian, i.e., it has the representa-
tion M := {J −R,G−K,GH +KH, S +N} and the X-passivity radius of this model
is given by

ρM(I) =
1

2
λminW (I,M) = λmin

[

R K
KH S

]

.

Proof. The proof follows directly from Theorem 3.5, since under the given as-
sumption we have α = β and we can choose u = w.

Finally, we also show that pH realizations always have a better X-passivity radius
than models that are not in pH form.

Theorem 3.7. Let M = {A,B,C,D} be a given model and let X ∈ X
≫

, then the
port-Hamiltonian model MT = {TAT−1, TB,CT−1, D} constructed from any matrix
T such that X = THT , has an I-passivity radius ρMT

(I) which is at least as large as
ρM(X).
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Proof. It follows from Corollary 3.4 that ρM(X) satisfies

ρ−1
M

(X) = min
γ

‖
[

γŴ− 1
2 X̂ Ŵ− 1

2 /γ
]

[

γX̂Ŵ− 1
2

Ŵ− 1
2 /γ

]

‖2,

while ρMT
(I) satisfies

ρ−1
MT

(I) = min
γ

‖
[

γŴ− 1
2 X̂

1
2 Ŵ− 1

2 X̂
1
2 /γ

]

[

γX̂
1
2 Ŵ− 1

2

X̂
1
2 Ŵ− 1

2 /γ

]

‖2

= ‖
[

Ŵ− 1
2 X̂

1
2 Ŵ− 1

2 X̂
1
2

]

[

X̂
1
2 Ŵ− 1

2

X̂
1
2 Ŵ− 1

2

]

‖2 = ‖2Ŵ− 1
2 X̂Ŵ− 1

2 ‖2.

But the matrix inequality

[

γŴ− 1
2 Ŵ− 1

2 /γ
]

[

X̂2 −X̂

−X̂ In

] [

γŴ− 1
2

Ŵ− 1
2 /γ

]

≥ 0

implies that

[

γŴ− 1
2 Ŵ− 1

2 /γ
]

[

X̂2 0
0 In

] [

γŴ− 1
2

Ŵ− 1
2 /γ

]

≥ 2Ŵ− 1
2 X̂Ŵ− 1

2

for all values of γ, and therefore ρ−1
M

(X) ≥ ρ−1
MT

(I) or ρM(X) ≤ ρMT
(I). Note

also that any other factorization X = (UT )H(UT ) yields the same result, since
ρM(UT )

(I) = ρMT
(I).

4. Maximizing the passivity radius. The main goal of our paper is the max-
imization of the passivity radius over all pH representations of a passive system. For
this we now have a closer look at the constrained LMI

(4.1) W (X,M) ≥ ξ diag(X, Im)

and obtain the following theorem.

Theorem 4.1. Let M := {A,B,C,D} be a minimal realization of a passive sys-
tem, and let X be any matrix in X

>

. Then there is a unique ξ∗(X) which is maximal
for the matrix inequality (4.1). Moreover, this value of ξ∗(X) is also the passivity
radius of the pH system MT = {TAT−1, TB,CT−1, D}, where X = THT , in both
the spectral and Frobenius norm.

Proof. Every X ∈ X
>

is strictly positive definite, and can thus be factorized as
X = THT with detT 6= 0. Thus, we can define the transformed system MT =
{TAT−1, TB,CT−1, D}. It is obvious that the passivity LMI W (X,MT ) ≥ 0 of the
transformed system MT is satisfied with X = In and that it is related to the passivity
LMI W (X,M) ≥ 0 of M via

W (I,MT ) :=

[

T−H 0
0 Im

]

W (X,M)

[

T−1 0
0 Im

]

≥ 0.

It also follows that (4.1) is satisfied if and only if W (I,MT ) ≥ ξIn+m is satisfied. But
the largest value ξ∗(X) of ξ for which this holds is clearly equal to

ξ∗(X) := max
ξ

{ ξ | W (X,M) ≥ ξ diag(X, Im)}

= max
ξ

{ ξ | W (I,MT ) ≥ ξIn+m} = λminW (I,MT ).
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Since state-space transformations do not change the transfer function, it follows that
MT is a particular pH realization of the transfer function of M and that

W (I,MT ) = 2

[

R KH

K S

]

as in Definition 2.1. Then, it follows from Corollary 3.6 that ξ∗(X) is also equal to the
passivity radius ρMT

(I) of the port-Hamiltonian system MT := {J −R,G−K,GH+
KH, S +N}, and this for both the spectral and Frobenius norm.

We point out that Theorem 4.1 applies to all matrices in X
>

, and therefore also
to all matrices in X

≫

, which can be distinguished as follows.

Corollary 4.2. The maximal value ξ∗(X) of a matrix X ∈ X
>

for a given model
M equals zero if X is a boundary point of X

>

and is strictly positive if and only if X
is in X

≫

.

Proof. If X is a boundary point of X
>

then detW (X,M) = 0 and for those X,
we have ξ∗(X) = 0. If X belongs to X

≫

, then W (X,M) > 0 and diag(X, Im) >
0. Therefore there exists a ξ > 0 such that W (X,M) > ξ diag(X, Im), and hence
ξ∗(X) > 0. Conversely, if ξ∗(X) > 0 then W (X,M) > 0 and X ∈ X

≫

.

In order to maximize the passivity radius, it is clear that we need to look at X
≫

. For
a given X in X

≫

, we therefore consider the passivity LMI W (X,Mξ) for the modified

model Mξ := {A+ ξ
2In, B, C,D − ξ

2Im} with a ξ chosen such that
(4.2)

W (X,Mξ) :=

[

−(A+ ξ
2In)

HX −X(A+ ξ
2In) CH −XB

C −BHX (D − ξ
2Im)H + (D − ξ

2Im)

]

≥ 0.

We have the following Lemma.

Lemma 4.3. For every X > 0 in X
≫

and any 0 ≤ ξ− < ξ+ ≤ ξ∗(X), the systems
Mξ− and Mξ+ are passive. Moreover, the whole solution set of W (X,Mξ+) ≥ 0 is
included in the solution set of W (X,Mξ−) > 0.

Proof. The LMIs for two different values ξ− < ξ+ are related as

W (X,Mξ+) = W (X,Mξ−)− (ξ+ − ξ−) diag(X, Im).

Since X ∈ X
≫

, ξ∗(X) > 0 and diag(X, Im) > 0, it follows that

(4.3) W (X,M) ≥ W (X,Mξ−) > W (X,Mξ+) ≥ W (X,Mξ∗(X)) ≥ 0.

Hence, the systems Mξ− and Mξ+ are passive, since the associated LMIs have a
nonempty solution set. Now consider any X for which W (X,Mξ+) ≥ 0. Since ξ+
is strictly positive, so is ξ∗(X) and hence X ∈ X

≫

. It then follows from (4.3) that
W (X, ξ−) > 0. Hence, the solution set of W (X,Mξ+) ≥ 0 is included in the solution
set of W (X,Mξ−) > 0.

Lemma 4.3 implies that for a given X ∈ X
≫

, the solution sets of W (X,Mξ) ≥ 0
are shrinking with increasing ξ. It remains to find the ξ∗(X) that corresponds to
the largest possible passivity radius. We can obtain this value by relating it to the
passivity of the transfer function

Tξ(s) := C((s− ξ/2)In −A)−1B + (D − ξIm/2),
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of the modified system Mξ. Note that we have assumed that the associated system is
minimal, a property which is not changed by the shift. It follows from the discussion
of Section 2 that this transfer function corresponds to a strictly passive system if
and only if (i) the transfer function Tξ(s) is asymptotically stable and (ii) the matrix
function Φξ(s) := T H

ξ (−s) + Tξ(s) is strictly positive on the ıω axis, with ω = ∞
included. It has been presented in Section 2 that the zeros of Φξ(s) are also the
eigenvalues of the Hamiltonian matrix

Hξ :=

[

A+ ξIn/2 0
0 −(AH + ξIn/2)

]

+

[

−B
CH

]

(DH +D − ξIm)−1
[

C BH
]

,

provided that DH +D − ξIm > 0 and the realization of Mξ is minimal.
The three algebraic conditions corresponding to strict passivity of Tξ(s) are, there-

fore, given by
A1. A+ ξIn/2 has all its eigenvalues in the open left half plane (stability).
A2. DH +D − ξIm has strictly positive eigenvalues (positive-realness at ω = ∞).
A3. Hξ has no eigenvalues on the ıω axis (positive-realness at finite ω).

All of these conditions are phrased in terms of eigenvalues of certain matrices that
depend on the parameter ξ. Since eigenvalues are continuous functions of the matrix
elements, one can consider limiting cases for the above conditions. As explained in
Section 2, the passive transfer functions are limiting cases of the strictly passive ones.
These limiting cases correspond to the first value of ξ where one of the three algebraic
conditions fails. Note that condition A3. is more robustly expressed in terms of the
eigenvalues of the matrix pencil

(4.4) Sξ(s) :=





0 A+ ξIn/2− sIn B
AH + ξIn/2 + sIn 0 CH

BH C DH +D − ξIm



 .

It is obvious that the conditions A1.-A3. are not satisfied anymore for large
enough ξ. For instance, for ξ > λmin(D

H+D) the second condition fails and λmin(D
H+

D) is thus a simple upper bound for ξ∗(X) for any X.

Theorem 4.4. Let M be a strictly passive system. Then there is a bounded supre-
mum Ξ := supξ{ξ | Tξ(s) is strictly passive}, for which the following properties hold

1. TΞ(s) is passive,
2. the solution set of W (X,MΞ) ≥ 0 is not empty,
3. the solution of W (X,MΞ) > 0 is empty,
4. for any ξ < Ξ the solution set of W (X,Mξ) > 0 is non-empty,
5. Ξ := supX ξ∗(X) for all X ∈ X

>

.

Proof. The existence of a bounded supremum follows from the fact that Tξ(s) is
strictly passive only if ξ is smaller than λmin(D

H + D). Property 1. holds because
TΞ(s) is the limit of Tξ(s) for ξ → Ξ. Property 2. is a direct consequence of the
previous property. Property 3. follows by contradiction, since if W (X,MΞ) > 0
would not be empty, then ξ∗(X) for X in the solution set of W (X,MΞ) > 0, would
be larger than Ξ. Property 4. follows from Lemma 4.3, where we use any X in
the solution set of W (X,MΞ) ≥ 0 and choose ξ+ = (Ξ + ξ)/2 and ξ− = ξ to show
that X also lies in the solution set of W (X,Mξ) > 0. Property 5. follows from
ξ∗(X) = max{ξ | W (X,Mξ) ≥ 0}, which expresses that Tξ(s) is passive.
We now link the value of Ξ in Theorem 4.4 to the passivity radius of an optimally
robust pH realization.
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Theorem 4.5. Let M := {A,B,C,D} be a minimal realization of a strictly pas-
sive transfer function T (s) := C(sI −A)−1B +D. Then

Ξ := sup
ξ

{ξ | Tξ(s) is strictly passive}

is the largest possible passivity radius out of all realizations of this transfer func-
tion. The models with such an optimal passivity radius correspond to a solution X
of W (X,MΞ) ≥ 0 and a pH realization is given by MT := {T−1AT,BT, T−1C,D}
where X := THT .

Proof. Consider realizations MT := {T−1AT,BT, T−1C,D} with X := THT
and X ∈ W (X,M) ≥ 0. It was shown in Theorem 4.1 that such realizations have
passivity radius equal to ξ∗(X) and Theorem 4.4 shows that the supremum of all
ξ∗(X) is precisely Ξ.

Let us now consider an arbitrary model M. Then its passivity radius is ρM =
ρM(X) for some X ∈ X

≫

. It follows that the passivity radius of the pH realization
MT derived from X = THT is larger than or equal to that of M. Moreover, the
corresponding passivity radius is ξ∗(X). To complete the proof we point out that the
matrices X that maximize ξ∗(X) are in W (X,MΞ) ≥ 0.

In this section we have derived a characterization of the passivity radius of a strictly
passive system. In the next section we show how this can be computed numerically.

5. Computing the optimal passivity radius. In this section we describe
algorithms that compute, within a given tolerance τ , an approximation of the optimal
Ξ as in Theorem 4.5 for a given minimal realization M := {A,B,C,D} of a passive
system.

First of all, if M is passive but not strictly passive then Ξ = 0. If M is strictly
passive, then simple upper bounds for Ξ are given by the conditions A1. and A2. in
Section 4, i.e.,

Ξup = min

[

min
j

(−ℜλj(A)),min
i

λi(D
H +D)

]

.

The procedure to check passivity is then to verify condition A3. for 0 ≤ ξ ≤ Ξup ,
namely that Sξ, (or Hξ) has no generalized eigenvalues on the imaginary axis. We
therefore first recall some basic properties of the scalar function

(5.1) γ(ξ, ω) := λminΦξ(ıω), where Φξ(s) := T H

ξ (−s) + Tξ(s).

Theorem 5.1. The real function γ(ξ, ω) := λminΦξ(ıω) in (5.1) is continuous in
the real variables ξ and ω and it has the following properties. It is positive for all ω
in the interval ξ ∈ [0,Ξ), it is zero for at least one value of ω at ξ = Ξ, and it is
negative in some open interval(s) of ω whenever ξ ∈ (Ξ,Ξup], provided that Ξ < Ξup.

Proof. The continuity follows trivially from the fact that eigenvalues of a (Her-
mitian) matrix are continuous functions of the parameters of the matrix. It is clear
that if ξ < Ξ then the transfer function Φ(ıω) is positive definite for all ω and so is its
smallest eigenvalue γ(ξ, ω). When we increase ξ and reach the limiting value Ξ, then
the transfer function is passive but not strictly passive anymore, and hence γ(ξ, ω)
must loose strict positivity in at least one point ıω, i. e., Sξ must must have at least
one eigenvalue on the imaginary axis. When we further increase ξ, Sξ will have more
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Fig. 5.1. Three frequency plots for the cases ξ smaller, equal and larger that Ξ

purely imaginary eigenvalues, and there will be purely imaginary eigenvalues all the
way up to Ξup because at ω = ±∞ the function eigenvalues of Φξ(±∞) are those
of DH + D − ξIm. By continuity, γ(ξ, ω) = 0 must therefore intersect the zero-level
for all ξ ∈ [Ξ,Ξup]. Notice also that when DH + D − ξIm > 0, then the number of
generalized eigenvalues on the imaginary axis is bounded by 2n, since the pencil Sξ

is then regular and has m infinite generalized eigenvalues. These three different cases
are also depicted in Figure 5.1.

As a consequence of Theorem 5.1, the smallest value of ξ in the interval [0,Ξup],
where condition A3. fails is equal to Ξ. (Note that this could be equal to Ξup.) One
can then apply bisection to this interval and check the presence of purely imaginary
eigenvalues in the above interval. Putting Ξlo = 0, we have the following procedure.

Bisection procedure for computing Ξ:

ξ = (Ξlo + Ξup)/2, if Hξ has purely imaginary eigenvalues Ξup := ξ, else Ξlo := ξ.

Since the interval for Ξ shrinks by a factor 2 at each step of the iteration, then in
k = ⌈log2(Ξup/τ)⌉ steps we will have Ξup − Ξlo ≤ τ .

One can also make use of the computed eigenvalue decompositions of

Sξ(ıω) =





0 A+ ξIn/2− ıωIn B
AH + ξIn/2 + ıωIn 0 CH

BH C DH +D − ξIm



 ,

to construct a method with faster convergence properties. This approach relies on
the fact that γ(ξ, ω) is a continuous function with smoothness properties at the local
minima. It is inspired from a method in [7] for the computation of the L∞-norm of a
transfer function.
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Fig. 5.2. 3D illustration of γ(ξ, ω).

Let ξ̂ ∈ [Ξ,Ξup], let Ω be the set of purely imaginary eigenvalues of S
ξ̂
, let ∂Ω be

the corresponding set of derivatives of these eigenvalues with respect to ω , and let
γ(ξ̂, ω) be the smallest eigenvalue of Φ

ξ̂
(ıω). Then we exploit the following ideas.

1. The real roots ωi of γ(ξ̂, ω) are a subset of Ω. They can be identified by
looking at the derivatives in ∂Ω. A detailed description of this selection
procedure is described in [26].

2. For a given value of ξ̂, γ(ξ̂, ω) we can locally approximate γ in the neighbor-
hood of a local minimum ω∗ by a quadratic approximation γ∗ + (ω − ω∗)2.
A detailed description of this result is described in [7].

3. If ω1 < ω2 are two “consecutive” zeros of γ(ξ̂, ω) then the smallest real root

ξ̃ of Sξ(ω̂) lies between 0 and ξ̂ in that interval. This follows from the fact

that the smallest eigenvalue γ(ξ̂, ω) for the current value ξ̂ is negative in
that interval of ω. Moreover, at the midpoint ω̂ := (ω1 + ω2)/2 the smallest
real root ξ̃ is an improved upper bound for Ξ, in the sense that close to Ξ,
the corresponding error improves quadratically, i.e., |Ξ − ξ̃| ≈ |Ξ − ξ̂|2. A
detailed description of this result follows from [7] and the continuity of the
two-variable function γ(ξ, ω).

Since we can compute the zeros ωi of γ(ξ̂, ω)) for a given value of ξ̂, and we can
find the smallest real root ξ̃ of Sξ(ıω̂) for a given value of ω̂, we can then obtain
an algorithm with improved local convergence for computing Ξ based on the above
ideas. A detailed analysis of its convergence requires more investigation and will be
considered in forthcoming work.
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An improved algorithm:

1. ξ̂ := Ξup − τ .
2. Compute the eigenvalues of S

ξ̂
(ıω) and select those corresponding to real

zeros of γ(ξ̂, ω).

3. if γ(ξ̂, ω) has no real zeros, then Ξlo = ξ̂, stop,
4. else let ω̂ := (ω1 + ω2)/2 for the largest interval [ω1, ω2] of these roots.

Compute the real eigenvalues ξi of Sξ(ıω̂) and update Ξup := mini ξi.

Define the next guess ξ̂ := Ξup − τ and go to step 2.

This algorithm will typically require only a few iterations and stops with an inter-
val [Ξlo,Ξup] of size τ . Each step of both, the bisection and the faster converging
algorithms has a complexity that is cubic in the matrix dimensions, but they are
guaranteed to provide a required accuracy. For large scale problems, this complexity
may become a problem, but one can combine it with iterative structured Krylov space
techniques like those discussed in [19] or model reduction based techniques as in [2, 3].

6. The distance to passivity. In real world applications the system data are
usually inaccurate and therefore only an approximate model is known. Often the real
physical problem is nonlinear or a partial differential equation and it is approximated
by a finite element or finite difference model [17], it may be obtained by a realization
or system identification procedure [10, 16, 23], or the result of a model reduction
procedure [4]. Then it is in general not clear that in the approximation process
passivity is preserved. In this situation one approximates the non-passive system by a
(hopefully) nearby passive system, by introducing small or minimal perturbations to
the model M := {A,B,C,D}, see [1, 9, 10, 12, 15, 23, 25]. Therefore, in this section
we start with a system M that is not passive and ask the question about the smallest
perturbation ∆M of the model that makes the system M+∆M passive.

It is clear from our previous analysis that to find the smallest perturbation that
makes the system passive is equivalent to finding the smallest perturbation ∆M such
that the LMI W (X,M+∆M) ≥ 0 has a Hermitian and positive semidefinite solution
X. Moreover, if the perturbed system remains minimal, then we expect X > 0. We
recall the notations

S :=

[

−A −B
C D

]

, and ∆S :=

[

−∆A −∆B

∆C ∆D

]

.

Definition 6.1. The distance to passivity of a minimal system M={A,B,C,D}
is the minimum norm ‖∆S‖2 (‖∆S‖F ) such that there exists a matrix X > 0 satisfying

(6.1) (S +∆S)
HX̂ + X̂(S +∆S) ≥ 0, where X̂ :=

[

X 0
0 Im

]

.

In the following we need an extension of Lemma 4.3, for which we consider the LMI
for the modified model M−ξ := {A − ξ

2In, B, C,D + ξ
2Im} with the corresponding

transfer function

(6.2) T−ξ(s) := C((s+ ξ/2)In −A)−1B + (D + ξIm/2)

and LMI
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W (X,M−ξ) :=

[

−(A− ξ
2In)

HX −X(A− ξ
2In) CH −XB

C −BHX (D + ξ
2Im)H + (D + ξ

2Im)

]

≥ 0.(6.3)

Lemma 6.2. Let M := {A,B,C,D} be a non-passive system. Then for every
X > 0 in Hn there exists a ξ∗(X) > 0 such that the LMI (6.3) for the system
M−ξ∗(X) holds. Moreover, for every value ξ > ξ∗(X), the system M−ξ is passive.

Proof. Clearly we have that W (X,M−ξ) = W (X,M) + ξX̂. Since W (X,M) is

bounded from below and X̂ > 0, the inequalityW (X,M−ξ) ≥ 0 holds for a sufficiently
large value of ξ. Let ξ∗(X) be the smallest ξ value for which W (X,M−ξ) ≥ 0 holds,

then W (X,M−ξ) = W (X,M−ξ∗(X))+(ξ−ξ∗(X))X̂, which implies that the passivity
condition holds for all ξ > ξ∗(X).

To find the optimal ξ, let us consider first perturbations ∆S that are a multiple
of the identity.

Theorem 6.3. The minimum norm perturbation of the type

(6.4) ∆S =
1

2
ξIn+m

that makes system M passive, has spectral norm Ξ/2 and Frobenius norm Ξ
√
n+m/2,

where Ξ is the minimum value of ξ such that the model M−ξ := {A−ξIn/2, B, C,D+
ξIm/2} with transfer function T−ξ(s) is passive.

Proof. It follows from (6.1) that ξ must satisfy

(6.5) (S +
1

2
ξIn+m)HX̂ + X̂(S +

1

2
ξIn+m) ≥ 0, where X̂ :=

[

X 0
0 Im

]

,

for some X > 0. By Lemma 6.2 there exists a bounded minimal solution, which we
call Ξ. The state-space model corresponding to S + 1

2ξIn+m is M−ξ with transfer
function (6.2). Therefore, Ξ is the smallest value of ξ that makes the model M−ξ

with transfer function T−ξ(s) become passive. We can then choose X > 0 from the
solution set of W (X,M−Ξ) ≥ 0 to satisfy (6.1).

The minimal value Ξ of ξ for the restricted class of perturbations being a multiple
of the identity can then be computed with the algorithms described in the previous
section.

Since, most likely, the perturbation will not lead to (6.1) being an equality,
we can reduce the Frobenius norm of the perturbation ∆S by considering more
general perturbations than (6.4). In order to do that, we use a matrix X from
the set W (X,M−Ξ) ≥ 0, where Ξ was obtained from perturbations as in (6.4).
We use the factorization X = THT , to transform the system M to the pH form
MT = {TAT−1, TB,CT−1, D} := {J−R,G−K,GH+KH, S+N}. If we denote the
transformed matrix S as Ŝ := T̂ST̂−1, where T̂ = diag(T, Im), then it follows that

1

2
(ŜH + Ŝ) =: R̂ =

[

R K
KH S

]

≥ −ΞIn+m,
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since M−Ξ is passive. The smallest eigenvalue of 1
2 (ŜH + Ŝ) is greater or equal than

−Ξ, but the other eigenvalues may be larger or even positive.
To obtain a solution for the minimum Frobenius norm problem

min
∆S

{‖∆S‖F | 1
2
[(T̂∆S T̂

−1)H + T̂∆S T̂
−1] +

[

R K
KH S

]

≥ 0},

let T̂ = ÛT Σ̂V̂ be a singular value decomposition with Σ̂ diagonal and Û , V̂ unitary.
Then we can alternatively study the problem

(6.6) min
∆

S̃

{‖∆
S̃
‖F | 1

2
[(Σ̂∆

S̃
Σ̂−1)H + Σ̂∆

S̃
Σ̂−1] + R̃ ≥ 0},

where ∆
S̃
:= V̂∆S V̂

H and R̃ := ÛR̂ÛH.

For the given R̃ we have a unitary spectral decomposition

ŨHR̃Ũ = diag(D1, 0)− diag(0, D2),

where D1 is diagonal with positive diagonal elements and D2 is diagonal with non-
negative diagonal elements. Then ∆R̃ = ŨH diag(0, D2)Ũ is the minimum Frobenius
norm perturbation so that R̃+∆R̃ is positive semidefinite. We can then replace the
optimization problem (6.6) by the simpler problem

(6.7) min
∆

S̃

{‖∆
S̃
‖F | 1

2
[(Σ̂∆

S̃
Σ̂−1)H + Σ̂∆

S̃
Σ̂−1] = ∆R̃}.

Indeed, let ∆F be the strictly lower triangular part plus 1
2 the diagonal part of ∆R̃.

Then clearly Σ̂−1∆F Σ̂ is the optimal Frobenius norm solution to (6.7).
It should be pointed out that we could have used another matrix X from the

domain of W (X,M−Ξ) ≥ 0. The matrices R, K and S will then change and the
minimum Frobenius norm solution will be affected as well. Note that if we choose a
matrix X that does not belong to the solution set of W (X,M−Ξ) ≥ 0, then because
of Lemma 6.2, the value of the most negative eigenvalue in Λ will be equal to −ξ∗(X),
but it follows that ξ∗(X) > Ξ. It is therefore unlikely that the Frobenius norm of the
constructed minimum norm perturbation will be smaller.

7. The distance to stability. We can employ similar arguments as in the
previous section for the computation of the smallest perturbation that makes a given
system stable, see [13, 14, 20] for other approaches. When searching for the smallest
perturbation we only have to study the (1, 1) block of the LMI (2.2), i.e. the case
where the matrices B, C and D are void, or where m = 0. In this case we write the
LMI (2.2) as

(7.1) W (X,A) = −AHX −XA = 2R ≥ 0

while the shifted LMI takes the form

(7.2) Wξ(X,A) := W (X,A)−ξX = −(A+ξIn/2)
HX−X(A+ξIn/2) = 2R−ξX ≥ 0.

For any X in the solution set of W (X,A) ≥ 0, the shifted LMI (7.2) has a
nonempty solution set as long as ξ is smaller than ξ∗(X). Instead of the three condi-
tions A1.–A3. for passivity, we only have one condition, namely that the Hamiltonian
matrix

(7.3) Hξ :=

[

A+ ξIn/2 0
0 −(AH + ξIn/2)

]

= H + ξ/2

[

In 0
0 −In

]
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has no purely imaginary eigenvalue for all 0 ≤ ξ < ξ∗(X). So if Ξ is the largest
value of ξ∗(X) over all X in the solution set of W (X,A) ≥ 0, then the solution set of
WΞ(X,A) ≥ 0 is not empty, but it has an empty interior.

A well-known formula for the stability radius ρA of a given matrix A is given by

ρA = min
ω∈R

σmin(A− ıωIn).

The perturbation that achieves the minimum is constructed from the smallest singular
value σmin and corresponding singular vectors u and v of A− ıωIn at the minimizing
value of ω :

(A− ıωIn)v = σminu, ∆A := σminuv
H.

A similar result is obtained using the analysis of Section 3. This encourages us to also
use the distance to passivity results to derive bounds for the distance to stability.

Let us first look at the solution of the problem for a specific diagonal form of the
perturbation. Given an unstable matrix A we study the question what is the smallest
perturbation of the type ∆A := − 1

2ξIn that makes the matrix stable. Following a
similar analysis as in Section 6 we can prove the following theorem.

Theorem 7.1. The minimum norm solution of the form

(7.4) ∆A = −1

2
ξIn

for the stabilization problem of a matrix A, has spectral norm Ξ/2 and Frobenius norm
Ξ
√
n/2, where Ξ is the minimum value of ξ such that the matrix A−ξ := A− ξIn/2,

is stable.

Proof. Clearly ξ must satisfy

(7.5) − (A− 1

2
ξIn)

HX −X(A− 1

2
ξIn) ≥ 0

for some X > 0. It follows from Lemma 6.2 that there exists a bounded minimal
solution, which we call Ξ. The matrix corresponding to A−ξ := A − 1

2ξIn has the
associated Hamiltonian matrix

H−ξ :=

[

A− ξIn/2 0
0 −(AH − ξIn/2)

]

.

Let Ξ be the smallest value such that H−ξ has no purely imaginary eigenvalues for
ξ < Ξ. Then the matrix A−Ξ is stable (but not asymptotically stable) and we can
then choose X > 0 from the solution set of W (X,A−Ξ) ≥ 0 to satisfy (7.5).

Since we made some of the eigenvalues of the LMI in (7.5) strictly positive, rather
than non-negative, we can further reduce the Frobenius norm of the perturbation ∆A

when removing the imposed restriction of a diagonal perturbation. In order to do
that, we use a matrix X from the set W (X,A−Ξ) ≥ 0, where Ξ was obtained from
the diagonal perturbation. Using its factorization X = THT , we transform A to
AT = TAT−1 := J −R, which satisfies

−1

2
(AH

T +AT ) = R ≥ −ΞIn,

since A−Ξ is stable. We know that the smallest eigenvalue equals −Ξ, but the others
may be larger or even positive. In order to construct a nearly optimal solution to this,
we can again use the two stage procedure and the perturbation result derived in the
previous section.
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8. Conclusion. We have presented analytic formulas and numerical methods to
construct optimally robust port-Hamiltonian realizations of a given transfer function
of a linear time invariant passive system. We have shown how to use shifted linear
matrix inequalities to achieve this goal. The techniques can also be applied to compute
a nearby passive system to a given non-passive one or a nearby stable system to a
given unstable one.
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