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There are increasing interests in improving public transportation systems. One of the proposed strategies for this improvement is
the use of Battery Electric Vehicles (BEVs).This approach leads to a new challenge as the BEVs’ routing is exposed to the traditional
routing problems of conventional vehicles, as well as the particular requirements of the electrical technologies of BEVs. Examples of
BEVs’ routing problems include the autonomy, battery degradation, and charge process.This work presents a differential evolution
algorithm for solving an electric vehicle routing problem (EVRP). The formulation of the EVRP to be solved is based on a scheme
to coordinate the BEVs’ routing and recharge scheduling, considering operation and battery degradation costs. A model based on
the longitudinal dynamics equation of motion estimates the energy consumption of each BEV. A case study, consisting of an airport
shuttle service scenario, is used to illustrate the proposed methodology. For this transport service, the BEV energy consumption is
estimated based on experimentally measured driving patterns.

1. Introduction

The integration of Battery Electric Vehicles (BEVs) to the
public transportation system has been encouraged by the
favorable efficiency in the use of energy and the reduction
of CO2 emissions [1]. From the energy consumption per-
spective, BEVs are driven by high-efficiency motors with the
possibility of implementing a regenerative braking system.
Additionally, charging a BEV is less expensive than refueling
a conventional vehicle because the electric energy is cheaper
than its equivalent in fossil fuel (e.g., gasoline and diesel).
From the emissions point of view, when a BEV is used in
combination with renewable sources for the electricity gen-
eration, the outcome is a reduction in emissions associated
with fossil fuel combustion; therefore, BEVs are one of the
best alternatives to be integrated into cities as part of a public
transportation system.

The use of BEVs in public transportation systems faces
several challenges, mainly related to the combination of

conventional-fuel-service characteristics with those of elec-
tric vehicles. Examples of these challenges are the routing of
electric vehicles used in public transportation, the recharge
scheduling, and the battery state of health (SOH) [2]. These
three challenges are treated in this work using amethodology
developed for the optimal routing and scheduling of charge
for BEVs.

The first challenge is the routing of BEVs. In addition to
the usual routing issues, the BEVs should be routed taking
particular attention to minimizing energy consumption. For
the routing of BEVs, two steps are considered. The first step
consists in finding theminimum consumption paths to travel
between two points. In this step, it is necessary to consider the
technical characteristics of BEVs. The second step consists
in determining optimal routes to satisfy the transportation
demand in different places and at different schedules, while
minimizing energy consumption. Similar to the first step,
the calculation of optimal routes is performed considering
the BEVs’ characteristics. For this case, the vehicle’s traveling
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range is considered, mainly defined by the battery technology
available [3]. This consideration could require intermediate
recharge stages to extend the traveling range of the vehicles.

The second challenge is the scheduling for recharging.
The recharge scheduling is a challenge as the energy rate
variation during peak and valley hours must be considered.
This process should be coordinated with the routing layout
to guarantee a reliable operation, while the recharge costs
are minimized. Additionally, for the recharge scheduling, it is
necessary to consider the amount of energy required to per-
form the subsequent trip and the time required to recharge.

The third challenge is the SOH of the battery. The aim
is to increase the battery lifespan to reduce the long-term
operational cost. It must be considered that the useful life
of the battery depends on the charge and discharge cycles
[4]. This aspect is relevant because the battery is the most
expensive component of the BEVs [5].

The three challenges for the implementation of BEVs
for public transportation systems described in this section
have been previously discussed in the literature. Nevertheless,
most of those studies discuss one topic at a time. In [6,
7], the energy consumption during trips is considered. The
authors propose a reduced order model for the energy
consumption, which considers the BEVs’ characteristics (e.g.,
weight, rolling resistance, and drag coefficient) and the road
characteristics (e.g., grade, length, and traffic). From this
model, an energy graph can be constructed to find the mini-
mum energy consumption path between two locations using
classic algorithms (e.g., Dijkstra [8] and Johnson [9]).

On the other hand, in [7, 10], the formulated EVRP
consists of finding a set of minimum consumption routes to
satisfy the demand of the users. Furthermore, some addi-
tional restrictions are included to consider the battery capac-
ity of the BEVs. In [11], the vehicle routing problem is studied
for the case of alternative fueled vehicles, considering their
fueling time. In [12], a realistic energy consumption model is
used for a vehicle routing problem in which the fleet includes
both BEVs and diesel vehicles. In [13], the EVRP consid-
ers a heterogeneous fleet composition. In [14], an electric
traveling salesman problem is studied. In [15], exact algo-
rithms are presented for different charging conditions that
generate variants of the EVRP. In [16, 17], the EVRP model is
formulated considering the BEVs’ recharge time and a set of
recharge stations. Nonetheless, the battery degradation costs
are not considered.

Other works such as [18–21] discuss the recharge control
to minimize the energy recharge cost. Some papers [19, 21]
study the recharge control for large fleets of BEVs. The con-
trol strategy proposed in those works minimizes the costs
of energy generation and the BEVs fleet recharge. This stra-
tegy is not centralized, allowing the vehicle’s autonomy pre-
servation; nevertheless, these articles do not consider the
energy consumed by each BEV nor the optimal recharge
profiles obtained could increase the battery degradation.

In [22–24], anothermethod to obtain recharge profiles for
BEVs is discussed. In these studies, an optimization problem
is formulated to minimize power losses and maximize the
load factor. The formulation considers the network topology
characteristics. Thereby, the obtained charge profiles contain

information about the schedule and the vehicle that needs to
be recharged, depending on the network connection point,
whereby, the vehicles connected in the locations that induce
higher losses are recharged in off-peak hours. However, these
studies do not consider the effect of the recharge profile on the
battery life nor the recharge cost in the objective function.

In [25, 26], the battery SOH is studied through a degrada-
tionmodel for the lithium-ion batteries.Themodel considers
the main features that influence battery degradation such as
the mean state of charge (SOC), depth of discharge (DOD),
and battery temperature. In [25], some models to minimize
the battery degradation and the cost of energy recharge
are proposed. The recharge profile obtained is considerably
different to those obtained in [19, 21], where it is calculated
considering only the recharge cost.

In [27, 28], the EVRP is combined with infrastructure
problems. In [27], the combination of the EVRP and the
location-routing problem is presented, including the deter-
mination of battery swap stations and also the possibility
of intermediate stops. In [28], different scenarios for the
use of artificial intelligence for the management of BEVs
are presented; those scenarios include issues for the grid-to-
vehicle interaction as load balancing, energy pricing, placing
of recharging places, and rerouting of BEVs to charge points.

This work proposes a methodology that relates the three
challenges presented before to determine: minimum con-
sumption paths, a set of optimal routes, the route assignment
for each vehicle, and the recharge scheduling for electric
vehicles for public transportation. A centralized controller
based on a program that minimizes the costs of electric vehi-
cles’ operation is proposed. The objective function to mini-
mize considers both the recharge cost and the cost associated
with the battery degradation caused by route assignation and
recharge cycles.

As a case study, an airport shuttle service attended by a
fleet of BEVs is used to analyze the EVRP, while considering
the topics exposed previously. This service consists of trans-
porting passengers from a hotel to a nearby airport. Compar-
ative results between the recharge scheduling obtained with a
reduced order model and real energy consumption data of an
electric vehicle are presented. Finally, findings on the BEVs’
charge patterns, routing, and operational costs are presented.
This information could be useful for public transportation
companies interested in upgrading their fleet to BEVs.

This paper is organized as follows. Section 2 presents the
energy consumption and optimal routing model; the energy
consumption of the BEVs is estimated using a model based
on the longitudinal dynamics equation of motion. Section 3
introduces the recharge scheduling problem, comprised of a
route assignation and the charge model. Section 4 describes
the battery degradation model. Section 5 presents an evo-
lutionary algorithm to solve the proposed EVRP. Section 6
describes the case study and presents simulation results.
Section 7 presents the conclusion.

2. Optimal Routing for BEVs

Theconsidered scenario takes into account the presence of an
operation center (OC), which coordinates both the transport
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Figure 1: Operation center scheme.

service and the charge scheduling. The transport service
consists of a BEV fleet that offers an airport shuttle service.

The charge scheduling seeks tominimize the cost; for this
reason, the OC assigns routes to the BEVs that satisfy the
transportation demand and establishes the charge schedules
in the available charge stations (RSs) according to the energy
rate. To coordinate the operation of the BEV fleet, the OC can
communicate with BEVs, clients (i.e., potential passengers),
RSs, and the public utility as presented in Figure 1. In this
way, the OC receives information regarding requests from
customers one day in advance, availability of RSs, state of
charge of BEVs, and energy rates from the public utility. The
route assignment and the charge scheduling are calculated
and transmitted to the electric vehicles.

In the next subsections, the models of the systems,
in which the OC is based, are described. These models
are presented in the following order: estimation of energy
consumption on the road, determination of optimal routes,
assignment of routes, scheduling of a specific charge problem,
and the solution method based on differential evolution.

2.1. Energy Consumption on the Road. For a BEV, the ener-
gy consumption on the road is sensitive to environment, road,
and vehicle characteristics. Factors as the road grade and
the travel speed can significantly influence the energy con-
sumption. Additionally, the traffic conditions and other envi-
ronmental factors can cause acceleration/deceleration rates
that have an impact on the energy consumption of the vehicle.
Consequently, a model that considers a vehicle moving at a
constant speed is not sufficient.

The energy consumption model presented in this section
is based on the longitudinal dynamics equations of motion
presented in [29]. This model allows determining the instan-
taneous power consumption of the vehicle during its opera-
tion, considering the resistive loads imposed on the vehicle
(i.e., aerodynamic drag force, rolling resistance force due to
contact between tires and road, and longitudinal component
of the gravitational force due to driving on hilly roads). For
the implementation, the rolling resistance force was mod-
eled by considering a constant rolling coefficient; hence, the
rolling resistance force changes linearly with the changes
of the normal force between the vehicle and the road
[29].

The energy consumption of the vehicle is determined
by integrating the instantaneous power consumption of the
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Figure 2: Example of a speed profile for a route.

vehicle, which is a function of the environment, road, and
vehicle characteristics. For the total energy computation, the
energy consumed by a BEV while accelerating or in motion
with a constant speed is considered; the energy recovered by
the system with regenerative braking is not considered.

The road characteristics are modeled in a directed graph
G = (V,E). The vertices (i.e., key points or nodes) V ∈ V

represent the points of special interest on the street maps.The
edges 𝜀𝑖𝑗 ∈ E, where 𝜀𝑖𝑗 = (V𝑖, V𝑗), represent road sections
between key points. The model assumes that, for each edge,
the representative driving pattern associated with the given
edge is known and it is represented by its speed profile (see
Figure 2). Hence, there is a function 𝑠 : E → 𝜅(R), where𝑠𝑖𝑗 = 𝑠(𝜀𝑖𝑗) corresponds to the representative speed profile
associated with the road section that connects the vertices V𝑖
and V𝑗, where 𝜅(R) is the space of continuous real functions
with compact support.

The model also assumes that the key point elevation 𝑧 :
V → R is known. On the other hand, (1) presents the terms
involved into the power consumption of the vehicle:

𝑃𝑖,𝑗 (𝑡)
= 𝑃aerodynamic (𝑡) + 𝑃rolling (𝑡) + 𝑃specific (𝑡) + 𝑃gravitational (𝑡)𝜂 . (1)

Thefirst termon the right side of (1) corresponds to the power
dissipated by aerodynamic drag. The second term corre-
sponds to the rolling resistance between tires and asphalt.The
third term stands for the specific power required to overcome
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the vehicle inertia, and the fourth term corresponds to the
power consumed/gained due to the height of the vehicle
originated by the road grade, represented by angle 𝛾. The
vehicle characteristics that influence the power consumption

are mass (𝑚), frontal area (𝐴), drag and rolling resistance
coefficients (𝐶𝐷, 𝑓𝑟), and the powertrain efficiency (𝜂). Given
these characteristics, the power consumption at instant 𝑡 of
the trip between vertex 𝑖 and vertex 𝑗 is given by

𝑃𝑖,𝑗 (𝑡) = (1/2) 𝜌𝐴𝐶𝐷 [𝑠𝑖𝑗 (𝑡)]3 + 𝑚𝑔𝑓𝑟𝑠𝑖𝑗 (𝑡) + 𝑚 (𝑑𝑠𝑖𝑗/𝑑𝑡) (𝑡) 𝑠𝑖𝑗 (𝑡) + 𝑚𝑔 tan (𝛾) 𝑠𝑖𝑗 (𝑡)𝜂 . (2)

The energy consumption can be calculated by integrating (2)
over the total time of each displacement between vertices,
to obtain the energy consumption associated with the trip.

Under the assumption of constant powertrain efficiency, the
gravitational component can be analytically integrated. This
leads to the following expression:

𝑐𝑖,𝑗 = ∫𝑡𝑓

0
((1/2) 𝜌𝐴𝐶𝐷 [𝑠𝑖𝑗 (𝑡)]3 + 𝑚𝑔𝑓𝑟𝑠𝑖𝑗 (𝑡) + 𝑚 (𝑑𝑠𝑖𝑗/𝑑𝑡) (𝑡) 𝑠𝑖𝑗 (𝑡)𝜂 ) 𝑑𝑡 − 𝑚𝑔 [𝑧 (V𝑗) − 𝑧 (V𝑖)]𝜂 . (3)

Finally, energy consumption can be computed for an arbi-
trary path composed of different edges of the graph. A path𝑃ℎ is defined as a sequence of 𝑙 vertices (V1, V2, . . . , V𝑙) with(V𝑖, V𝑖+1) ∈ E for 𝑖 = 1, . . . , 𝑙 − 1. The energy necessary to
travel along the path 𝑃ℎ in the road network is the sum of the
energy consumed to complete each one of the road sections
that compose the path as follows:

𝐶 (𝑃ℎ) = 𝑙−1∑
𝑖=1

𝑐𝑖,𝑗. (4)

2.2. Determination of Routes. Similar to the classical vehicle
routing problem formulated in [30], an EVRP is proposed to
model the airport shuttle service. It consists of searching a
set of minimum consumption routes that satisfy the trans-
portation demand and the operational constraints. Figure 1
presents the symbols used to explain the routing model.

The EVRPmodel is formulated on the energy graphG𝑠 =(V𝑠,E𝑠), which is a simplification of the road network. The
graph nodes are composed ofV𝑠 = {V𝑑1 , V𝑑2} ∪ 𝐶 ∪ 𝑅𝑠, where𝐶 is the set of nodes within a transportation demand, and𝑅𝑠 is the set of RSs. The expression 2 ⋅ |𝐶| is the number of
requestsmade by customers, where the operator |⋅| represents
the set module. The depot nodes are denoted by V𝑑1 and
V𝑑2 , which represent the route’s starting and ending nodes.
The graph edges, defined by E𝑠 = {(V𝑖, V𝑗) | V𝑖, V𝑗 ∈ V𝑆},
where (V𝑖, V𝑗) ∈ E𝑠, are paths of minimum consumption
that can be found through routing algorithms applied to the
road network model. Therefore, the transportation demand
implies 𝑚 requests to pick up passengers and 𝑚 requests
to drop off passengers, each one with its associated number
of passengers. The requests are identified by two nodes 𝑖
and 𝑚 + 𝑖, corresponding to the pick-up and drop-off stops,
respectively. The set of pick-up nodes is denoted by 𝑃 ={1, . . . , 𝑚}, and the set of drop-off nodes is denoted by 𝐷 ={𝑚 + 1, . . . , 2𝑚}. Therefore, it is possible to define 𝐶 = 𝑃 ∪ 𝐷

and if the request 𝑖 consists of transporting 𝑞𝑖 passengers from𝑖 to 𝑚 + 𝑖, then 𝑞(𝑚+𝑖) = −𝑞𝑖.
The energy consumed during the trip from 𝑖 to 𝑗 is given

by 𝑐𝑖𝑗, and the traveling time is 𝑡𝑖𝑗, where 𝑖, 𝑗 ∈ V𝑠. Each
customer 𝑖 ∈ 𝐶 has a time window [𝑎𝑖, 𝑏𝑖] in which the service
must take place. Electric vehicles have a maximum passenger
capacity 𝑄 and a maximum battery capacity 𝐵. The objective
functionminimizes the energy consumption for all routes 𝐻,
meaning

min ∑
ℎ∈𝐻

∑
(𝑖,𝑗)∈E𝑠

𝑐𝑖𝑗𝑥ℎ𝑖𝑗, (5)

where ℎ ∈ 𝐻 is the set of routes to satisfy all the transporta-

tion demand and 𝑥ℎ𝑖𝑗 are the flow variables, which are equal to

1 if the arc (𝑖, 𝑗) is used on route ℎ, or 0 otherwise. In addition,
two constraints are defined to guarantee that all the passenger
demands are satisfied, which are

∑
ℎ∈𝐻

∑
𝑗∈V𝑠\V𝑑1

𝑥ℎ𝑖𝑗 = 1 ∀𝑖 ∈ 𝑃,
(6)

∑
𝑖∈V𝑠\V𝑑2

𝑥ℎ𝑖𝑗 − ∑
𝑖∈V𝑠\V𝑑1

𝑥ℎ𝑗,𝑚+1 = 0
∀ℎ ∈ 𝐻, 𝑗 ∈ V𝑠 \ {V𝑑1 , V𝑑2} . (7)

Equation (6) guarantees that each node with passenger
demand is attended or visited by one route. Moreover, (7)
forces passengers picked up at node 𝑖 to be dropped off at
node 𝑚 + 𝑖. Three constraints are also defined to satisfy the
flow through vertices; these are

∑
𝑖∈V𝑠\V𝑑2

𝑥ℎ𝑖𝑗 − ∑
𝑖∈V𝑠\V𝑑1

𝑥ℎ𝑗𝑖 = 0
∀ℎ ∈ 𝐻, 𝑗 ∈ V𝑠 \ {V𝑑1 , V𝑑2} , 𝑖 ̸= 𝑗, (8)
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∑
𝑗∈V 𝑠\V𝑑2

𝑥ℎ
V𝑑1 ,𝑗

≤ 1, ∀ℎ ∈ 𝐻,
(9)

∑
𝑖∈V 𝑠\V𝑑2

𝑥ℎ𝑖,V𝑑2 ≤ 1, ∀ℎ ∈ 𝐻.
(10)

Equation (8) indicates that if a route ℎ arrives at node 𝑗,
then the same route must depart from node 𝑗, keeping the
flow equilibrium. Also, (9) indicates that a route ℎ can exit
one time of the departing node V𝑑1 . On the other hand, (10)
indicates that route ℎ can enter once to the arriving node
V𝑑2 . Furthermore, three sets of constraints are defined: (i)
time constraints; (ii) capacity constraints; and (iii) energy
constraints. The capacity constraints are

𝑦ℎ𝑗 ≥ 𝑦ℎ𝑖 + 𝑞𝑗 − 𝑄 + 𝑄𝑥ℎ𝑖𝑗, ∀ℎ ∈ 𝐻, 𝑖, 𝑗 ∈ 𝑃, 𝑖 ̸= 𝑗, (11)

𝑞𝑗 ≤ 𝑦ℎ𝑗 ≤ 𝑄, ∀ℎ ∈ 𝐻, 𝑗 ∈ V𝑠, (12)

0 ≤ 𝑦ℎ𝑗+𝑚 ≤ 𝑄 − 𝑞𝑗, ∀ℎ ∈ 𝐻, 𝑗 ∈ 𝑃, (13)

where 𝑦ℎ𝑗 is the capacity variable representing the amount

of passengers picked up or dropped off during a trip along
route ℎ to node 𝑗. Therefore, (11) counts the number of
passengers traveling along route ℎ, with constraints (12) and
(13) guaranteeing that the capacity variable does not exceed
the maximum capacity 𝑄.The time constraints are

𝑤ℎ
𝑗 ≥ 𝑤ℎ

𝑖 + 𝑡𝑖𝑗 − 𝑀 + 𝑀𝑥ℎ𝑖𝑗,
∀ℎ ∈ 𝐻, 𝑖, 𝑗 ∈ V𝑠, 𝑖 ̸= 𝑗, (14)

𝑎𝑗 ≤ 𝑤ℎ
𝑗 ≤ 𝑏𝑗, ∀ℎ ∈ 𝐻, 𝑗 ∈ V𝑠, (15)

where 𝑤ℎ
𝑖 is the time variable specifying the instant at which

passenger 𝑖 is picked up or dropped off and 𝑀 is a constant

higher than any value of𝑤ℎ
𝑖 .Therefore, (14) counts the elapsed

time until passenger 𝑖 is attended by route ℎ. In addition, the
constraint in (15) guarantees that passenger 𝑖 is picked up
or dropped off within the time window. Finally, the energy
constraints are

𝑒ℎ𝑗 ≤ 𝑒ℎ𝑖 − 𝑐𝑖𝑗𝑥ℎ𝑖𝑗 + 𝐵 − 𝐵𝑥ℎ𝑖𝑗,
∀ℎ ∈ 𝐻, 𝑖, 𝑗 ∈ V𝑠, 𝑖 ̸= 𝑗, (16)

𝑒min ≤ 𝑒ℎ𝑗 , ∀ℎ ∈ 𝐻, 𝑗 ∈ V𝑠, (17)

where 𝑒ℎ𝑖 is the energy variable specifying the remaining bat-
tery charge level when route ℎ arrives to vertex 𝑖.Additionally,
(16) allows computing the battery level based on the traveled
vertices sequence.Moreover, (17) guarantees that at the end of
route ℎ the battery level will never drop below the minimum
level 𝑒min.

The solution of proposed EVPR model is a set of optimal
routes, 𝐻, which minimizes the energy consumed while
satisfying the passenger demand, indirectly reducing the
charge costs.
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Figure 3: Timeline in the programming horizon.

3. Scheduling of Charge Problem

In this section, the scheduling of charge for BEVs is presented.
First, the assignment of routes for the BEV fleet is defined.
Then, the model for the charge control is established. Finally,
the problem formulation is presented.

3.1. Assignment of Routes. The assignment of routes consists
of the distribution of all the optimal routes 𝑆 within the BEV
fleet. It is considered that the assignment of a set of routes in
the vehicle fleet, 𝐾, is performed in a programming horizon𝑁. The programming horizon is illustrated in Figure 3.

The assignment of one route to a specific BEV is denoted

by 𝑎𝑘𝑠 , with 𝑘 ∈ 𝐾, a binary variable, which is equal to 1 if route𝑠 is assigned to an EV, or 0 otherwise. A binary variable for
“unavailability” is defined. This variable indicates that some
periods of 𝑖 ∈ 𝑁 are used to travel along route s assigned to a
BEV. The unavailability variable is defined as

𝑑𝑘𝑠 (𝑖) = {{{
1, if 𝑡𝑠𝑠 ≤ 𝑖 ≤ 𝑡𝑒𝑠 ,0, otherwise,

(18)

𝑑𝑘𝑠1 (𝑖) + 𝑑𝑘𝑠2 (𝑖) ≤ 1, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, 𝑠1, 𝑠2 ∈ 𝑆, (19)

where [𝑡𝑠𝑠, 𝑡𝑠𝑒] is the interval of duration of each route 𝑠,
with starting time 𝑡𝑠𝑠 and ending time 𝑡𝑠𝑒. This way, variable𝑑𝑘𝑠 (𝑖) allows locating each route 𝑠 on the horizon 𝑁, while
(19) guarantees that two different routes (𝑠𝑖, 𝑠2), with similar
duration intervals, are not assigned at the same time to the
same BEV. On the other hand, the energy consumed by the
BEV 𝑘 in route 𝑠 for interval 𝑖 of the horizon 𝑁 is defined as𝑒𝑘𝑠 (𝑖).

Finally, an assignation profile is defined with vector ℵ ={𝑎𝑘𝑠 : ∑𝑘∈𝐾 ∑𝑠∈𝑆 𝑎𝑘𝑠 = |𝑆|}, where the double sum guarantees
that all the routes of 𝑆 are assigned to the electric vehicles
composing the fleet. Considering this, an assignation profile
is valid if the constraint on (19) is satisfied for all the BEVs in
the fleet.

3.2. Model for Charge Control. A charge control is proposed
for a BEV fleet 𝐾, over a programming horizon 𝑁, based
on the work presented in [19]. The SOC is defined for each

vehicle 𝑘 ∈ 𝐾 at instant 𝑖 ∈ 𝑁 as SOC𝑘(𝑖), with the following
considerations:

SOC𝑘 (𝑖) = SOC𝑘 (𝑖 − 1)
+ ∑
𝑧∈𝑅

[𝜂𝑧𝑟𝑧𝑢𝑘𝑧 (𝑖) − 𝜂𝑑𝑧𝑟𝑑𝑧 V𝑘𝑧 (𝑖) − 𝑒𝑘𝑧 (𝑖)]
− ∑
𝑠∈𝑆

𝑒𝑘𝑠 (𝑖) , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾,
(20)
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where 𝑢𝑘𝑧(𝑖) is a binary variable, equal to 1 when the vehicle𝑘 performs a charge action at instant 𝑖, 𝑟𝑧 is the charge rate,
and 𝜂𝑧 is the efficiency of the charge process; V𝑘𝑧(𝑖) is a binary
variable, which allows us to integrate the vehicle to building
(V2B) energy discharge action, this variable is equal to 1 when

the vehicle 𝑘 performs a discharge action at instant 𝑖, 𝑟𝑑𝑧 is

the discharge rate, and 𝜂𝑑𝑧 is the efficiency of the discharge
process. Subscript 𝑧 ∈ 𝑅 indicates the place where the charge

or discharge is performed. Variable 𝑒𝑘𝑧(𝑖) indicates the energy
consumed during the displacement towards a RS 𝑧, explained
in the next section. Also, a restriction for SOC of the vehicles
must be considered as

SOCmin ≤ SOC𝑘 (𝑖) ≤ SOCmax 𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, (21)

where SOCmin and SOCmax are the lower andupper bounds of
SOC, respectively. Both bounds can be established according
to the battery manufacturer recommendation, considering
the battery technology. For this study, the initial and final
SOC are equal to the SOCmax value to guarantee that the
vehicle begins and ends in the programming horizonwith the
same battery energy level, meaning

SOC𝑘 (0) = SOCmax,
SOC𝑘 (𝑁) = SOCmax,

∀𝑘 ∈ 𝐾,
(22)

where SOC𝑘(0) and SOC𝑘(𝑁) are the initial and final states
of charge of a BEV 𝑘. Finally, a charge profile for a vehicle𝑘 is defined as a set of charge actions 𝑢𝑘𝑧(𝑖). A charge profile

for the BEV 𝑘 is denoted u𝑘 and defined as u𝑘 = {𝑢𝑘𝑧(𝑖) :𝜂𝑧𝑟𝑧 ∑𝑖∈𝑁 𝑢𝑘𝑧(𝑖) = ∑𝑖∈𝑁(𝑒𝑘𝑠 (𝑖)+𝑒𝑘𝑧(𝑖))}, where the sum of all the
charge actions must be equal to the energy consumed during

all the trips. The profile u𝑘 is valid if the constraints on (20)
to (22) are satisfied.

3.3. Reroute of Charge Stations. In themodel for determining
routes, it is assumed that when a vehicle 𝑘 is not traveling
along any of them, then the vehicle is parked on the depart-
ing/arriving node (V𝑑1 , V𝑑2), where the vehicles can be charged
in a private station denoted by 𝑅1 ∈ 𝑅. It is also considered
that the vehicle can be charged in public stations identified in
the operation zones; these charge actions on public stations
might be necessary when the vehicles do not have enough
energy to return to the arriving/departing node or when the
private stations are occupied by other vehicles.

When considering that the vehicles can be charged in
public stations, it must also be considered that their trajectory
has to be reprogrammed or their initially assigned route
must be modified, which is known as rerouting. Rerouting
is defined as the redirection of the vehicle towards a station
to perform a charge action 𝑢𝑘𝑧 : 𝑧 ̸= 𝑅1 without altering the
vehicle’s destination. The redirecting or rerouting is denoted

with subscript 𝑧 in the charge action 𝑢𝑘𝑧. If subscript 𝑧
indicates a place different than 𝑅1, then BEV 𝑘 must travel
to another station 𝑅2 ∈ 𝑅, to perform the charge action.

It must be considered that redirecting towards a station
implies that the BEV must have available time to travel back
and forth to the RS. Similarly, the BEV must have some time
intervals available to charge the energy that it needs; this is
assured using two constraints. The first constraint is

𝑑𝑘𝑠 (𝑗) + 𝑢𝑘𝑦 (𝑗) = 0
𝑖𝑧 − Δ𝑖𝑧 ≤ 𝑗 < 𝑖𝑧, ∀𝑦 ̸= 𝑧, 𝑦 ∈ 𝑅, (23)

where 𝑖𝑧 ∈ 𝑁 is the interval at the beginning of the charge and𝑢𝑘𝑧, Δ𝑖𝑧 is the number of time intervals that a BEV 𝑘 needs to
travel from V𝑑1 to 𝑧. If the result of (23) is zero, the BEV 𝑘 can
be rerouted towards a public recharge station because it has
enough time to perform the action. The second constraint is

𝑑𝑘𝑠 (𝑗) + 𝑢𝑘𝑦 (𝑗) = 0
𝑖𝑧 + Δ𝑖𝑧 ≤ 𝑗 < 𝑖𝑧 + Δ𝑖𝑢𝑧 + Δ𝑖

V𝑑1
, ∀𝑦 ̸= 𝑧, (24)

whereΔ𝑖𝑢𝑧 is the number of time intervals inwhich the charge
action needs to be completed, and Δ𝑖

V𝑑1
is the number of

time intervals that a BEV 𝑘 needs to travel from 𝑧 to V𝑑1 .
Equations (23) and (24) guarantee that BEV 𝑘 can be rerouted
when there is enough time available. On the other hand, the

energy consumed in the rerouted trip is denoted as 𝑒𝑘𝑧, which
corresponds to the energy consumed traveling from V𝑑1 to 𝑧
and back. This is considered in (20) assuring that the vehicle
has the energy necessary to perform the displacement needed
when redirected.

3.4. Optimization Problem of Charge for BEVs. The proposed
optimization problem seeks to minimize the operation cost
of the electric vehicle fleet, defined as

min ∑
𝑧∈𝑅

∑
𝑘∈𝐾

∑
𝑖∈𝑁

𝑝𝑧 (𝑖) 𝑢𝑘𝑧 (𝑖) + ∑
𝑘∈𝐾

𝑐𝑘deg. (25)

The first term is the charge energy cost for all the BEVs in
the fleet, where 𝑝𝑥(𝑖) is the energy rate in the recharge station𝑥 at instant 𝑖; the last term of the objective function is the
cost of battery degradation for all the BEVs in the fleet. The
objective function in (25) is subjected to a valid assignment

profileℵ and a valid charge profile u𝑘 for all the BEVs 𝑘 ∈ 𝐾.
Besides, if there is redirecting towards public stations, then
the constraints in (23) and (24) should be satisfied.

Likewise, a constraint related to the recharge stations’

availability is defined as ∑𝑘∈𝐾 𝑢𝑘𝑧(𝑖) ≤ 𝐴𝑧(𝑖), ∀𝑖 ∈ 𝑁, 𝑧 ∈𝑅 to guarantee that the charge actions are programmed in
available charge points, where 𝐴𝑧(𝑖) is the number of spaces
available in recharge station 𝑧.
4. Battery Degradation Model

In this section, a simplified version of the lithium-ion battery
degradation model proposed in [25] is presented.

The model used in this work estimates the cost of battery
degradation 𝑐deg in terms of the reduction of the lifespan of
a battery, which is a function of three factors: temperature,
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SOC, and DOD. These factors are related to the cost as fol-
lows:

𝑐deg = 𝑐bat (𝐿𝑄,𝑇 + 𝐿𝑄,SOC + 𝐿𝑄,DOD) , (26)

where 𝑐bat is the initial cost of the battery and 𝐿𝑄,𝑇, 𝐿𝑄,SOC,
and 𝐿𝑄,DOD are the percentage terms of battery degradation
due to temperature, SOC, and DOD, respectively.

Each of the terms 𝐿𝑄,𝑇, 𝐿𝑄,SOC, and 𝐿𝑄,DOD can be
interpreted as a ratio (Δ𝐿𝑥/𝐿𝑥), where Δ𝐿𝑥 is the battery
lifetime degradation due to a complete charge cycle during a
day, and 𝐿𝑋 is the total lifetime of the battery if the evaluated
charge cycle is repeated until the end of the battery life, that
is, when the energy capacity of the battery is lower than 80%.

The term 𝐿𝑄,𝑇 refers to the battery degradation due to
temperature and charge time. This term is proportional to
the charge power since a high operation temperature corre-
sponds to a high charge power. This term is defined as

𝐿𝑄,𝑇 = ∫
𝑡ch

1𝑛ℎ𝑦𝑙𝑦 (𝑇amb + 𝑅th
𝑃𝑡 (𝑡))𝑑𝑡

+ 𝑡max − 𝑡ch𝑛ℎ𝑦𝑙 (𝑇amb) , (27)

where 𝑡ch is the charge time in hours, 𝑡max is the maximum
time available to perform a charge in hours, and 𝑛ℎ𝑦 is the
number of hours in a year. 𝑇amb is the ambient temperature,
established with a constant value of 25∘C, and 𝑅th is the
thermal resistance of the battery, established with a constant
value of 2∘C/kW. 𝑃𝑡 corresponds to the charge or discharge
power in (kW), and 𝑙𝑦(𝑇) is a function that estimates the total
number of years that the battery will last at a temperature 𝑇,
defined as 𝑙𝑦(𝑇) = 𝑎𝑒𝑏/𝑇, where 𝑎 and 𝑏 are the parameters of

the model of a lithium battery fixed as a = 3.73 × 10−4 and
b = 636 according to [25].

The term 𝐿𝑄,SOC describes the battery lifetime degrada-
tion due to average SOC, defined as

𝐿𝑄,SOC = 𝑚𝑎SOCavg − 𝑑𝑎
CFmax𝑦𝑝𝑛ℎ𝑦 , (28)

where 𝑚𝑎 = 1.6×10−5 and 𝑑𝑎 = 6.4×10−6 are the parameters
of the model for the lithium-ion batteries defined in [25],
while 𝑦𝑝 = 15 corresponds to the number of years which
the battery is expected to last, and CFmax = 0.80 represents
the fading capacity at the end of the battery life. From (28), it
can be noticed that 𝐿𝑄,SOC is proportional to SOCavg; thus, a
high SOCavg reduces the useful life of the battery more than
a moderated one.

The term 𝐿𝑄,DOD describes the degradation of the battery
lifetime due to the mean DOD. This term is calculated using
the energy performance concept [31]; hence, 𝐿𝑄,DOD is the
ratio between the energy throughput used in a complete
charge cycle and the energy throughput used during the bat-
tery lifetime, defined as

𝐿𝑄,DOD = 𝐵 ∑𝑁𝑐
𝑖=1DOD𝑖𝑁𝑙 (DODavg) ∗ DODavg ∗ 𝐵, (29)

where DOD𝑖 is the 𝑖th subcycle in a complete charge cycle,𝑁𝑐 is the number of subcycles, DODavg is the average DOD
cycle, and 𝑁𝑙(DOD) is the life time of the battery in cycles
for a given DOD. This is defined as 𝑁𝑙(DOD) = (DOD/145.71)−1/0.6844, which is fitted for lithium-ion battery tech-
nology.

Summarizing, the model has two attributes that allow
its integration to the optimization problem. First, it allows
computing the battery degradation cost of a BEV due to
the actions of charge and discharge previously programmed.
Second, the simplicity of the model allows performing the
calculations in a fast way, reducing the use of computational
resources, embedding it with the optimization problem and
its solution method, explained in the next section.

5. Differential Evolution

A differential evolution (DE) algorithm is presented to solve
the problem formulated in previous sections. The DE is a
direct stochastic search algorithm based on the evolution of
a population, which was developed by Storn et al. in 1996
[32, 33]. The DE operates through steps that are similar to
those used in a standard evolutionary algorithm (EA).

The DE employs the differences between members of the
population to explore the objective function. For this reason,
it does not use a probability function to generate the offspring.
Hence, theDEuses an approach that is less stochastic,making
it more efficient for solving several kinds of problems [34].

In the next subsections, the format of a solution and the
steps composing the DE algorithm are presented.

5.1. Format of a Solution. Before solving the problem, a
possible solution must be represented in a format that the
DE can optimize. For this case, the possible solution of the
electric vehicle charge problem is represented by the valid
assignment profileℵ, and the collection of the charge profiles
u𝑘, associated with each vehicle. The assignment profile con-

tains each route assignation variable 𝑎ℎ𝑘 , ∀𝑘 ∈ 𝐾, ℎ ∈ 𝐻. For
each vehicle 𝑘 ∈ 𝐾, the associated charge profile contains

each charge action variable for that vehicle, 𝑢𝑘𝑧(𝑛), ∀𝑧 ∈ 𝑅,𝑛 ∈ 𝑁.

𝑋𝑢 = {𝑢11 (1) , . . . , 𝑢11 (𝑁) , . . . , 𝑢|𝐾|1 (1) , . . . , 𝑢|𝐾|1 (𝑁) , . . . ,
𝑢1|𝑅| (1) , . . . , 𝑢1|𝑅| (𝑁) , . . . , 𝑢|𝐾||𝑅| (1) , . . . , 𝑢|𝐾||𝑅| (𝑁)} ,

𝑋𝑎 = {𝑎11 , . . . , 𝑎|𝐾|1 , . . . , 𝑎1|𝐻|, . . . , 𝑎|𝐾||𝐻|} ,
(30)

where 𝑋𝑢 and 𝑋𝑎, maintaining the notation of [32], are
denoted as vectors of charge and assignment parameters, res-
pectively. Considering this, 𝑋 = 𝑋𝑢 ∪ 𝑋𝑎 is defined as
a feasible solution for the electric vehicle charge problem,
denoted as the parameter vector𝑋 in the development of each
step of the DE algorithm, which are described next.

5.2. Population Initialization. Similar to the EA, the DE steps
are (i) population initialization; (ii) mutation; (iii) crossing
over; and (iv) selection. A population is composed of a
number 𝑁𝑝 of vectors 𝑋, where each vector is known as an
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individual. The following notation is adopted to represent a
vector of parameters 𝑖 ∈ 𝑁𝑃 of the population in the current
generation 𝐺𝑒

𝑋𝑖,𝐺𝑒 = [𝑥1,𝑖,𝐺𝑒 , 𝑥2,𝑖,𝐺𝑒 , . . . , 𝑥𝑚V
,𝑖,𝐺𝑒] , (31)

where 𝐺𝑒 = 0, 1, . . . , 𝐺max denotes the future generations,𝐺max the last generation, and 𝑚
V
the size or dimension of the

parameter vector.
The population of vectors is produced through a random

generator, where each vector must meet the constraints;
otherwise, it will be rejected and will not be part of the
population. This rejection step ensures the feasibility of
the individuals of the population given that the constraints
were defined specifically for that purpose. The size of the
population 𝑁𝑃 is considered as a control variable of the DE
method. In this case, 𝑁𝑃 = 10𝑚

V
is used according to [34].

5.3. Mutation. The mutation allows generating a donor vec-
tor 𝑉𝑖,𝐺𝑒 by means of a differential operation. This operation
is defined as

𝑉𝑖,𝐺𝑒 = 𝑋𝑟1 ,𝐺𝑒OR (𝑋𝑟2 ,𝐺𝑒 XOR𝑋𝑟3 ,𝐺𝑒) , (32)

where 𝑋𝑟1 ,𝐺𝑒 , 𝑋𝑟2 ,𝐺𝑒 , and 𝑋𝑟3 ,𝐺𝑒 are three individuals of the
population generation 𝐺𝑒 and the indices 𝑟1, 𝑟2, and 𝑟3 are
randomly selected from the range [1, 𝑁𝑃].These indicesmust
be mutually exclusive to diversify the results of the mutation
operation.

The differential operation consists of adding the differ-
ence of two vectors to another vector of the population [33].
In this case, the differential operation is implemented with
the exclusive disjunction (XOR). By using the logic operator
XOR, the algorithm identifies the differences between two
vectors. After that, the sum operation is implemented using
the disjunction operator (OR), which permits combining the
difference between the two vectors with another vector of the
population.

5.4. Crossover. The crossover operation allows the exchange
of components between the donor vector 𝑉𝑖,𝐺𝑒 and the target
vector𝑋𝑖,𝐺𝑒 .The result of the crossover is a trial vector𝑈𝑖,𝐺𝑒 =[𝑢1,𝑖,𝐺𝑒 , 𝑢2,𝑖,𝐺𝑒 , . . . , 𝑢𝑚V

,𝑖,𝐺𝑒]. This operation is defined as

𝑢𝑗,𝑖,𝐺𝑒 = V𝑗,𝑖,𝐺𝑒 for 𝑛
V

+ 1 ≤ 𝑗 ≤ 𝑛
V

+ 𝐿 − 1,
𝑢𝑗,𝑖,𝐺𝑒 = 𝑥𝑗,𝑖,𝐺𝑒 otherwise, (33)

where 𝑛
V
is randomly selected among [1, 𝑚

V
] with uniform

probability and 𝐿 is obtained from [1, 𝑚
V
] with probability

equal to 𝐶𝑟 ∈ [0, 1]. The variable 𝐶𝑟 ∈ [0, 1] is known as
the crossover rate and constitutes a control variable of the DE
method. 𝐶𝑟 must be considerably lower than one (e.g., 0.3). If
the convergence towards a solution is not achieved, then 𝐶𝑟
can be chosen in the interval [0.5, 1] according to [34].
5.5. Selection. The selection operation allows choosing be-
tween the target vector 𝑋𝑖,𝐺𝑒 and the vector 𝑈𝑖,𝐺𝑒 (obtained

in the crossover operation) to be part of the next generation𝐺𝑒 + 1. The selection operation is defined as

𝑋𝑖,𝐺𝑒+1 = 𝑈𝑖,𝐺𝑒 if 𝑓 (𝑈𝑖,𝐺𝑒) ≤ 𝑓 (𝑋𝑖,𝐺𝑒) ,
𝑋𝑖,𝐺𝑒+1 = 𝑋𝑖,𝐺𝑒 otherwise, (34)

where 𝑓(⋅) is the objective function presented in (25) to be
minimized. This operation indicates that if the trial vector𝑈𝑖,𝐺𝑒 has a value 𝑓(⋅) equal to or lower than the value 𝑓(⋅) of
the target vector; then the trial vector will be part of the next
generation; otherwise, the target vector𝑋𝑖,𝐺𝑒 is retained in the
population of generation 𝐺𝑒 +1.Therefore, the steps of muta-
tion, crossover, and selection are cycled until the maximum
generation 𝐺max is reached. A summary of this process is
presented in Algorithm 1.

5.6. Genetic Algorithm Benchmark. For the analysis of the
performance of the DE algorithm, a standard Genetic Algo-
rithm (GA) was used as a benchmark. The performance was
analyzed in terms of convergence and computational cost.
For the GA formulation, the chromosomes that describe each
individual are binary strings, equal to those used in the DE.

The GA used has the typical stages of an evolutionary
algorithm.The first stage is the generation of the initial popu-
lation with the population size (𝑃𝐺) as a parameter of adjust-
ment. Population size was chosen as 10 times the quantity of
chromosome’s genes (𝑁𝐺). The second stage is the selection
by tournament: in this stage two individuals with the highest
fitness are chosen from a randomly selected subpopulation.
The third stage is crossover. A two-point crossover operation
with a crossover probability of 𝑃𝑐 = 0.8 was performed. The
fourth stage is mutation, which is intended to maintain a
portion of random search. Mutation provides the possibility
of changing one of the genes of the chromosomes of the
descendants. Mutation probability was chosen as 𝑃𝑚 = 0.01.
Finally, if the ending criterion (i.e., generation is equal to
maximum generation, 𝐺 = 𝐺max) is not reached, then a
generational change is performed. In the generational change,
the descendants obtained through the last stages replace their
parents by initiating a new cycle. On the other hand, if the
ending criterion is reached, the GA finishes. Figure 4 presents
a block diagram of the GA used as a benchmark.

6. Case Study

The case study consists of an airport shuttle service using a
BEV fleet. For this service, it is required to determine the
route assignment and the charge scheduling in a coordinated
manner.The location defined for this case study is El Dorado
airport in Bogotá, Colombia. In this section, the case study
is described in detail through four aspects: (i) the operation
zone; (ii) the BEVs’ characteristics and data logging; (iii) the
data processing; and (iv) the demand for transportation.

6.1. Operation Zone. The operation zone used for this case
study is defined by three nodes: El Dorado airport, defined
as the north-western node; a mall located in the south node;
and a public recharge station (RS) in the eastern node (see
Figure 5). Within the area defined by the nodes, a total of 54
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Inputs: Read values of the control parameters: 𝐶𝑟, 𝑁𝑃
Initialization of population (P

Ge
): 𝐺𝑒 = 0, 𝑃𝐺 = {𝑋1,𝐺𝑒 ; . . . ; 𝑋𝑁𝑃,𝐺𝑒 }

for 𝐺𝑒 = 1 to 𝐺max do
for 𝑖 = 1 to 𝑁𝑃 do

Mutation: Generate a donor vector 𝑉𝑖,𝐺𝑉𝑖,𝐺𝑒 = 𝑋𝑟2,𝐺𝑒 OR (𝑋𝑟2 ,𝐺𝑒 XOR 𝑋𝑟3 ,𝐺𝑒 )
Crossover: Generate a trial vector 𝑈𝑖,𝐺𝑒𝑢𝑗,𝑖,𝐺𝑒 = V𝑗,𝑖,𝐺𝑒 for 𝑛

V
+ 1 ≤ 𝑗 ≤ 𝑛

V
+ 𝐿 − 1𝑢𝑗,𝑖,𝐺𝑒 = 𝑥𝑗,𝑖,𝐺𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Selection: Evaluate the trial vector 𝑈𝑖,𝐺𝑒𝑋𝑖,𝐺𝑒+1 = 𝑈𝑖,𝐺𝑒 if 𝑓(𝑈𝑖,𝐺𝑒 ) ≤ 𝑓(𝑋𝑖,𝐺𝑒 )𝑋𝑖,𝐺𝑒+1 = 𝑋𝑖,𝐺𝑒 otherwise
end for

end for

Algorithm 1: DE algorithm.
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Figure 4: Block diagram of the GA used as a benchmark.

nodes are used as references to determine the routes. From
these nodes, six are identified as main nodes and are used to
build the graphics (see Figure 5 and Table 1). The main nodes
are (1) airport whereabouts 1; (2) airport whereabouts 2; (3)
hotel, operation center (OC), private RS with 𝑟2 = 3 kW, 𝜂2 =0.9; (4) public RS with 𝑟3 = 6 kW, 𝜂3 = 0.9; (5) mall; and (6)
bus terminal.

6.2. Test Vehicle Characteristics. The aim of the case study is
to analyze the feasibility of the implementation of a fleet of
BEVs for an airport shuttle service. In order to do this, the
results of scheduling and routing are used.

The kinematical information about the displacements is
needed to estimate the energy consumption of each path.This
information is measured by using a different vehicle that has
been selected to be as similar as possible to the BEV under
study.The characteristics of the vehicle used in the case study
are summarized in Table 2.

The most relevant characteristics considered to estimate
the energy consumption properly are those related to resistive
forces and traction acting on the vehicle. The characteristics
include the dimensions (i.e., frontal area and drag coefficient)

and weight to power relation of the vehicle. The test vehicle
selected is a saloon type. It has been necessary to add weight
to the vehicle to obtain a similar weight to power ratio.

6.3. Data Logging and Data Processing. The characteristics
of the GPS unit used to measure and register the data are
presented in Table 3. With the data obtained from the speed
profile (see Figure 6), it has been determined that a signal
conditioning stage must be implemented to handle signal
noise and atypical points due to any interruptions of com-
munication between GPS and satellites.These issues are orig-
inated by the buildings located near the streets and by bridges
on the paths. Figure 6 presents an example of a lost-of-signal
issue, which generates a signal spike on the raw speed profile.

The data processing considers the use of filters to deal
with the data logging issues. Two filtering methods were
considered to obtain a smooth speed profile: the Kalman
filter described in [35] and the Savitzky-Golay filter described
in [36, 37]. Figure 7 presents a comparison between the
processed data obtained by using these filters. The result
obtained by using each filter is compared with the original
data. The goal is to remove the signal spikes originated by
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Figure 5: Main nodes of reference located in the operation zone.

Table 1: Distance matrix.

Distance [km]

Depart\arrive Airport 1 Airport 2 Hotel Public RS Mall Terminal

Airport 1 — 0.94 5.92 9.55 7.62 6.69

Airport 2 2.94 — 5.86 9.54 7.6 6.66

Hotel 6.2 7.11 — 5.5 1.79 3.33

Public RS 6.99 7.87 4.21 — 4.21 5.9

Mall 7.74 8.62 2.61 4.9 — 4.59

Terminal 7.48 8.37 2.1 6.03 3.25 —

Table 2: Characteristics of the test vehicle.

Parameter Value𝑚 [kg] 1312𝐴 [m2] 1.86𝐶𝐷 0.32𝑓𝑟 0.0117𝜂 0.9

Length [m] 4.32

Width [m] 1.69

the issues of the data logging process, keeping the rest of the
signal unaltered. It can be observed that, for this case study,
the Savitzky-Golay filter (Figure 7(a)) is more effective than
the Kalman filter (Figure 7(b)).

Table 3: Characteristics of the GPS unit.

Parameter Value

Sampling frequency [Hz] 100

Speed resolution [km/h] 0.01

Speed accuracy [km/h] 0.1

Distance resolution [m] 0.01

Distance accuracy [%] 0.05

6.4. Transport Demand. An illustrative transport demand is
defined. It consists of a case where one passenger is departing
from the airport whereabouts 1 and two passengers departing
from the airport whereabouts 2. This scenario is repeated
every hour from 8:00 to 16:00. Each passenger must pay a
5USD ticket and has to be picked up within a time window of
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Figure 6: Raw speed profile data.

30minutes. It is assumed that the passengersmay be traveling
to themall, the terminal, or the hotel according to their needs.

6.5. Energy Consumption. The results of energy consumed by
the vehicle during a trip along each path are calculated; this
is achieved by the introduction of the filtered speed profile
(see Figure 7) in the longitudinal dynamics model described
in Section 2.1. The results are presented in the energy matrix
shown in Table 4.

6.6. Simulation Results. This section presents the results of
the implementation of the proposed methodology for the
solution of the case study. The comparison of the proposed
DE metaheuristic with a Genetic Algorithm (GA) is also
presented.

The routing problem proposed is solved using the opti-
mization tool XPRESS.The results show that nine routesmust
be used to satisfy the total transport demand of the case study.
Each route is optimal and has an energy consumption of
approximately 1.66 kWh. Traveling along each route takes less
than one hour.The routesmust be followed on an hourly basis
during the period from 07:30 to 15:30 according to the trans-
portation demand. The charge and route assignment actions
are planned with a 24-hour programming horizon starting at
7:00. The programming horizon is discretized in half hour
intervals. Four scenarios (SC) are considered with different
working conditions to illustrate possible circumstances.

In SC1 the charge is allowed only in the private station
(RS2) with a two-level energy rate: 0.20USD/kWh between
[7:00–22:00) and 0.15USD/kWh between [22:00–7:00). For
SC1 the battery degradation cost is not considered. In SC2
the charge is also allowed only in the private station (RS2)
with the same two levels energy rate of SC1, and the battery
degradation cost is considered.

In SC 3, the charge is allowed in both the private station
(RS2) and the public station (RS3). In SC3, the energy rate
of RS2 is the same one used in SC1 and RS3 has a two-
level energy rate: 0.10 USD/kWh between [7:00–22:00) and
0.05USD/kWh between [22:00–7:00). In SC3, the battery
degradation cost is considered, and the V2B operation is
allowed (i.e., energy discharge of BEVs towards the hotel).
In SC4, the conditions are similar to those in SC3 except
for the difference in energy rate, where both RS2 and RS3

have single-level energy rates: 0.50USD/kWh for RS2 and
0.05USD/kWh for RS3. In SC4, the energy rate for the private
station is artificially incremented to investigate a scenario
where V2B operations are intuitively profitable.

The results obtained with the scenarios previously
described are presented in Figures 8 and 9. For each scenario,
the rate evolution and the SOC for two vehicles of the fleet
and their charge actions on each station are presented across
the programming horizon.

Figure 8(a) presents the charge and route assignment
obtained for SC1 using DE. It is observed that the charge
actions were programmed at the end of the horizon, taking
advantage of the low energy rate during the night.

Figure 8(b) presents the charge and route assignment
obtained for SC2 using DE. It is found that the SOC of the
BEVs describes a travel-charge pattern, meaning that the
BEVs travel along one or two routes and immediately have
to charge. When analyzing this behavior, it is found that the
travel-charge pattern reduces the battery degradation cost by
maintaining a low DOD. This is consistent with the battery
model since the cycles with a large DOD are the main source
of battery degradation.

SC1 and SC2were used to compare the impact of scenario
conditions on battery lifespan. When the charge and road
assignments obtained for SC1 are implemented, the expected
battery lifespan is approximately 6400 cycles. On the other
hand, when the SC2 assignments are used, the expected
battery lifespan is approximately 8400 cycles. This represents
a difference of 2000 cycles, which is comparable with five
years of operation of a BEV in transportation service.

Figure 9(a) presents the charge and route scheduling for
SC3 obtained with DE. It was obtained that the algorithm
does not schedule the V2B operation although the energy
discharges are allowed. It is observed that the energy rate for
SC3 is not profitable when performing the energy discharge
actions because the economic benefit to afford a V2B opera-
tion is surpassed by the battery degradation cost.

Figure 9(b) presents the charge and route scheduling for
SC4 obtained with DE. It was obtained that several charge
actions in RS3 are programmed as well as the operation V2B
through discharge actions. This behavior can be explained
due to the high difference in the energy rate in the recharge
stations RS2 and RS3. For this reason, the V2B operation
becomes profitable. However, this difference in rates is not
easily accomplished in real scenarios.

6.7. Benchmark Results. To analyze the convergence of the
solution and the computational cost of the DE algorithm,
a standard GA algorithm was used as a benchmark, as
described in Section 5.6. The algorithms were compared
under the conditions of scenarios SC1 and SC2. Given the fact
that both algorithms depend on pseudorandom variables,
several iterations were considered. The results are presented
indicating the average values and the standard deviation
obtained for each observed variable.

Table 5 presents the results obtained for the comparison
under SC1 conditions. Both DE and GA converged to the
same value of the daily recharge cost of a vehicle (i.e.,
1.42USD). The recharge schedules obtained were essentially
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Figure 7: Comparison between filtered data. Savitzky-Golay filter (a). Kalman filter (b).
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Figure 9: Charge scheduling for two BEVs operating in SC3 (a) and SC4 (b).

Table 4: Energy consumption matrix.

Energy consumption [kWh]

Depart\arrive Airport 1 Airport 2 Hotel Public RS Mall Terminal

Airport 1 — 0.128 0.574 1.073 0.79 0.719

Airport 2 0.285 — 0.567 1.076 0.634 0.656

Hotel 0.593 0.773 — 0.658 0.183 0.429

Public RS 0.688 0.828 0.51 — 0.443 0.727

Mall 0.805 0.876 0.321 0.497 — 0.536

Terminal 0.839 0.925 0.28 0.72 0.407 —

the same. Consequently, the recharging schedules produce
a similar battery lifespan for both cases: 6434 cycles for DE
and 6322 cycles for GA. Regarding the computational cost,
the simulation times obtained were 14.57 for the DE and 17.91
for the GA. For SC1, the use of DE instead of GA led to a
reduction of 18.6% in the computational cost. The computa-
tional cost difference obtained can be important when a large
fleet is considered.

Figure 10 shows the convergence curves obtainedwithDE
and GA. Both algorithms presented expected behaviors. The
DE convergence curve is monotonously decreasing. The GA

convergence curve presents some oscillations before converg-
ing. The advantage of DE is the selection process performed
between generations. The choice of GA as benchmark takes
advantage of its capability to reach global solutions. From this
point of view, the results of the benchmark performed suggest
that the DE is converging to the global minimum.

Table 6 presents the results obtained for the comparison
under SC2 conditions. For this scenario, the total daily cost
was computed. The total cost considers the recharging cost
and the battery degradation cost. The difference between the
average convergence values obtained with DE and GA for the
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Figure 10: Convergence curves of DE (a) and GA (b) in SC1.

Table 5: Results of the simulation obtained with the DE and GA
algorithms in SC1.

Average (Std. Dev)

DE GA

Recharge cost [USD] 1.42 (§) 1.42 (§)

Battery lifespan [cycles] 6434 (16) 6322 (137)

Simulation time [s] 14.57 (0.201) 17.91 (0.126)

§ represents a standard deviation under 0.01 USD.

Table 6: Results of the simulation obtained with the DE and GA
algorithms in SC2.

Average (Std. Dev)

DE GA

Total cost [USD]
(recharging + battery
degradation)

5.21 (0.05) 5.29 (0.07)

Battery lifespan [cycles] 8368 (185) 8042 (281)

Simulation time [s] 15.13 (0.23) 17.42 (0.357)
total cost is 1.4%. The difference between the average con-
vergence values obtained with DE and GA for the battery
lifespan is 3.9%.

7. Conclusions and Future Research

A methodology to plan the energy charge and route assig-
nation for a fleet of BEVs providing a passenger transport
service has been presented. This methodology considers the
search of optimal routes and the minimization of operational
costs. It has been found that the charge scheduling and route
assignment have effects on the battery lifetime. The result
obtained for the charge scheduling allows increasing the
battery lifespan. Additionally, it is observed that the consid-
eration of battery degradation modifies the charge patterns.

In this work, some conditions to perform aV2Boperation
have been reported. These conditions are related to the
battery technology, the battery degradation model, and the
energy rate. It was found that batteries with lithium-ion
technology studied in this work do notmeet the requirements
to provide the V2B operation as their degradation cost is
high. Therefore, the V2B operation is profitable only for the
BEV owner when the difference in energy rate between the
recharge station and the discharge station is approximately
0.5USD/kW. Nonetheless, this difference in energy rates is
difficult to achieve in a real scenario.

For future work, both models for the estimation of the
energy consumption and for battery degradation should be
refined. The energy consumption model should consider
regenerative braking. The battery degradation model should
consider the detailed behavior of different types of batteries.
Also, the performance of additional metaheuristics should be
investigated.

Notations

Notation Used in the BEV Routing Problem

G𝑠: Simplified energy graph
V𝑠: Vertices or nodes of the energy graphG𝑠
E𝑠: Edges of the energy graphG𝑠
V𝑑1 , V𝑑2 : Depot nodes𝐶: Set of customer nodes𝑅𝑠: Set of nodes on recharge stations𝑃: Set of pick-up nodes𝐷: Set of drop-off nodes𝑐𝑖𝑗: Energy consumed by traveling from node 𝑖

to node 𝑗𝑡𝑖𝑗: Time elapsed during the trip from node 𝑖
to node 𝑗[𝑎𝑖, 𝑏𝑖]: Time window to pick up a passenger at
node 𝑖
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𝑞𝑖: Number of passengers at node 𝑖𝑄: Maximum passenger capacity of the BEV𝐵: Battery capacity𝑀: Constant, higher than any value of 𝑤ℎ
𝑗𝑒min: Lower bound of battery level𝐻: Set of routes𝑥ℎ𝑖𝑗: Binary flow variable to specify that route ℎ

travels between nodes 𝑖 and 𝑗𝑦ℎ𝑗 : Number of passengers picked up or
dropped off at node 𝑗 when traveling on
route ℎ𝑤ℎ

𝑗 : Instant at which a passenger 𝑖 has to be
picked up or dropped off along route ℎ𝑒ℎ𝑗 : Remaining level of battery charge at the
end of node 𝑖 on route ℎ.

Notation Used in the Description of the Charge

Scheduling Problem

N: Programming horizon𝑁: Final time slot of programming horizon𝑎ℎ𝑘 : Route assignation variable𝑑𝑘ℎ(𝑛): Unavailability variable𝑡𝑠ℎ: Starting time for a trip along route ℎ𝑡𝑒ℎ: Ending time for a trip along route ℎ
ℵ: Assignation profile

SOC𝑘(𝑛): State of charge of BEV 𝑘 battery at instant𝑛𝜂𝑧: Charge efficiency of a charge station 𝑧𝑟𝑧: Charge rate of charge station 𝑧𝑢𝑘𝑧(𝑛): Charge action variable of a BEV 𝑘 at
instant 𝑛 in charge station 𝑧𝑒𝑘ℎ(𝑛): Variable of energy consumed by BEV 𝑘 at
instant 𝑛 in route ℎ

u𝑘: Charge profile of BEV 𝑘𝑝𝑧(𝑛): Energy cost in charge station 𝑧 at instant 𝑛𝑐𝑘deg: Battery degradation cost of BEV 𝑘.
Notation Used in the Description of the Battery

Degradation Model

𝑐bat: Battery cost𝐿𝑄,𝑇: Battery degradation due to temperature𝐿𝑄,SOC: Battery degradation due to state of charge𝐿𝑄,DOD: Battery degradation due to depth of
discharge𝑛ℎ𝑦: Number of hours in a year𝑙𝑦(⋅): Function of the lifespan of the battery in
years𝑇amb: Ambient temperature𝑅th: Thermal resistance𝑃𝑡(⋅): Charge power𝑡max: Time available to perform a charge in
hours𝑡ch: Charge time in hours

CFmax: Battery charge capacity

𝑦𝑝: Battery lifespan estimated in years𝑁𝑙(⋅): Battery lifespan estimated in cycles.

Notation Used in the Description of the Differential

Evolution Algorithm

XU: Vector containing the charge parameters
or the information about the charge
actions

Xa: Vector containing the route assignation
parameters𝑋𝑖,𝐺𝑒 : Vector containing the parameters of
subject 𝑖 of generation 𝐺𝑒𝑉𝑖,𝐺𝑒 : Donor vector that contains the parameters
of subject 𝑖 of generation 𝐺𝑒𝑈𝑖,𝐺𝑒 : Trial vector that contains the parameters
of subject 𝑖 of generation 𝐺𝑒𝑁𝑝: Number of parameters of the vector𝐶𝑟: Crossover rate𝑚

V
: Number of elements in a parameter vector.
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