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Abstract—An optimal routing and data aggregation scheme for
wireless sensor networks is proposed in this paper. The objective is
to maximize the network lifetime by jointly optimizing data aggre-
gation and routing. We adopt a model to integrate data aggrega-
tion with the underlying routing scheme and present a smoothing
approximation function for the optimization problem. The neces-
sary and sufficient conditions for achieving the optimality are de-
rived and a distributed gradient algorithm is designed accordingly.
We show that the proposed scheme can significantly reduce the
data traffic and improve the network lifetime. The distributed al-
gorithm can converge to the optimal value efficiently under all net-
work configurations.

Index Terms—Data aggregation, maximum lifetime routing, net-
work lifetime, smoothing methods, wireless sensor networks.

I. INTRODUCTION

T
HE main operation of a wireless sensor network (WSN) is

to monitor the physical environment, process the sensed

information, and deliver the results to some specific sink nodes.

Sensor nodes are normally powered by batteries with limited

energy resource. Therefore, the primary challenge for this en-

ergy-constrained system is to design energy-efficient protocols

to maximize the lifetime of the network. Since radio transmis-

sion is the primary source of power consumption [1], the design

of communication protocols for topology management, trans-

mission power control, and energy-efficient routing has been the

focus of many studies [2]–[8].

Among these schemes, energy-efficient routing [6]–[8] is one

of the well-studied approaches for both wireless ad hoc net-

works and sensor networks. The basic idea is to route the packet

through the minimum energy paths so as to minimize the overall

energy consumption for delivering the packet from the source to

the destination. The drawback of this approach is that it tends to

overwhelm the nodes on the minimum energy path, which is

undesirable for sensor networks since all sensor nodes are col-

laborating for a common mission and the duties of failed nodes

may not be taken by other nodes.
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A few schemes have been proposed to address this problem

by studying the maximum lifetime routing problem [9]–[12].

The problem focuses on computing the flow and transmission

power to maximize the lifetime of the network, which is the time

at which the first node in the network runs out of energy. Some

distributed solutions based on subgradient algorithms [11] and

utility-based algorithm [13] have been proposed. The common

assumption of these works is that the data flows are conserved

during the transmission from the sensor nodes to the sink node,

which however is not true for sensor networks because data

collected by neighboring nodes are often spatially correlated.

Therefore, redundant information can be removed through data

aggregation at the intermediate nodes.

Some research efforts have been made to exploit the data cor-

relation feature to improve the performance of the communica-

tion protocols. In [14], Kalpakis et al. study the maximum life-

time data aggregation (MLDA) problem. The objective is to find

a set of data gathering schedules to maximize the system life-

time—a schedule is defined as a collection of directed spanning

trees rooted at the sink node. In [15], the impact of the data cor-

relation on the routing schemes is studied and a static clustering

scheme is proposed that achieves a near-optimal performance

for various spatial correlations. Two complementary data ag-

gregation approaches are proposed in [16]. One is to perform

blind data compression at the source nodes using Slepian–Wolf

Coding, the other is to aggregate data using the explicit side in-

formation from other nodes. In [17], the authors propose a Min-

imum Energy Gathering Algorithm (MEGA). The algorithm re-

quires to maintain two trees—the coding tree for raw data aggre-

gation and the shortest path tree (SPT) for delivering the com-

pressed data to the sink node. These works demonstrate that

data aggregation can greatly improve the performance of var-

ious communication protocols.

However, none of the existing works have considered the in-

tegration of data aggregation and maximum lifetime routing.

By jointly optimizing routing and data aggregation, the net-

work lifetime can be extended from two dimensions. One is

to reduce the traffic across the network by data aggregation,

which can reduce the power consumption of the nodes close

to the sink node. The other is to balance the traffic to avoid

overwhelming the bottleneck nodes. In this paper, we present

a model to integrate routing and data aggregation. We adopt the

geometric routing [18] whereby the routing is determined solely

according to the nodal position. This allows different data cor-

relation models such as that in [17] to be incorporated without

intervening the underlying routing scheme. The problem there-
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fore is focused on computing the optimal routing variables that

maximize the network lifetime. Since the maximum lifetime

problem cannot be solved directly using the simple distributed

methods, we propose a smoothing function to approximate the

original max function by exploiting the special structure of the

network. We derive the necessary and sufficient conditions for

achieving the optimality of the smoothing function and design a

distributed gradient algorithm accordingly. We conduct exten-

sive simulations to show that the proposed scheme can signifi-

cantly reduce the data traffic and improve the network lifetime.

The distributed algorithm can converge to the optimal values ef-

ficiently under all network configurations.

In the next section, we first present the system models and

define the maximum lifetime routing problem. In Section III,

we propose a smoothing function to approximate the maximum

lifetime routing problem and derive the optimality conditions.

The implementation issues of the distributed algorithm are dis-

cussed in Section IV. Performance evaluation is presented in

Section V and finally we conclude this paper in Section VI.

II. SYSTEM MODELS

We model the topology of a wireless sensor network as a undi-

rected graph , where is the set of nodes, and is the

set of undirected links. A sink node is responsible for

collecting data from all other nodes. To capture the character-

istics of this sensor network, we present the routing model, the

data aggregation model, and the power consumption model in

the following subsections.

A. Routing Model

The routing algorithm suitable for use belongs to the class

of geometric routing algorithms [18]. Every sensor node is as-

sumed to know its own position as well as that of its neighbors,

which can be obtained with some localization schemes [19],

[20]. Each node can forward packets to its neighbors within its

transmission range that are closer to the sink node than itself.

Let denote the set of neighbors of node and

, where is the Euclidean

distance of node and node , and is the radius of the

transmission range. Let us define the set of upstream neighbors

as , and similarly define the set

of downstream neighbors as .

According to the geometric routing rule, the outgoing traffic

from node can only be forwarded towards the sink node

through the set of downstream neighbors. For each downstream

neighbor , a routing variable is associated with the link

between node and that denotes the fraction of traffic to be

routed from node to node . Clearly, the flow conservation

law requires .

The following theorem specifies the conditions under which

the resulting network has directed acyclic property after ap-

plying the geometric routing rules. Due to the limited space, we

omit the proof and refer the reader to the technical report [21].

Theorem 1: If the original graph satisfies the condi-

tions: 1) the graph is connected, i.e., every pair of nodes are con-

nected by at least a path, and 2) there exists at least one neighbor

for each node satisfying and ,

then the resulting graph is directed and acyclic graph

(DAG) strongly connected to sink node .

B. Data Aggregation Model

A salient feature of sensor networks is that data collected

by the neighboring senor nodes may carry redundant informa-

tion due to the spatio-temporal correlation characteristics of the

physical medium being sensed [22], [23], such as the tempera-

ture and humidity sensors in a similar geographic region or mag-

netometric sensors tracking a moving vehicle.

To remove the redundant information and reduce the traffic,

it is necessary to aggregate the data at the intermediate nodes.

To incorporate data aggregation with the geometric routing, we

adopt the foreign-coding model [17]. In this model, a node is

assumed to be able to compress the data originating from its up-

stream neighbor using its local data. The compression ratio

between nodes and is characterized by the correlation co-

efficient , where

is the entropy coded data rate of the information at node ,

and is the conditional entropy coded data rate

of the same information at node given the side informa-

tion . Some correlation models have been proposed, such as

the Gaussian random field model [16] which assumes the corre-

lation coefficient decreases exponentially with the distance

between nodes or , and the inverse model

[17] which assumes the data correlation is inverse proportional

to the Euclidean distance between nodes or .

Using this data aggregation model, a node performs two dif-

ferent operations for the data received from its upstream neigh-

bors. For the raw data generated by the upstream neighbors,

it encodes the data using the local information. For the transit

data (already compressed by the upstream nodes), it directly

forwards the data to the next-hop neighbors. Let denote the

traffic generating rate at node , and denote the aggre-

gated transit traffic at node and , respectively. The aggregated

transit traffic consists of two parts: the transit traffic passed

from the upstream nodes and the raw data originated from the

upstream nodes that is compressed using the local information,

that is,

(1)

C. Power Consumption Model

A sensor node consumes power when it is sensing and gen-

erating data, receiving, transmitting, or even simply in standby

mode. The power for sensing and generating one bit of data is

assumed to be the same for all nodes. The standby power con-

sumed by a node, again assumed to be the same for all nodes

and independent of traffic, is denoted by . For power used for

receiving and transmitting, we adopt the first-order radio model

in [6]. Specifically, a node needs to run the cir-

cuitry and for the transmitting ampli-

fier. Therefore, the power consumption for receiving one bit of

data is given by

(2)
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The power consumption for transmitting one bit of data to a

neighbor node is given by

(3)

where is the path loss exponent, which is usually between 2

and 4 for free-space and short-to-medium-range radio commu-

nication.

Assuming each node has an initial battery energy , the

uniformed mean power consumption of node , denoted as ,

is given by

(4)

where the first term is the standby power consumption, the

second term is the power for sensing, the third term is the

power consumption for receiving, and the last term is the power

consumption for transmitting.

D. Maximum Lifetime Routing Problem

The lifetime of node is the expected time for the node

to run out of the battery energy, that is, where is

given by (4). We define the network lifetime as the time at

which the first node in the network runs out of energy as that in

[9], [10], that is,

(5)

The power consumption is a function of , , and . How-

ever, the set of aggregated transit traffic can be obtained from

and with (1). Therefore, depends only on , , and

the initial battery energy . If and are given, the maximum

lifetime routing (MLR) is to find a set of routing variable such

that the network lifetime is maximized. More formally,

(6)

The definition of the MLR problem (6) is different from those

in [9]–[11], and [13] in that data aggregation is considered and

jointly optimized with the routing in our model. It is possible to

consider more general network lifetime definitions such as that

in [12], but these are beyond the scope of this work.

It is obvious that maximizing the network lifetime is

equivalent to minimizing the maximum normalized power con-

sumption for all . We therefore can rewrite the MLR

problem as

(7)

Fig. 1. Two possible scenarios for node sets � , � , and � . (a) The sink
node � is located in the anterior region. (b) The sink node � is located in the
boundary region.

III. DISTRIBUTED SOLUTION FOR MLR PROBLEM

The distributed solutions based on the gradient algorithm are

not directly applicable for the MLR problem as defined (7) since

the function is not differentiable. One solution for this

problem is to transform the problem to an equiva-

lent optimization problem by introducing an extra upper bound

parameter (e.g., [24]), which is adopted in [11], where subgra-

dient algorithms are developed to solve the dual optimization

problem. However, subgradient algorithms are known to con-

verge slowly. The other solution is to approximate the

function using some smoothing function, such as the entropy

type approximation [25], [26], the two-dimensional approxima-

tion [27], and the recursive approximation [28]. Here, we first

propose a smoothing function to approximate the function

in the MLR problem (7) by exploiting the special structure of the

network. We then derive the necessary and sufficient conditions

required to achieve the optimality of the approximate optimiza-

tion problem.

A. Smoothing Function

Recalling in Section II-A that we have shown that, by ap-

plying the geometric routing, the original undirected network

is transformed to a directed acyclic graph (DAG)

, where is the set of directed links, and sink node

is the root of the DAG. For any such DAG, we can find a

separation to partition the node set

into three subsets , , and , where is the cut

set that separates and into two disjoint sets. Without

loss of generality, let the sink node be located in the subset

. Two possible scenarios are illustrated in Fig. 1, where

Fig. 1(a) shows the case that the sink node is located in the

interior region, and Fig. 1(b) shows the case that the sink node

is located at the boundary region.

Normally, there are many such separations for a given

DAG. For a separation , there is a set of routing variables

for nodes in and that minimize the max-

imum energy consumption of the subset , which we

denote as . Among many

such separations, there always exists a separation with

the largest minimax energy consumption rate , i.e.,

. We call the corresponding

cutset as the bottleneck set since this is the node set that

limits the lifetime of the network. In practice, this set of bot-

tleneck nodes are not known a priori, but can be identified
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Fig. 2. Three possible relations of node �, �, and �. (a) Source node � and bottleneck node � are nonadjacent. (b) Source node � and bottleneck node � are adjacent.
(c) Source node � and bottleneck node � are colocated.

dynamically during the run of algorithm, the details will be dis-

cussed in next section. Here, we assume the existence of such

set of nodes, then the original MLR problem (7) is equivalent to

minimizing of the maximum energy consumption with respect

to the set of bottleneck nodes. More formally, we have

(8)

Notice that (8) differs from (7) in only two aspects.

• The problem size of (8) is reduced from to , where

and are the size of the sets and , respec-

tively.

• The set of values , may have smaller variance

than those in because they belong to the same cutset.

The reason for the second aspect is that, for any two nodes

, if , the difference of them can be minimized by

adjusting the routing of upstream nodes to reduce the traffic of

node and increase that of node , and vice versa if .

This may not be true for any two nodes .

The function in (8) is still not differentiable. However,

it can be approximated by the following smoothing function:

(9)

where is the mean power consumption of

the bottleneck set and is a positive scalar parameter.

The smoothing function has two terms representing

the mean and the variance of the power consumption of nodes

in . Minimizing the first term will enforce data aggrega-

tion at the intermediate nodes so that the traffic passing through

the bottleneck nodes is minimized. This causes the mean power

consumption of these nodes to be minimized too. Minimizing

the second term of will cause the power consumption

of the set of bottleneck nodes to be equalized, which has the ef-

fect of maximizing the network lifetime.

With as a control parameter, the smoothing function

can be minimized successively using the method of multipliers

[30, p. 244]. Let and denote the values of and at the

th iteration, and is the corresponding power consumption

vector. We choose to be an increasing sequence of positive

numbers and update the routing variables as

(10)

The iteration stops when a prescribed accuracy criterion is satis-

fied. The solution of (10) requires to derive the optimality con-

ditions for , which will be described in the next

subsection.

Thus, instead of solving problem (8), we can solve the fol-

lowing approximate problem:

(11)

B. Optimality Conditions

To solve (11) in a distributed manner, using as the control

variable, we extend the techniques in [31] to obtain the neces-

sary and sufficient conditions for achieving the optimality of the

smoothing function . Note the discussion in this section

is applicable to nonbottleneck node cuts as well. So, without

abusing the notations, we use , , and to denote three

corresponding subsets.

First of all, we can rewrite the smoothing function (9) as

where we use the fact that . Since is a

function of the routing variable , by using the chain

rule, we obtain

(12)

In order to find , we introduce a set of dummy vari-

ables ’s which can be interpreted as the dummy traffic injected

into node that follows the same set of routing as , but without

data aggregation. The partial derivative involves three

nodes , , and , and we need to consider three possible relations

of the source node , its next-hop neighbor , and the bottleneck

node as shown in Fig. 2.

1) Source Node and Bottleneck Node Are Nonadjacent: If

the source node is not adjacent to the bottleneck node as

shown in Fig. 2(a), let us consider a small increment to the

input rate . This will cause an increment to the transit
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rate of its next-hop neighbor . Since node is not a bottleneck

node, this extra traffic is equivalent to an increment of to

the input rate . Therefore, the contribution of the increment

of to the power consumption of node can be expressed via

as . This reasoning is applicable to all next-hop

neighbors. Summing up over all gives

(13)

Now let us fix the aggregated traffic at node and consider

an increment to the routing variable , which will cause

an increment to node . Considering the data ag-

gregation applied to , this is equivalent to an increment of

to the input rate . Applying the similar

reasoning as above, we obtain

(14)

2) Source Node and Bottleneck Node Are Adjacent: If the

source node is adjacent to the bottleneck node as shown in

Fig. 2(b), then the increment of power consumption of node

due to the increment of the input rate is composed of two

parts. One is for receiving the increased traffic , which is

given by . The other is for transmitting the traffic

, which is given by following the analysis above.

Taking into account the indirect increment from other non-ad-

jacent neighbor as derived above, we obtain

(15)

Similarly, an increment to leads to an increment of

to node , and therefore

(16)

3) Source Node and Bottleneck Node Are Colocated: If the

source node is also a bottleneck node as shown in Fig. 2(c),

note that is the dummy traffic, so we do not consider the power

consumption for generating traffic . Taking the derivative di-

rectly from (4), we have

(17)

(18)

Another case is and . However, this case is

not interesting because both and are zeros

since does not depend on .

We can now combine the above results to derive of

(12) by considering the following four cases.

• Case 1: If , then none of the bottleneck nodes are

adjacent to node , so we can obtain from (14)

for all . Substituting these into (12), we have

(19)

• Case 2: If , , then node is a bottleneck

node adjacent to node . Therefore, is given by

(16), while for other bottleneck nodes , is

given by (14). Substituting these into (12), we have

(20)

• Case 3: If , then node and are adjacent bottle-

neck nodes, so and are given by (18)

and (16), respectively. Therefore

(21)

• Case 4: If and , the source node is also a

bottleneck node, so is given by (18). Therefore,

we have

(22)

Now all that is required to minimize is to find the sta-

tionary points for the routing variable . Applying the Lagrange

multiplier to the constraints and taking into

account the constraint , the necessary condition for to

be a minimizer of is given by the following theorem.

Theorem 2: (Necessary Condition): Let be given

by (19)–(22), then the necessary condition for a minimum of

with respect to to exist for all ,

is

.
(23)

This states that all links for which must have the

same values of , and this value must be less than or

equal to the values of for the links on which .

We prove further that the sufficient condition to minimize

with respect to for all , is given by the

following theorem.
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Theorem 3: (Sufficient Condition): Let be given

by (19)–(22) and define

, it is then sufficient for to be the minimizer of

if for all , , there is

(24)

which correspond to the four cases given by (19)–(22), respec-

tively.

The proofs of Theorems 2 and 3 are given in

Appendix A and B, respectively. Note that the suffi-

cient condition is always satisfied for a node if both the transit

traffic rate and the local data rate are zeros. This may

lead to inflection points to as a function of ’s. To

avoid this problem, it is necessary that the local data rates of all

nodes should be non-zero. This assumption is reasonable for

the sensor network in our study since all sensors are expected

to generate data constantly.

Let us define two indicator variables and , where is 1 if

and 0 otherwise, and is 1 if and 0 otherwise.

Let ,

then the sufficient condition in (24) can be simplified as

(25)

for all , , where the equality is achieved for

whose routing variable is greater than 0. In other words,

traffic is only distributed over those links with the smallest and

identical values of

when the optimality has been achieved,

IV. DISTRIBUTED ALGORITHM AND PROTOCOL

Here, we present a routing adaptation algorithm for every

node to compute the routing variables based on the sufficient

conditions derived in previous section. For each node , the al-

gorithm requires the feedback of the following information from

its downstream neighbors:

• the set of bottleneck nodes ;

• the power consumption of nodes ;

• the power consumption rate of nodes ;

• the data correlation coefficient of next-hop neighbors

.

In the following, we first discuss the procedure for identifying

the bottleneck nodes and the computation of . We then

present the routing adaptation algorithm and explain the proce-

dure of the MLR protocol.

A. Bottleneck Node Identification

In the previous section, we defined the bottleneck node set

as the set of nodes that have the largest minimax power con-

sumption among all possible cutsets. This suggests that we can

determine whether a node belongs to the bottleneck set by com-

paring its power consumption with that of its downstream neigh-

bors. Let each node maintain two variables: 1) its power con-

sumption and 2) the weighted power consumption of the set

of bottleneck nodes known by node , denoted by , which

is given by

(26)

that is, if , node labels itself as a bot-

tleneck node and set , otherwise it sets

and passes it to the upstream neighbors.

B. Computing

Since the network is a DAG, it is possible that only a subset

of the bottleneck nodes are located on the downstream paths of

a source node. If a bottleneck node is not on the downstream

paths of a node , the input rate will have no contribution to

the power consumption of node , so . Let

denote the set of downstream bottleneck nodes known by node

. Then, the overall power consumption rate in suffi-

cient condition (25) needs only to include those terms in

or

(27)

Since only the values from the subset are available

at node , we can approximate the global mean with

.

C. Routing Adaptation Algorithm

Every node executes a routing adaptation algorithm to update

its routing variables according to the received information from

downstream neighbors. The algorithm is operated in following

steps.

1) Calculate for

every neighbor and find the best neighbor such

that

(28)
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2) Calculate the amount of reduction to each

. Let be the gradient difference between each

neighbor and , that is,

(29)

The amount of routing reduction to should be

proportional to and inversely proportional to

so that the change of link traffic will not greatly affect the

objective function. In addition, taking into account that the

routing variable cannot be negative, is given by

(30)

where is a positive scale parameter.

3) Update routing variables as follows:

(31)

and

(32)

Using this algorithm, each node gradually decreases

the routing variables for which the values

are larger and increases the

routing variable for which the value is the smallest until the

sufficient condition (25) is satisfied.

D. Summary of MLR Protocol

Each node maintains a table for the bottleneck nodes with

entries. Each entry contains the node identity , the power

consumption and the power consumption rate for a

bottleneck node .

In each iteration, the MLR protocol is operated as follows by

each node .

1) Wait until receiving the table from all of its downstream

neighbors and merge the bottleneck set of neighbor

with the local bottleneck set to give

.

2) Calculate new routing variables using the routing-adapta-

tion algorithm.

3) Calculate the power consumption and with (4) and

(26) to perform bottleneck node identification, and

a) If node is not identified as a bottleneck node, cal-

culate the power consumption rate for all

using the recursive (13).

b) If node is a bottleneck node, create a bottleneck

table with a single entry and fill the table with and

.

4) Pass the bottleneck table to upstream neighbors.

Each iteration of the MLR algorithm involves the communi-

cation between the neighboring nodes, and the communication

overhead is bounded by the number of bottleneck nodes at the

downstream paths. Thus, each node can run the algorithm in a

decentralized manner, and the energy consumption for running

this algorithm is determined by the number of the iterations until

the algorithm converges.

V. PERFORMANCE EVALUATION

A. Simulation Setup

Here, we compare the performance of MLR algorithm (cen-

tralized and distributed) with the minimum energy gathering al-

gorithm (MEGA) [17] and the minimum energy routing (MER)

algorithms.

1) MLR (centralized)—The results for centralized MLR al-

gorithm are obtained by directly solving the MLR problem

(7) using the function in MATLAB.

2) MLR (distributed)—The distributed MLR algorithm is the

one presented in previous section.

3) MEGA—This algorithm tries to optimize the aggregation

costs for raw data and the transmission costs for com-

pressed data. It maintains two trees—the coding tree and

the shortest path tree (SPT). The coding tree is for data

aggregation and constructed with directed minimum span-

ning tree (DMST) algorithm, and the SPT is for delivery of

compressed data.

4) MER—This algorithm tries to minimize the overall energy

consumption of delivery of a packet by using the shortest

path from the source node to the sink node in term of en-

ergy cost. For fair comparison, we revised the MER algo-

rithm to take into account the data correlation effects, that

is, raw data packet is firstly compressed at the nexthop node

along the shortest path. After that, the compressed data is

delivered through the shortest path.

We evaluate these four algorithms over a set of sensor networks

with the number of nodes ranging from 20 to 80. For the same

number of nodes, we randomly generate twenty network topolo-

gies and run these algorithms over them to obtain the average

results. In each network, the sensor nodes are randomly dis-

tributed on a 100 m 100 m square. The transmission radius

of all nodes is m. For radio power consumption setting,

we adopt the first-order radio model and set nJ/bit,

pJ/bit/m and path loss exponent . For data

correlation setting, we adopt the Gaussian random field model

[16] such that the correlation coefficient decreases expo-

nentially with the increase of the distance between nodes, or

. Here, is the correlation parameter ranging

from m (high correlation) to m (low

correlation) in the experiments. All nodes have uniform battery

energy of kJ and the data generating rate is 1 kbps. Also,

a decreasing sequence of step size and an increasing sequence

of are used for the distributed MLR algorithm in the experi-

ments.

B. Network Lifetime

Fig. 3 shows the network lifetime under two data correlation

settings ( and ). From this figure, we first

see that the results of the distributed MLR algorithm are very
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Fig. 3. Network lifetime versus network size.

close to those of the optimal (centralized) MLR algorithm under

all situations. This demonstrates that the smoothing function is

a good approximation to the original objective function since

the network lifetime of sensor networks is determined by the

bottleneck nodes due to the special structure of sensor networks.

We also see from the figure that the network lifetime ob-

tained by MLR algorithm is almost twice of that obtained by

MEGA and MER algorithms. In particular, the network lifetime

returned by MLR algorithm increases gradually as the network

size grows, while those of MEGA and MER algorithms decrease

continuously. The reason is that the overall source data rate

is proportional to the number of nodes in the network. There-

fore, it is expected that the network lifetime should decrease

with the increase of network size as more traffic is generated.

However, the increase of nodes in the network also drives the

network topology from sparse to dense, which has two effects.

First, the distance between neighboring nodes becomes smaller,

so a node needs less power to send data to its neighbors. Second,

the data correlation between neighboring nodes becomes higher,

so more redundant information can be removed with data ag-

gregation. Both effects help reduce the energy consumption.

However, MEGA and MER algorithms fail to take advantage

of this feature and the network lifetime returned by both algo-

rithms drops continuously as the network size grows. In partic-

ular, under lower correlation condition , the network

lifetimes returned by both algorithms are very close. However,

MEGA outperforms MER algorithm under higher correlation

condition because it can optimize the data aggrega-

tion, but MER algorithm does not. MLR algorithm, on the other

hand, can optimize both routing and data aggregation. There-

fore, it performs much better than MEGA and MER algorithms.

For example, for the network size of 80 nodes, the network life-

time obtained by MLR algorithm is around twice that given by

MEGA algorithm and 3 times that given by MER algorithm with

. For , the network lifetime of MLR algo-

rithm is around three times of those given by both MEGA and

MER algorithms.

C. Aggregated Data Rate at Sink Node

Fig. 4 shows the aggregated data rate at the sink node. We

can see that MLR algorithm has better aggregation results than

Fig. 4. Sink node data rate versus network size.

Fig. 5. Network lifetime versus correlation parameter.

MER algorithm. For MEGA algorithm, its aggregated rate is

comparable to that of the MLR algorithm under higher correla-

tion condition , but is higher than MLR algorithm

under lower correlation condition. Comparing with the results

from Fig. 3, we can see that MEGA algorithm successfully op-

timizes data aggregation paths, but fails to balance the traffic

since it use the shortest path to deliver compressed data, which

tends to overwhelm the hotspot nodes. Therefore, under lower

correlation condition, the network lifetime of MEGA and MER

algorithms are quite similar.

D. Impact of Data Correlation

In Fig. 5, we show the average network lifetimes given by

MLR, MEGA, and MER algorithms as the correlation param-

eter increases from 0.001 to 0.01. We can see that MEGA and

MER algorithms achieve better network lifetime for the smaller

network size (40 nodes) than the larger network size (80 nodes)

under all correlation situations. For the same network size, the

performance of MEGA and MER algorithms degenerate as the

data correlation becomes smaller. This is observed in Fig. 3. On

the other hand, the network lifetime of MLR increases with net-

work size. This difference diminishes as the correlation param-

eter grows larger(which reduces the data correlation). Under the

same settings, we show in Fig. 6 the aggregated data rate at the
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Fig. 6. Sink node data rate versus correlation parameter.

Fig. 7. Normalized network lifetime versus iteration.

sink node with these algorithms. We see that MLR algorithm ef-

fectively reduces the network traffic compare with MEGA and

MER algorithms.

E. Convergence of the Distributed Algorithm

In addition to the effectiveness of the MLR algorithm, we

are also interested in knowing the efficiency of the distributed

algorithm, or how fast the algorithm can converge to the op-

timal values given by the centralized algorithm. Fig. 7 shows

the normalized network lifetime obtained by distributed MLR

algorithm for various network sizes (20, 40, 60, and 80 nodes).

The network lifetime is computed at each iteration and normal-

ized with respect to the optimal value obtained by the central-

ized MLR algorithm. We see that the distributed algorithm can

converge to the optimal values efficiently. The number of itera-

tions required for the network lifetime to converge to over 90%

of the optimal values is 5, 20, 35, and 40 iterations respectively

for network size ranging from 20 to 80 nodes. The final network

lifetimes are around 95% of the optimal values all network sizes.

The effectiveness of the distributed MLR algorithm can also be

observed from Fig. 8 which shows the normalized aggregated

data rate at the sink node for various network sizes. The aggre-

gated data rate is normalized with respect to the optimal value

obtained by the centralized MLR algorithm. Again, we see that

the distributed MLR algorithm successfully reduces the data rate

Fig. 8. Normalized sink node data rate versus iteration.

and achieves closer approximation ratios (below 105%) of the

optimal results returned by the centralized algorithm.

F. Bottleneck Nodes Identification

In Section IV, we propose a heuristic bottleneck node iden-

tification procedure. We now illustrate the effectiveness of this

algorithm under two different settings: 1) uniform battery en-

ergy and 2) nonuniform battery energy.

For uniform battery energy setting, we choose a network

topology with 80 nodes and setup the same battery energy for

all nodes as previous experiments. We run the MLR algorithm

(centralized and distributed algorithm) and record the lifetimes

of all nodes. In Fig. 9, we plot the node locations and indicate

the bottleneck nodes returned by both algorithms, where the

node with star mark is the sink node locating at the left-bottom

corner. The set of bottleneck nodes (nodes with the smallest

lifetime) returned by the centralized and distributed MLR algo-

rithms are indicated by circle and cross marks, respectively. As

expected, the nodes close to the sink node are the bottleneck

nodes because these nodes have to forward traffic for those

nodes far away from the sink node. Since the initial batter

energy is the same for all nodes, these nodes tend to run out of

energy first. From this figure, we also see that the distributed

MLR algorithm is effective as it can identify most of the

bottleneck nodes found by the centralized MLR algorithms.

For nonuniform setting, we choose three nodes that are far

away from the sink node and set their initial battery energy to

only 25% of other nodes. We repeat the same experiments and

plot the results in Fig. 10. We can see that some bottleneck nodes

shown in Fig. 9 are no longer found in Fig. 10, but some new

ones are identified. More importantly, three chosen nodes la-

beled with A, B, and C are identified as bottleneck nodes by both

algorithms since they have lower battery energy, even though

they are far way from the sink node. Again, most of the bottle-

neck nodes identified by the distributed MLR algorithm coin-

cide with those found by the centralized MLR algorithm.

VI. CONCLUSION

In this paper, we have presented an optimal routing and

data aggregation scheme for maximizing the network lifetime

of sensor networks. By exploiting the special structure of the
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Fig. 9. Bottleneck nodes with uniform battery energy.

Fig. 10. Bottleneck nodes with nonuniform battery energy.

sensor network, we have proposed a smoothing approximate

function to overcome the nondifferentiability of original opti-

mization problem so that the distributed solution is possible.

The optimality conditions are derived and a distributed algo-

rithm is designed accordingly. We have shown that the scheme

can significantly reduce data traffic and improve the network

lifetime. The distributed algorithm can converge to the optimal

value efficiently. Extension of our work for multiple sink nodes

and for nodes with sleeping mode would be of interest, but

these are beyond the scope of this paper.

APPENDIX A

A. Proof of Necessary Conditions

Proof: We prove that (23) is the necessary condition to

minimize by defining the following Lagrange function:

(A1)

where and are the Lagrange mul-

tipliers. According to the Kuhn–Tucker theorem, the necessary

condition for a to be a minimizer of is that there

exist Lagrange multipliers , and , ,

such that

(A2)

Rearranging the first equation as and

taking into account the second and third conditions will com-

plete the proof of (23).

B. Proof of Sufficient Conditions

Proof: Suppose that there is a set of routing variables

satisfying (24), then the corresponding node flows are and

link flows are , where , , . Let

be any other set of routing variables with the corresponding

node flows and link flows . Define as the convex com-

bination of and with respect to a variable , that is,

(A3)

Therefore, each , can be represented by the link flow

, which in turn is a function of , so is also a function of .

We rewrite the smoothing function (9) as

(A4)

Since each is a convex function of the node flow , there-

fore is also a convex function with respect to , so it is

obvious that

(A5)

Since is an arbitrary set of routing variable, it will complete

the proof by proving that at .

From (4) and (A3), we can express as a function of the

link flow as

(A6)

Differentiating with respect to from (A3) and (A6), we

obtain

(A7)

We can calculate directly using (A4) and (A7) to

yield
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(A8)

We then first prove that

(A9)

Note that, from (24), multiplying both sides of these equations

with , summing over all and , and using

the fact that , we can obtain

the result for the left-hand side as

(A10)

and the right-hand side as

(A11)

Now let us look at the first term of the left-hand side in (A10),

which sums over all links directed from nodes .

Similarly, the second term of the right-hand side in (A11) sums

over all in links directed to nodes . Recalling that

the network is directed acyclic, canceling the common part of

these two terms, the remaining part of the first term of (A10)

is the sum over all links , , , which is

zero because are zero for these links. In other words,

we can totally cancel out the first term of (A10) and the second

term of (A11).

Rearranging the summation of the second, third, and fourth

terms of the left-hand side in (A10) and recalling the inequality

between (A10) and (A11), we obtain

(A12)

Note that , substituting this into (A12), we

can obtain (A9).

Following the same derivation procedure, if and are

substituted for and , this becomes an equality from the equa-

tions for in (24), that is,

(A13)

Substituting (A9) and (A13) into (A8), we see that

at , which completes the proof.
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