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Abstract
The preferences of users are important in route
search and planning. For example, when a user
plans a trip within a city, their preferences can be
expressed as keywords shopping mall, restaurant,
and museum, with weights 0.5, 0.4, and 0.1, re-
spectively. The resulting route should best satisfy
their weighted preferences. In this paper, we take
into account the weighted user preferences in route
search, and present a keyword coverage problem,
which finds an optimal route from a source location
to a target location such that the keyword coverage
is optimized and that the budget score satisfies a
specified constraint. We prove that this problem is
NP-hard. To solve this complex problem, we pro-
pose an optimal route search based on an A* variant
for which we have defined an admissible heuristic
function. The experiments conducted on real-world
datasets demonstrate both the efficiency and accu-
racy of our proposed algorithms.

1 Introduction
It is important to consider preferences of a user when a route
plan is required for their trip to a city. The user’s preferences
can be expressed by a set of keywords, e.g., shopping mall,
restaurant, museum, and such locations can also be weighted
differently. For example, one may enjoy shopping and local
restaurants more and it is less painful for them to drop out of a
museum visit than a visit to the museum in the trip, in which
case shopping mall, restaurant, museum may be weighted,
for example, by 0.5, 0.4, and 0.1, respectively. To best satisfy
the user’s needs, an optimal route shall pass by a sequence of
locations in the city map labeled by these keywords. At the
same time, this route can be subject to some constrains like
travel time, money and so on.

This type of travel route search problem has been sub-
stantially studied. As two examples, the weighted con-
straint shortest path problem (WCSPP) [Dumitrescu and
Boland, 2003] and the shortest path problem with time win-

dows (SPPTW) [Desrochers and Soumis, 1988] aim to find a
route with the shortest travel distance under a certain thresh-
old (such as the travel time). However, they do not con-
sider user preferences and thus are not able to satisfy spe-
cific requirements of the user. Some studies take into account
user preferences, such as the TPQ [Li et al., 2005] and the
OSR [Sharifzadeh et al., 2008] query. These methods re-
trieve routes that pass by all the user-specified types of lo-
cations with short travel distances. However, a user may not
be satisfied with the proposed routes due to some constraints,
e.g., they may not have enough holiday time to follow the pro-
posed route. The more recent work [Cao et al., 2012] finds an
optimal route that passes by user-specified types of locations
and satisfies a certain budget constraint. It assumes that if a
location is labeled by a keyword that expresses a user’s pref-
erence, the location can fully satisfy the user’s need; however,
this may not always be true.

As identified in previous research, a location can have
multiple functionalities and can be labeled by multiple key-
words (such as “restaurant” or “mall”) by different users.
Fig. 1 shows a road network where each location is labeled
by some keywords, each of which is associated with the de-
gree to which the location satisfies the user’s need expressed
by this keyword (such as mall). The associated [0, 1] weight-
ing reflects the popularity of the location as a given keyword,
and the degree to which it satisfies user preferences.

Figure 1: An example road network with locations labeled by mul-
tiple keywords.
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In this paper, we allow a user to weight their various pref-
erences, and we assume that each location is only able to
satisfy their preferences to a certain degree. Our objective
is to find a route passing by several locations that can op-
timally satisfy the user’s weighted preferences. However,
how to measure the degree to which a route covers the key-
words indicating the user’s preferences is non-trivial. Sim-
ply accumulating the keyword degree associated with the
locations in a route cannot well reflect the satisfiability of
the route. In Fig 1, when a user has a budget score of 8
and weights mall, movie, coffee by 0.5, 0.4, and 0.1 respec-
tively, the route 〈vs, v1, v3, v5, vt〉 is found through an accu-
mulative function of the keyword degrees since it has a bud-
get score 8 and a maximum accumulated weighted degree
score (0.5∗(0.6+0.6+0.8)+0.4∗0+0.1∗0.1 = 1.01). How-
ever, the route is rather monotonic and concentrates mainly
on mall.

In our work, we resort to the coverage function [El-Arini
et al., 2009] that calculates the joint satisfiability of one route
over a set of keywords. We reformulate this problem as
the optimal route search for keyword coverage (ORS-KC),
which considers both user preferences and a constraint dur-
ing the route search, and aims to find a solution that maxi-
mizes the keyword coverage function with some budget con-
straint. Given the example in Figure 1, we would return the
route 〈vs, v2, v4, v6, vt〉, which can well satisfy all the user’s
requirements.

As the coverage function we use is submodular, solving the
optimization problem with the constraint is extremely hard
particularly for a graph. We prove the ORS-KC problem to
be NP-hard by a reduction from the budgeted maximum cov-
erage problem [Khuller et al., 1999]. To avoid the exhaus-
tive search of all routes in a graph, we adapt the A* algo-
rithm [Pearl, 1984] for solving the submodular function max-
imization problem in a graph. By exploiting the submodular
property, we design one admissible heuristic function in the
search so that the solution optimality is preserved.

In summary, the contribution of this paper is twofold:
firstly, we formulate the problem of the optimal route search
for keyword coverage (ORS-KC), and prove that this prob-
lem is NP-hard; secondly, we propose the A* based search
algorithms for solving this problem, and present experiments
conducted on two real-world datasets, which demonstrate the
efficiency and accuracy of the proposed algorithms.

2 Related Work
Route search and planning is an important problem and has
been studied substantially due to its wide range of applica-
tions. One of the most classic and well known problem is the
shortest path problem, which does not take into account the
user preferences and the budget constraint.

Searching for the shortest path under a budget con-
straint, such as WCSPP [Dumitrescu and Boland, 2003] and
SPPTW [Desrochers and Soumis, 1988], is proved to be NP-
hard and approximation algorithms are proposed. Similarly,
route recommendation (e.g., [Chekuri and Pal, 2005]) finds
general popular routes without satisfying users’ specific re-
quirements.

Recently, consideration of the user preferences appears in
the route search or planning. For example, Li et al. [Li et
al., 2005] propose the TPQ query, which finds the short-
est path between a source and a target location passing by
all user-specified types of locations. The work [Sharifzadeh
et al., 2008] proposes the OSR query, which finds a short-
est route from a specified starting point passing by a se-
quence of user-specified types of locations. Similar pro-
posals also exist [Chen et al., 2008; Levin et al., 2010;
Li et al., 2013]. However, these studies do not take into ac-
count a budget constraint.

The work takes into account both the user preferences and
the budget constraint in route search [Cao et al., 2012]. How-
ever, it treats each keyword equally and assumes that a loca-
tion can fully satisfy the user’s preferences expressed by the
keywords labeled with it. In addition, they formulate the ob-
jective function as one accumulative function while we use
a submodular function, which makes the problem more chal-
lenging.

The submodular coverage function we adopt in our work
has been used widely in many problems, such as document
recommendation [El-Arini et al., 2009], placement of sensor
networks [Krause et al., 2011], point-of-interest recommen-
dation [Chen et al., 2015] and so on.

The problem of route search in a graph optimizing a sub-
modular function with a budget constraint has been studied in
the work [Chekuri and Pal, 2005], where an recursive greedy
algorithm with a performance guarantee is proposed. The al-
gorithm is useful theoretically, but is not applicable to real-
world problems such as city route planning. As shown in the
study [Singh et al., 2007], its runtime is acceptable only on a
graph containing up to 22 nodes, which is not applicable in a
road network with at least thousands of locations.

3 Problem Formulation
In this section, we present the keyword coverage function and
formally define the problem of optimal route search for key-
word coverage (ORS-KC). We also prove its complexity.

3.1 Keyword Coverage of a Route
We define a road network as a graph.

Definition 1. Road Network Graph. A directed graph
G = (V, E) consists of a set of nodes V and a set of edges E ⊆
V × V . Each node v ∈ V represents a location and is associ-
ated with a set of keywords denoted byKvi = {κi1 , · · · , κiq},
each edge 〈vi, vj〉 ∈ E represents a directed route between
two locations vi and vj in V and is associated with a cost
b(vi, vj) (representing travel time, distance etc).

We only consider directed graphs in this paper; but we note
that it is straightforward to extend it to undirected graphs.

Definition 2. Route. Given a road network graph G =
(V, E), a route R = 〈v1, · · · , vm〉 is a path from v1 to vm
in G, i.e., ∀1≤i≤m · vi ∈ V and ∀1≤i<m · 〈vi, vi+1〉 ∈ E .

We consider two attributes for a route, namely the budget
value and the keyword coverage value. The budget value of a
route is a sum-up of the costs of the edges along the route, as
shown in Eq. 1 below,

2119



BS(R) =
m−1∑
i=1

b(vi, vi+1). (1)

Given a budget constraint, our goal is to find a route that
can best satisfy the user’s weighted preferences, where the
satisfiability of a route is measured by a keyword coverage
function [El-Arini et al., 2009]. A route is a traversal of loca-
tions each of which is associated with multiple keywords, and
the keyword coverage function reflects the degree to which a
set of query keywords are covered by the route.

Let K = {κ1, · · · , κq} be a set of query keywords and
λκq (>0) be the weight of keyword κq . The coverage function
we use to compute the keyword coverage for a route R =
〈v1, · · · , vm〉 is shown in Eq. 2,

KC(R) =
∑
κq∈K λκqcovκq (R), (2)

where covκq (R) measures the degree to which the keyword
κq is covered by at least one location inR as computed below:

covκq (R) = 1−
∏
vi∈R[1− covκq (vi)], (3)

where covκq (vi) is the degree to which the location vi covers
the keyword κq .

For example, given the aforementioned case in Fig. 1,
the keyword coverage of the route can be calculated as:
KC(〈vs, v2, v4, v6, vt〉) = 0.5∗[1−(1−0.7)]+0.4∗[1−(1−
0.5)∗(1−0.2)]+0.1∗ [1−(1−0.1)∗(1−0.1)∗(1−0.5)] =
0.6495.

Note that the keyword coverage function KC(R) is sub-
modular so that the property is satisfied, e.g.,KC(R1

⋃
vi)−

KC(R1) ≥ KC(R2

⋃
vi) − KC(R2), for all R1 ⊆ R2 ⊆

R and vi 6∈ R1, where R is a finite set of routes and
R1(R2)

⋃
vi composes a new route.

In this paper, we use the popularity of the location vi la-
beled by the keyword κq to measure covκq (vi), which is im-
plied by the number of check-ins that the location receives at
vi labeled by κq . To equally prioritize locations with a high
volume of check-ins, we make covκq (vi) proportional to the
average users’ check-ins at vi labeled by κq , and is computed
in Eq. 4,

covκq (vi) = min[
nc
v
κq
i

1∑
vi

1
×
∑
vi
nc
v
κq
i

, 1], (4)

where ncvκqi is the number of check-ins that are made at vi
and labeled by keyword κq ,

∑
vi

1 is the number of locations
visited, and

∑
vi
ncvκqi

counts all check-ins labeled by κq .
covκq (vi) is 1 if ncvvqi exceeds the average number of check-
ins labeled by κq .

3.2 Keyword Coverage Optimal Route Search
Intuitively, the optimal route search for keyword cover-
age (ORS-KC) problem consists in finding an optimal route
from a source node to a target in a graph, such that the
keyword coverage is optimized and the budget score satis-
fies a given constraint. Formally, we define the ORS-KC
problem as follows: given G = (V, E), and a query Q =
〈vs, vt,K,Υ,∆〉, where vs is the source location, vt is the

target location, K is a set of keywords, Υ contains the key-
word weights λκq , and ∆ specifies a budget constraint, we
aim to find the route R starting from vs and ending at vt such
that

R = argmaxR KC(R)
subject to BS(R) ≤ ∆.

(5)

Proposition 1. Solving the optimal route search for keyword
coverage (in Eq. 5) is an NP-hard problem.
Proof. We develop the proof by reducing the problem
from a unit cost version of the budgeted maximum coverage
(UBMC) problem [Khuller et al., 1999]. Given a collection
of sets S = {S1, S2, · · · , Sm} with a unit cost C, a domain
of elements X = {x1, x2, · · · , xn} with associated weights
{w1, w2, · · · , wn}, and a budget ∆, the aim of UBMC is to
find a collection of sets S′ ⊆ S whose total budget is smaller
than L and the elements covered by S′ have the largest total
weight.

Given an instance of the UBMC problem ϕ, we can con-
struct an ORS-KC problem instance ω as follows: we build
a graph containing m + 2 nodes, where two nodes are the
source node and the target node and the other nodes corre-
spond to the sets in S, and each pair of nodes is connected
by an edge with a unit cost C. For each element xj , we cre-
ate a query keyword κj , and the weight of κj is set to the
weight wj of xj . On a node vi corresponding to a set Si, for
each element xj ∈ Si we associate κj with vi, and the value
covκj (vi) is set to 1. The budget value ∆ is set to (L + C).
Given this mapping, if S′ is the optimal result of ϕ, any route
passing by the nodes corresponding to the sets in S′ is the op-
timal route of ω, and vice versa. As the UBMC problem has
been proved to be NP-hard, the ORS-KC problem is NP-hard
as well. �

In analogy to the submodular orienteering prob-
lem [Chekuri and Pal, 2005], the ORS-KC problem is
hard to solve in an optimal way. One potential approximation
with theoretical quality bound is 1

d1+log(k)c , where k is the
number of nodes in the optimal route. As demonstrated in the
work [Singh et al., 2007], the approximate technique costs
more than 104 seconds in a small graph with 22 nodes and a
budget of 450 meters, so it is not scalable and cannot be used
to solve the problem in real road graphs which typically have
thousands of nodes and much larger budgets. The problem is
difficult because the route must satisfy the budget constraint
and must have an optimized keyword coverage score, which
is computed by a submodular function.

4 A* Search Algorithm
We propose an adaptation of the A* algorithm for solving
the ORS-KC problem. We first introduce the pre-processing
method and then present the algorithm. Meanwhile we de-
velop a pruning techniques to improve the search efficiency.

4.1 Pre-processing
We introduce the pre-processing method that is commonly
used to accelerate the search algorithm in a road network.
We use the Floyd-Warshall algorithm [Floyd, 1962], which
is a well-known algorithm for finding all pairs of the shortest
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paths, to compute the smallest budget for each pair of loca-
tions. After this pre-processing, we get all the smallest bud-
gets of pairs. For every pair of nodes (vi, vj), we denote the
least budget from vi to vj as BSsm(vi, vj).

4.2 Algorithm
A brute-force approach for solving ORS-KC is to conduct
an exhaustive search. It first enumerates all candidate paths
from a source node and uses a queue to store the partial paths.
Subsequently, in each step, it extends one partial path in the
queue and generates a new set of candidate partial paths. The
paths that have budget scores smaller than ∆ are added to the
queue. Finally it returns the best route after comparing all the
candidate routes from the source location to the target loca-
tion. Thus the brute-force technique guarantees an optimal
solution to the ORS-KC problem.

However, the exhaustive search is computationally pro-
hibitive. To avoid enumerating all partial paths, we propose a
novel variant of the A* algorithm. The basic idea of applying
the A* algorithm is to search the candidate partial paths with
best estimated keyword coverage firstly, and prune the partial
paths with small estimated keyword coverage. It is non-trivial
to estimate the keyword coverage of partial paths because the
objective function is submodular and the budget also needs to
be considered.

The Framework of A* Algorithm
As all the partial paths start from a source node, we can build
a search tree and conduct a breadth-first search. As well
known, the A* algorithm uses a knowledge-plus-heuristic
cost function to determine the order in which the search visits
nodes in the tree. When we reach a node vn in the search tree,
we define the knowledge-plus-heuristic cost function at node
vn by:

fn(Rs→t) = gn(Rs→n) + hn(Rn→t|Rs→n), (6)

where gn(Rs→n) is the exact keyword coverage of the path
Rs→n and can be computed using KC(Rs→n) in Eq. 2, and
hn(Rn→t|Rs→n) estimates the marginal keyword coverage
of the successive route conditioned on Rs→n in the search
tree. Note that hn(·) does not depend on the gn(·) in the
conventional A* algorithm, and thus designing fn(Rs→t) in
our problem is more challenging.

From the source node vs to the node vi, there exist
many paths. To store each path and its information on
the node vi, we define the route label in format of Lki =
〈Rki , BS(Rki ),KC(Rki ), f i(Rs→t)〉, where Rki represent the
kth path from vs to vi. We use a max-priority queue Q to or-
ganize these labels, which are enqueued into Q in decreasing
order of f i(Rs→t).

In Alg. 1, the algorithm starts by creating an empty R that
is used to store the current best route (line 1). The current
best keyword coverage score is stored in KCmax and the
route label containing vs is enqueued into Q (lines 3-4). It
dequeues the candidate route label from Q one by one until
either Q is empty or all the route labels in Q have an es-
timated keyword coverage smaller than KCmax (lines 5-7).
In each while-loop, the algorithm first obtains a partial route

from the dequeued route label that is to be extended (line
8). For each outgoing neighbor vj of vi, it creates a new
route (line 10) and ignores the new route whose budget score
is larger than the budget ∆ (line 11). The algorithm updates
R and KCmax when the keyword coverage of a new route is
larger than the currentKCmax; otherwise, a candidate partial
route is found and its keyword coverage is estimated. For the
candidate route, the algorithm then creates a new route label
and enqueues it into Q when the estimated keyword coverage
is larger than the current KCmax (lines 12-21). Finally, if
KCmax is never updated, there exists no feasible route for the
given query; otherwise, the optimal route R is returned (lines
22-23).

Algorithm 1: A* Algorithm for ORS-KC
Input: G = (V,E),Q = 〈vs, vt,K,Υ,∆〉,
BSsm(vi, vj) of all pairs of locations in G
Output: An optimal route R

1 Initialize a max-priority queue Q← ∅;
2 R← ∅; KCmax ← −∞;
3 Create a route label: L0

s ← 〈(vs), 0, 0, 0〉;
4 Q.enqueue(L0

s);
5 while Q is not empty do
6 Lk

i ← Q.dequeue();
7 If Lk

i .f
n(Rs→t) 6 KCmax break;

8 Obtain Rk
i from Lk

i ;
9 for each edge (vi, vj) do

10 Create a route Rl
j ← Rk

i ∪ vj ;
11 If BS(Rl

j) > ∆ continue;
12 if vj is vt then
13 if KC(Rl

j) > KCmax then
14 R← Rl

j ;
15 KCmax ← KC(Rl

j);

16 else
17 Compute f j(Rs→t) ;
18 if f j(Rs→t) > KCmax then
19 Create a route label Ll

j ←
20 〈Rl

j , BS(Rl
j),KC(Rl

j), f
j(Rs→t)〉;

21 Q.enqueue(Ll
j);

22 If KCmax is −∞ return ”No feasible route exists”;
23 Else return R;

The key challenge of this algorithm is at line 17, i.e., how
to compute the function in Eq. 6. Because the keyword cov-
erage function is a submodular function, it implies that the
future path-keyword coverage hn(·) depends on the past path-
keyword coverage gn(·), which is different from the conven-
tional A* algorithm. We next proceed to present how to com-
pute the function fn(·).

The Heuristic Function hn(·)
The most crucial part of designing an A* algorithm is to
compute the admissible heuristic function for a node vn,
i.e., in our problem it is hn(·). In conventional A* algo-
rithms, it is the estimation of the cost value of the route
from vn to the target node vt. However, because our key-
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word coverage function KC(·) is submodular, as shown in
Eq. 6, the heuristic function hn(·) is the marginal keyword
coverage of the successive route conditioned on Rs→n, in-
stead of the keyword coverage of the route Rn→t. Therefore,
rather than estimating KC(Rn→t), we are going to estimate
KC(Rs→t)−KC(Rs→n).

Recall that KC(Rs→t) =
∑
κq∈K λκq (1 −∏

vi∈Rs→t
[1 − covκq (vi)]), and KC(Rs→n) =∑

κq∈K λκq (1 −
∏
vi∈Rs→n

[1 − covκq (vi)]). Hence,
we have:
KC(Rs→t)−KC(Rs→n)

=
∑
κq∈K

λκq (
∏

vi∈Rs→n

[1− covκq (vi)]−
∏

vj∈Rs→t

[1− covκq (vi)])

=
∑
κq∈K

λκq (
∏

vi∈Rs→n

[1− covκq (vi)](1−
∏

vi∈Rn→t

[1− covκq (vi)]))

≤ max
κq∈K

∏
vi∈Rs→n

[1− covκq (vi)]
∑
κq∈K

λκq (1−
∏

vi∈Rn→t

[1−

covκq (vi)]).

Note that KC(Rn→t) =
∑
κq∈K λκq (1 −

∏
vi∈Rn→t

[1 −
covκq (vi)]), and thus we can conclude:

KC(Rs→t)−KC(Rs→n) ≤ max
κq∈K

∏
vi∈Rs→n

[1− covκq (vi)])∗

KC(Rn→t).

Hence, we can define hn(Rn→t|Rs→n) =
(maxκq∈K

∏
vi∈Rs→n

[1 − covκq (vi)]) · KC(Rn→t),
and this estimation offers the expected admissibility
of the heuristic function, as it is an upper bound of
KC(Rs→t) − KC(Rs→n). This guarantees the optimality
of the solution.

Specifically, when reaching a node vn, we first get
(maxκq∈K

∏
vi∈Rs→n

[1 − covκq (vi)]), which is already
known, and then we compute KC(Rn→t). Computing
KC(Rn→t) becomes a new ORS-KC problem with the re-
duced budget ∆′ = ∆−BSsm(vs, vn). Fortunately, it is not
necessary to compute the exact KC(Rn→t), and instead we
can estimate an upper bound (UB) for KC(Rn→t). Then,
we compute hn(Rn→t|Rs→n) as (maxκq∈K

∏
vi∈Rs→n

[1 −
covκq (vi)]) · UB, which still guarantees admissibility. We
proceed to explain how to estimate the upper bound of
KC(Rn→t).

We first get the locations set Ln including all nodes which
can be visited from vn to vt with the budget ∆′, denoted by
Ln = {vi|BSsm(vn, vi) + BSsm(vi, vt) ≤ ∆′}. We com-
pute the node’s cost as a lower bound of the budget passing
by this node, i.e., Cost(vi) =

min{b(vk,vi)}+min{b(vi,vj)}
2 ,

where 〈vk, vi〉 is one in-edge of vi and 〈vi, vj〉 is one out-
edge of vi. We set Cost(vt) = 0.0 at the target node. Then,
we utilize the greedy algorithm for the budgeted maximum
coverage (BMC) problem [Khuller et al., 1999], to approxi-
mately find a set of nodes such that their total cost does not
exceed the budget ∆′, and their keyword coverage is maxi-
mized. Note that using this algorithm, the nodes found are not
necessarily connected as a route, but this does not affect the
fact that the result found provides an upper bound. This algo-
rithm achieves an approximation factor of 1−1/

√
e. Thus, we

can get KC(Lop) 6 KC(Lmg)
1−1/

√
e

, where Lmg is the nodes set
found by the greedy algorithm and Lop is the optimal nodes
set. Proposition 2 provides an upper bound of KC(Rn→t).

Proposition 2. KC(Rn→t) ≤ KC(Lmg)
1−1/

√
e

.

Proof. We first prove that the optimal route Rop achieved
by computing KC(Rn→t) is a feasible solution of the trans-
formed BMC problem. For the optimal route Rop, the
budget score BS(Rop) is not larger than ∆′, e.g., ∆′ ≥
BS(Rop). As BS(Rop) =

∑
(vi,vj)∈Rop b(vi, vj) is larger

than
∑
vi∈Rop Cost(vi), we have

∑
vi∈Rop Cost(vi) ≤

BS(Rop) ≤ ∆′, and thus Rop is a feasible solution. Since
Lop is the optimal solution, we know that KC(Rop) ≤
KC(Lop) 6 KC(Lmg)

1−1/
√
e

. �
In summary, we set hn(Rn→t|Rs→n) =

(maxκq∈K
∏
vi∈Rs→n

[1 − covκq (vi)])
KC(Lmg)
1−1/

√
e

, which
preserves the admissibility of the heuristic function. We
finally compute the function fn(Rs→t) in Eq. 7,

fn(Rs→t) = KC(Rs→n)+

(maxκq∈K
∏
vi∈Rs→n

[1− covκq (vi)])
KC(Lmg)
1−1/

√
e
.

(7)

Pruning Optimization
In Alg.1, we only prune the candidate partial routes with
small keyword coverage (lines 18-21). We further improve
the efficiency of the A* algorithm by pruning the candidate
partial routes with large budget scores. Before creating a new
route label for Rlj and enqueuing it into Q, we check whether
the estimated budget score BS(Rlj) +BSsm(vj , vt) is larger
than the budget ∆. If BS(Rlj) + BSsm(vj , vt) > ∆, we
pruneRlj . Proposition 3 states that the pruning technique pre-
serves all feasible solutions.

Proposition 3. No feasible route contains Rlj given
BS(Rlj) +BSsm(vj , vt) > ∆.

Proof. Assume that when BS(Rlj) + BSsm(vj , vt) > ∆,
there exists a feasible route Rls→j→t including Rlj , where
Rls→j→t = Rlj + Rlj→t and BS(Rls→j→t) ≤ ∆, so
BS(Rls→j→t) = BS(Rlj)+BS(Rlj→t) ≤ ∆. Consequently,
we get BS(Rlj→t) < BSsm(vj , vt), which contradicts the
assumption. �

5 Experimental Study
We conducted a series of experiments to study the ORS-KC
problem and demonstrate the algorithm performance.

5.1 Experimental Settings
Datasets. We use two real-world datasets. One has been col-
lected from Foursquare which was made in Singapore (SG)
between Aug. 2010 and Jul. 2011 [Yuan et al., 2013], and an-
other one is from Gowalla which was made in Austin (AS)
between Nov. 2009 and Oct. 2010 [Cho et al., 2011]. We
have adopted the Foursquare APIs to fill in the missing val-
ues of keywords (categories of locations). The SG dataset
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has 189,306 check-ins made by 2,321 users at 5,412 loca-
tions, and the AS dataset contains 201,525 check-ins made
by 4,630 users at 6,176 locations. Following the work [Cao
et al., 2012], we build an edge between two locations which
were visited continuously in 1 day by the same user, and set
the budget value by the Euclidean distance for each edge.
Comparative Methods. We have implemented the A*
algorithm with the above described pruning optimization.
In addition, we adopt the standard Weighted A* method
(WA*) [Ebendt and Drechsler, 2009] to further optimize per-
formance. In WA*, the cost function for WA* is expressed
as fn(·) = gn(·) + ωhn(·), which improves performance
through a phenomenon known as precision-complexity ex-
change, speeding up search at the cost of a minimal departure
from optimality 1. For the comparison purpose, we have im-
plemented the Brute-Force (BF) approach. Meanwhile we
use the Pruning Optimization (as described in Section 4) to
improve BF (denoted by BF+PO).

We generate 100 queries randomly in each experiment, im-
plement methods in JAVA and conduct experiments on a Win-
dows PC with a 4-core Intel i7-870 2.93GHz CPU and 16 GB
memory.

5.2 Performance of Methods
Efficiency of Methods. We compare our A* algorithm with
BF+OP method on the run time with variation of the budget
limit ∆ (travel distance). Note that both methods are able to
get the optimal solution, and BF+OP is the improved version
of brute-force approach. Fig. 2 shows that the A* algorithm
is usually 2− 3 times faster than BF+OP method, and the run
time of both methods grows with the increase of ∆ quickly,
as ∆ is larger, more potential routes should be checked.
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Figure 2: Comparison of methods varying ∆ on run time.

Effect of the Weighting Parameter ω. In the WA* algo-
rithm, the weighting parameter ω sets a trade-off between
precision and complexity. We denoted the route found by
the WA* algorithm as Rsw, if ω = 1, the WA* algorithm
gets the optimal route Rop, then we use the ratio KC(Rsw)

KC(Rop) to
measure the precision of the WA* algorithm. Fig. 3 shows
the effect of ω with ∆ = 15 kilometers on solving the ORS-
KC problem. With the increase of ω, the precision improves
while the efficiency drops (longer run time). In particular, the
change of precision and run time is notable from ω = 0.3 to

1As discussed in the work [Ebendt and Drechsler, 2009]
weighted A* is a bounded suboptimality method. Another way to
characterize the precision-complexity exchange is to consider the
approach as epsilon-admissible.

ω = 0.4, which indicates that 0.4hn(·) = 0.4 ∗ KC(Lmg)
1−1/

√
e

is close to the upper bound of the marginal keyword cov-
erage hn(Rn→t|Rs→n). As (1 − 1/

√
e) approximates 0.4,

KC(Lmg) is near the upper bound of hn(Rn→t|Rs→n) in
most cases. We thus set the weighting coefficient to 0.2,
which drastically reduces computation time while limiting so-
lution quality deterioration to 5%.
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Figure 3: Effect of weighting parameter ω with ∆ =
15 kilometers in the WA* algorithm.

Scalability of the A* algorithm. In order to study the
scalability of the algorithms, we run the A* and WA* al-
gorithms on a larger budget limit ∆ in two datasets. As
the run time of A* algorithm is larger than 104 ms when
∆ ≥ 17 kilometers, we omit it. Fig. 4 shows that WA*
scales better than A*. This is expected as a large budget en-
larges A*’s search space.
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Figure 4: Scalability of the algorithms varying ∆.

(a) Route1 (b) Route2

Figure 5: Routes selected by (W)A* for solving ORS-KC
problems in Singapore.

Example. We use one real-world example in the SG dataset
to show that ORS-KC can find optimal routes for satisfying
user’s various preferences. We set the source location at Na-
tional Library of Singapore and the target location at Gallery
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Hotel, the budget constraint ∆ = 6 kilometer, and the key-
words set is K = {κ1 = mall, κ2 = coffee, κ3 = park},
i.e., a user would like to enjoy shopping, drink some coffee
and visit a park on the route. To keep the example clear,
we only list some locations having the three keywords in the
map. When we set the keyword weights be Υ = {λκ1

=
0.8, λκ2

= 0.1, λκ3
= 0.1}, our (W)A* algorithm returned

the optimal route in Fig.5(a), which contains some popular
malls on the prosperous Orchard Road. On the other hand,
when Υ = {λκ1

= 0.1, λκ2
= 0.1, λκ3

= 0.8}, the route in
Fig. 5(a) is not a good choice, because it only goes though a
small park. Instead the (W)A* algorithm selects a new route
that contains a popular park in Fig. 5(b).

6 Conclusion
Considering users’ various preference on route search, we in-
troduce the keyword coverage function and define the opti-
mal route search for keyword coverage (ORS-KC) problem,
which is to find an optimal route such that it can optimally sat-
isfy the user’s weighted preferences. In order to solve ORS-
KC, we define an admissible heuristic exploiting the submod-
ular property, then use a variant of A* to compute solution
routes. This is also challenging in a general submodular func-
tion optimization for a graph. Empirical results demonstrate
performance of our methods as well as the quality of routes
found in the ORS-KC problem. In the future work, we will
seek other approximate algorithms for solving this new prob-
lem.
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