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Abstract— In this paper, we study the problem of joint routing,
link scheduling and power control to support high data rates
for broadband wireless multi-hop networks. We first address
the problem of finding an optimal link scheduling and power
control policy that minimizes the total average transmission power
in the wireless multi-hop network, subject to given constraints
regarding the minimum average data rate per link, as well as
peak transmission power constraints per node. Multi-access signal
interference is explicitly modeled. We use a duality approach
whereby, as a byproduct of finding the optimal policy, we find
the sensitivity of the minimal total average power with respect
to the average data rate for each link. Since the minimal total
average power is a convex function of the required minimum
average data rates, shortest path algorithms with the link weights
set to the link sensitivities can be used to guide the search for
a globally optimum routing. We present a few simple examples
that show our algorithm can find policies that support data rates
that are not possible with conventional approaches. Moreover, we
find that optimum allocations do not necessarily route traffic over
minimum energy paths.

Index Terms— Wireless Networks, Multi-hop Networks, Rout-
ing, Scheduling, Power Control.

I. INTRODUCTION AND MODEL

Broadband wireless networks today are capable of supporting
high data rates. Minimizing the total power in such systems
is of paramount importance not just to increase its own op-
erational lifetime in the case of battery powered devices, but
also to coexist symbiotically with other systems which share
the same frequency spectrum. For instance, 802.11 LANs and
Bluetooth networks share the same unlicensed band and can
mutually benefit by limiting the power of their respective signal
transmissions.

Most currently deployed networks that support high data
rates use only a “single hop” for wireless communication
between a mobile user and an access point that is connected
to the wired infrastructure. However, the use of multiple hops
to transport data has been shown to enhance network capacity
[10] [9] [17], and may be necessary due to cabling limitations
in many environments.

Consider a network of base-stations interconnected to each
other through wireless links. Each base-station serves as an
ingress or egress for the aggregate of traffic associated with
the mobile users in its domain, and routes its data through

other base stations via multiple wireless hops to an access point
connected to a wired infrastructure. In this paper, we focus on
the transport of such aggregated traffic between base stations.
We present algorithms to compute the optimal routing, link
scheduling and power control policy that consumes minimum
total average power. While current approaches tend to de-couple
routing, link scheduling and power control from each other, we
take an integrated approach.

Suppose there are N stationary nodes, labeled by the integers
1, 2, . . . , N , which correspond to the base stations discussed in
the previous paragraph. A set E of LE = |E| transmission links,
among the possible N(N −1) links between nodes, constitutes
a network topology. For now, assume that the transmissions on
all of these links occur concurrently.

For a given link l = (i, j), the transmitter node i uses a
signal power P (l). The path “gain” from node i to node j is
given by G(i, j), and models the effects of signal attenuation
due to distance, channel fading and shadowing, as well as
antenna gain patterns. We assume that the path gains G(i, j)
are constant. The transmitting and receiving nodes of link
l are denoted by T (l) and R(l) respectively. The received
signal power at node R(l) from the transmitter T (l) thus given
by P (l)G(T (l), R(l)). However, signals emanating from other
transmitters appear to the receiver R(l) as interference, and
there is ambient thermal noise to contend with as well. The
signal to interference and noise ratio (SIR ) for link l is defined
as

γ(l) =
G(T (l), R(l))P (l)∑

k:k �=l P (k)G(T (k), R(l)) + nR(l)
, (1)

where nj is the ambient noise power at node j.
The capacity of the single wireless channel embodied by link

l can be modeled as a function of the SIR, γ(l). For instance,
the Shannon capacity of a link l over a frequency bandwidth W
is W log2(1 + γ(l)), assuming Gaussian noise and interference.
Throughout this paper, we assume that the achieved data rate on
link l, X(l), is a linear function of the SIR, γ(l), and the total
available bandwidth W . This is a reasonable approximation to
the Shannon capacity at small values of SIR, which for example
is the case in CDMA networks where all links share a common
frequency band and have at least a moderate processing gain.
Our model could easily encompass the case where the links
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may use different frequency bands, and in this case the path
gains incorporate crosstalk due to imperfect bandpass filters.
However, for concreteness throughout this paper, we shall
assume all links share the same frequency band of width W .
Assuming the Gaussian approximation [14] to compute the bit-
error-rate (BER), the data rate of a link l with a tolerable BER
of 10−q and using BPSK modulation is given by

X(l) = W ′γ(l) where W ′ =
W

2q log2 10
. (2)

Suppose that the desired data rate on each link l is C(l) bits
per second, i.e.

X(l) ≥ C(l) , l ∈ LE . (3)

Using (1) and (2), we can rewrite (3) in matrix form as

P ≥ FP + b, (4)

where P = (P (1), . . . , P (LE))T ,

b(l) =
C(l)nR(l)

G(R(l), T (l))W ′ ,

b = (b(1), . . . , b(LE))T , and F is the LE × LE matrix with
entries

F (l, k) =

{
G(R(l),T (k))C(l)
G(R(l),T (l))W ′ , if k �= l

0 , if k = l.

If F is a stable matrix, i.e. all eigenvalues of F are strictly
inside the unit circle, then (I − F)−1 exists and has non-
negative elements. Thus, in this case, we can rearrange (4) and
premultiply the resulting matrix inequality by (I − F)−1 to
obtain

P ≥ (I − F)−1b (5)

Hence, we can view (I − F)−1b as the minimal power vector
that supports the network topology defined by links E and
their associated required data rates. Foschini and Miljanic [8]
proposed a simple distributed algorithm to compute the mini-
mum power vector in a cellular network context. Subsequently,
Bambos, Chen, and Pottie [1] considered a distributed link
admission control algorithm for the case of multi-hop networks,
in the framework of [8].

If the eigenvalues of F are on or outside the unit circle, there
does not exist any power vector P which supports the required
data rates. If the eigenvalues of F are inside the unit circle but
close to the boundary, the minimal power vector (I − F)−1b
will be very large. Even if the eigenvalues of F are well inside
the unit circle, using the minimal power vector indicated in (5)
may be inefficient. This is illustrated in the following example.

Example: Consider a square network of 4 nodes and 2
links {(1, 2), (3, 4)}. Suppose the relevant path gain values
are G(1, 2) = G(3, 4) = G0 and G(1, 4) = G(3, 2) =
G0/2, corresponding to omnidirectional antennas and inverse
square law propagation loss. Let the required data rates be
X({1, 2}) = X({3, 4}) = W ′

2 , and let the ambient noise n0
be the same at both the receivers, specifically n0 = G0. In this

case, it is readily verified that (I−F)−1b = (0.67, 0.67)T , i.e.
each transmitter is required to continuously transmit at a power
of 0.67 Watt. On the other hand, if instead the transmitters take
turns transmitting at a power of 1 Watt, such that only one
transmitter is active at any time, the peak data rate that can be
achieved is twice that of the data rate achieved previously, due
to a lack of interference. Thus, if the transmitters are active for
50% of the time, the same average data rate of W ′

2 is achieved,
but this consumes an average power of only 0.5 Watt, which
is 33% less than before.

This example suggests that it can be inefficient to operate
with all links in a wireless network active concurrently. Indeed,
in most wireless networks, links operate in a half-duplex mode
to limit interference. We can essentially eliminate interference
by scheduling only links which are very far apart, as is proposed
for example in [7][11]. However, in order to achieve high data
rates, this may require unacceptably high peak transmission
power. Constraints on peak transmission power may necessitate
the use of concurrent transmissions in this case.

Recently, Elbatt and Ephremides [6] proposed a schedul-
ing and power control strategy that selects candidate subsets
of concurrently active links, and applies the power control
algorithm in [8] in order to find the minimal power vector
(I − F)−1b for each candidate subset. The objective of their
optimization problem is to maximize network throughput by
supporting as many links as possible with a given fixed SIR,
while remaining energy efficient. They propose a heuristic to
identify large subsets of concurrently active links that can
be efficiently supported, and evaluate the throughput of the
heuristic via simulation for a uniform traffic demand on links.

In this paper, we propose a systematic optimization for a
problem formulation that is motivated by similar objectives.
In particular, we seek to find subsets of simultaneously ac-
tive links, herein called transmission modes, as well as the
associated transmission powers, in order to minimize the total
average transmission power expended across the network. The
constraints of this optimization problem are that each link in
the network must have an average data rate no less than a
given prescribed value, and a peak transmission power for each
node. This problem statement is formalized in Section II, and a
duality approach for finding the optimal scheduling and power
control policy is presented.

The required minimum average data rates on each link are
ultimately determined by the average rates at which traffic is
generated by users and the routing algorithm that is used. In
wireless networks it is possible to reconfigure the data rates of
the links on a fast time scale in response to changing traffic
and channel conditions. In this paper, we shall also consider
the problem of routing, and hence determination of the required
data rates on each link, for a given traffic demand rate matrix.
We shall address this in Section III, exploiting the duality
approach explained in Section II.

After presenting the details of our approach, we discuss
several illustrative examples in Section IV. Qualitatively, we
find that in high ambient noise regimes, a large number of
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links in close geographic proximity are active simultaneously
in optimal policies. In addition, we find that route diversity
allows nodes to split traffic over multiple paths and support
higher throughputs than could otherwise be achieved. This is
somewhat surprising since all links share a common bandwidth.
However, pushing the data rates to the maximum possible limit
comes at price: As the data rates increase, the network tends
to become less energy efficient. We discuss the applicability of
our proposed routing, scheduling and power control algorithms
to minimize the sum total of average transmitter and receiver
power subject to a minimum average rate per link and peak
power per node in Section V. We conclude the paper with some
closing remarks in Section VI.

II. OPTIMAL SCHEDULING AND POWER CONTROL

In this section, we formally specify the optimization prob-
lem discussed in the previous section, and present a duality
approach for solving it. We then discuss an approach to limit
computational complexity. We also briefly discuss an hierarchi-
cal approach that we developed recently in [5] that allows our
link scheduling and power control algorithms presented in this
paper, to scale for multihop networks with a large number of
links.

For simplicity of exposition, we divide time into slots,
each of equal duration and indexed by the positive integers.
Transmissions begin and end on slot boundaries. Generalizing
the notation introduced earlier, let Xm(l) and Pm(l) be the
data rate for link l in slot m, and transmission power for
the transmitter T (l) for link l in slot m, respectively. Let
�Pm = (Pm(1), Pm(2), . . . , Pm(LE)) be the network power
vector for slot m. Let Pmax(i) be the maximum transmission
power for node i. Let E(i) be the links in E that originate at
node i.

Each node must conform to the peak transmission power
constraint in every slot:

0 ≤
∑

l∈E(i)

Pm(l) ≤ Pmax(i) and (6)

0 ≤ Pm(l) , for all m ≥ 1.

Using (2) and (1), the achieved data rate for link l in slot m is

Xm(l) = W ′(
G(T (l), R(l))Pm(l)∑

k:k �=l G(T (k), R(l))Pm(k) + nR(l)
).

The long-term average rate of link l is then defined as

Xavg(l) = lim inf
m→∞

1
m

m∑

k=1

Xk(l).

For each link l, let C(l) be a given minimum acceptable average
data rate, i.e. we must have

Xavg(l) ≥ C(l) , for all l ∈ E . (7)

Define the required minimum average rate vector as �C =
(C(1), C(2), . . . , C(LE)).

The average power consumed by the transmitter for link l,
P avg(l), is

P avg(l) = lim sup
m→∞

1
m

m∑

k=1

Pk(l).

Define the average network power vector as �P avg =
(P avg(1), P avg(2), . . . , P avg(LE)).

There may or may not exist a sequence of network power
vectors �P1, �P2, . . . that satisfy (6) and (7). If there does exist a
sequence of such network power vectors, our aim is to minimize
a linear function of �P avg. An example of such a linear function
is simply the total average power. We will consider the slightly
more general cost function

h(�P avg) =
∑

l∈E

α(l)P avg(l), (8)

where α(l) is a positive weight. For example, h(�P avg) might
equal the average power incident at a given point in space, or
be equal to the total average power emanating from a closed
boundary surrounding the network. Alternatively, α(l) might
model the cost of a battery that drives transmitter T (l).

A. Primal Problem

One of the main aims of this paper is to present an approach
to compute a schedule of network power vectors �P1, �P2, . . . ,
satisfing the peak power constraints (6) and the minimum
average rate constraints (7), such that h(�P avg) is minimized.
This primal problem is succinctly stated as

min{h(�P avg)} subject to (6) and (7). (9)

Note this optimization involves choosing optimal power levels
in each slot for each transmitter. Using a duality approach
below, we reduce the problem to a convex optimization problem
over a single slot.

B. Duality Approach

Let the value of the optimal cost in the problem (9) as a
function of �C be denoted by H(�C). If for a given value of �C,
no schedule of network power vectors exists satisfying (6) and
(7), define H(�C) = +∞.

Note that H(�C) is a convex function of the vector �C. To see
this, suppose that �C = λ�C1 + (1 − λ)�C2, where 0 < λ < 1.
Let πi be an optimal policy that supports the average date rates
specified by �Ci, i.e it achieves minimum cost H(�Ci). Roughly
speaking, we can create a new policy π by “time sharing”
between the policies π1 and π2, such that policy π1 is used
a fraction λ of the time and policy π2 is used a fraction 1 − λ
of the time. The policy π supports average data rate rates that
are at least as large as �C. Furthermore, by the linearity of h(·),
the cost of policy π is λH(�C1)+ (1−λ)H(�C2). By definition
of H(�C), the cost of policy π is at least H(�C). Thus we have
H(�C) ≤ λH(�C1) + (1 − λ)H(�C2).
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Define a set of dual variables �β = {β(1), β(2), . . . , β(LE)}
for each link. Define a “potential” function V according to

V (�P , �C, �X) = h(�P ) +
∑

l∈E

β(l) [C(l) − X(l)]

The dual objective function is defined as

g(�β) = min{V (�P avg, �C, �Xavg)} subject to (6) .

Note the absence of the minimum rate constraints (7) in the
definition of g(�β). For any non-negative vector �β, using (7),
note that

H(�C) ≥ min{V (�P avg, �C, �Xavg)} , subject to (6) and (7)

≥ min{V (�P avg, �C, �Xavg)} , subject to (6)

= g(�β) . (10)

Thus, for any non-negative vector �β, the minimum value
of the objective function in the optimization problem (9) is
lower bounded by g(�β). This observation leads to the dual
optimization problem,

max{g(�β) : �β ≥ �0}. (11)

A geometric interpretation of the inequality (10) can be
obtained by considering the surface of H(·) in (LE + 1)-
dimensional Euclidean space. In particular, H(�C) is lower
bounded by considering a supporting hyperplane that is normal
to the vector (�β, 1). Since H(·) is convex, there exists a sup-
porting hyperplane which passes through the point (�C,H(�C)).
This is simply the classical argument used to prove that there
is no “duality gap,” [2] i.e.

H(�C) = max{g(�β) : �β ≥ �0}
= g(�β∗) . (12)

Here, the supporting hyperplane passing through the point
(�C,H(�C)) is normal to the vector (�β∗, 1). From this geometric
interpretation, it can be seen that the components of the optimal
dual variable vector �β∗ represent a sensitivity of the optimal
cost with respect to a perturbation in the minimum average data
rate for a link, i.e.

β∗(l) =
∂H(�C)
∂C(l)

. (13)

Computation of g(�β) involves optimizing over all schedules of
network power vectors satisfying the peak power constraint in
every slot. However, since the potential function V (�P , �C, �X)
is linear in �P , �C, and �X , it follows that g(�β) can be computed
by an optimization over a single slot, i.e.

g(�β) = min{V (�P , �C, �X) : �P ∈ SP } ,

where �X = �X(�P ) is defined as in (2) and (1), and SP is
defined as the polyhedral set SP = {�P :

∑
l∈E(i) P (l) ≤

Pmax(i) for all i and 0 ≤ P (l) for all l ∈ E}. Let M be the
number of extreme points of SP , and let �P ext

m , m = 1, 2, . . .M
denote the extreme points of SP . By definition, each point
in SP can be represented as a convex combination of �P ext

m ,

m = 1, 2, . . .M . An upper bound on M is 2LE . If Mi is the
number of links emanating from node i, then it can be shown
that M = ΠN

i=1(1 + Mi).
Even though it can be verified that V (�P , �C, �X(�P )) is not a

concave function of the vector �P , it is easy to show by taking
derivatives that V (�P , �C, �X(�P )) is a concave function of P (l)
for each l ∈ E . A standard convexity argument then shows that

g(�β) = min{V (�P ext
m , �C, �X(�P ext

m )) : 1 ≤ m ≤ M} .

Thus, the complexity of computing g(�β) is O(M). In fact, note
that V (�P ext

m , �C, �X(�P ext
m )) is an affine function of �β, which

implies that the dual objective function g(�β) is the pointwise
minimum of M affine functions, i.e.

g(�β) = min
1≤m≤M

{a′
m
�β + bm} . (14)

We have developed an iterative ascent algorithm to solve
the dual problem (11). Exploiting the piecewise linearity of
g(�β), our algorithm converges in a finite number of iterations.
Alternately, by introducing a slack variable, the dual problem
(11) can be reduced to a linear program and be efficiently solved
using interior point methods.

If the required minimum rate vector �C is infeasible, i.e.
H(�C) = +∞, it can be seen that g(�β) is unbounded from
above over the set of all �β ≥ 0. If �C is feasible, it is easy to
see that

H(�C) ≤
N∑

i=1

Pmax(i).

Thus we can safely declare �C infeasible if we find a value of
�β such that g(�β) >

∑N
i=1 P

max(i).

C. Computing the Optimal Policy

Solving the dual problem (11) yields the optimal dual vari-
able vector �β∗ and extremal network power vectors P∗,i, such
that

g(�β∗) = min{g(�β) : �β ≥ 0}
= V (�P ∗,i, �C, �X(�P ∗,i)) . (15)

The vectors P∗,i are extreme points of SP that represent opti-
mal transmission modes and the power levels of the transmitters
in those transmission modes. In other words, assuming H(�C)
is finite, an optimal schedule of network power vectors exists
that consists solely of these extremal network power vectors
P∗,i. This means that in the optimal policies we find, in each
slot, every node is either not transmitting at all, or is trans-
mitting at the maximum possible peak power to exactly one
receiver. Moreover, since a hyperplane in (LE +1) dimensional
Euclidean space is determined by LE + 1 linearly independent
points contained within it, an optimal policy can be constructed
that consists of at most LE +1 extremal network power vectors
P∗,i. Let K be the number of extremal network power vectors
P∗,i such that (15) holds. Define K̂ = min{K,LE + 1}. We
thus have

H(�C) = g(�β∗) = V (�P ∗,i, �C, �X(�P ∗,i)) ,
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for all i such that 1 ≤ i ≤ K̂.
It is easy to see that in any optimal policy (assuming

H(�C) is finite), the average rate on each link l, Xavg(l), is
exactly equal to C(l). Otherwise, we could decrease the total
average power further without violating any rate constraints
thus contradicting the optimality of the solution. Let X∗,i(l)
denote the rate of link l corresponding the optimal extremal
network power vector P∗,i. Assuming H(�C) is finite, it can be
shown that (12) guarantees the existence of a “weight vector”
�λ∗ = {λ∗(1), λ∗(2), λ∗(K̂)} such that the equations (16) and
(17) below are satisfied:

K̂∑

i=1

λ∗(i)X∗,i(l) = C(l) for all links l ∈ E (16)

K̂∑

i=1

λ∗(i) = 1 where λ∗(i) ≥ 0 (17)

Note that K̂ ≤ LE + 1, so the above system of equations is
always overdetermined. There must be K̂ of these equations
which are linearly independent. Once we have identified such
a set of equations, we solve them by inverting a K̂×K̂ matrix.

The value of λ∗(i) indicates the relative frequency at which
the extremal network power vector P∗,i is utilized in an optimal
policy. This then determines a family of optimal policies, which
can be constructed by alternating between the extremal network
power vectors in accordance with the weight vector �λ∗. A
specific optimal policy, for example, can be constructed using
a psuedo-random number generator to select which extremal
network power vector is used in each slot, such that the network
power vector P∗,i is used with probability λ∗(i). Alternatively,
a specific optimal schedule can be constructed in such a way
as to provide “smooth service” to each link, though this topic
is beyond the scope of the present paper.

D. Reducing Complexity

The algorithm developed to solve the dual problem considers
all M transmission modes. However, in the optimal schedule we
have no more than LE +1 transmission modes. Since M can be
as large as 2LE , the complexity of minimizing the dual objective
function can be exponential. Thus, reducing the set of possible
transmission modes considered can greatly reduce complexity.
A natural consequence of our algorithm for a network of nodes
with omni-directional antennas is that, no node transmits or
receives data at the same time in the optimal schedule due to
high self interference. This observation can reduce the number
of candidate transmission modes significantly. Typical wireless
devices (e.g. laptops equipped with IEEE 802.11b wireless
cards) are capable of decoding exactly one transmission at a
time. For multihop networks comprising of such wireless de-
vices, we could further reduce the candidate set of transmission
modes by eliminating those transmission modes which consist
of multiple simultaneous transmissions to a receiver. In general,
in many cases it is possible using heuristics to eliminate many
“obviously inefficient” transmission nodes from consideration,

since they are unlikely to be used in an optimal policy. This
idea is similar in spirit to the approach used in [6] to construct
a set of “valid” links. The resulting policies we find can be
shown to be optimal among all policies which are constrained
to use only the set of chosen candidate transmission modes.

E. Hierarchical Link Scheduling and Power Control

The complexity of our algorithm taking into account some
of the aforementioned simplifications is reasonable for a small
number of links (about 15), but increases greatly even with
the addition of an extra link. In [5], we present an hierarchical
approach to link scheduling and power control to minimize the
total average transmission power of all the links in a network
with a large number of links. Each link in the network is subject
to a prespecified average data rate requirement and each node is
subject to a peak power constraint (identical to the constraints
in this paper).

In this approach, links in the network are partitioned into
groups called clusters. Each cluster is constrained to accomo-
date a limited number of links (e.g. at most 15). Furthermore,
links in a cluster are constrained to be geographically close
to each other. Links in one cluster are scheduled somewhat
independently of links in other clusters, in that inter-cluster
interference is modeled as static ambient noise. At the top
level, scheduling is done at the cluster level to determine
which clusters are active in each slot. The clusters that are
simultaneously active coordinate to solve a global fixed point
equation which determines all inter-cluster interference. This
approach is scalable in the sense that clusters that are geograph-
ically remote need only a loose coordination with each other.
Since clusters that are geographically far away from each other
impose negligible mutual interference, we can activate a large
number of clusters simultaneously. In fact, if the desired data
rate on links are sufficiently low, the optimal policy activates
all the clusters in the network simultaneously [5].

III. ROUTING AND CAPACITY ALLOCATION

In the previous section, we presented an algorithm that finds
an optimal link scheduling and power control policy to support
a given traffic rate on each link in the network. In this section,
we build on this to construct a policy which allocates traffic
rates on each link in accordance with a routing algorithm,
given a traffic matrix which describes the rate at which traffic
is to be carried between specific source-destination pairs. The
routing algorithm is guided by the computation of the minimum
cost associated with optimal scheduling and power control for
supporting traffic rates on each link that have already been
allocated, as described in the previous section.

For example, consider a series of iterations, where at a given
iteration we wish to support a small amount of additional
traffic from one of the given source-destination pairs. Initially,
no traffic is supported, i.e. the required minimum data rate
on each link is zero. We compute the optimal values for the
dual variables, �β∗. Using (13), we can estimate the cost of
supporting additional traffic on each link using a first order
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Taylor series approximation. For example, suppose we wish to
evaluate a given route r. Let �r be the LE dimensional vector,
such that the component r(l) = 1 if link l is included in the
route �r, and r(l) = 0 otherwise. If we route an additional ε
units of traffic along route r, the required data rate vector will
increase from �C to �C + ε�r. Using (13), the cost of supporting
the additional ε units of traffic along route r can be determined
from the approximation

H(�C + ε�r) = H(�C) + ε
∑

l∈E

β∗(l)r(l) .

Therefore, in order to determine the best possible path along
which an additional increment of traffic should be routed, we
can use a shortest path algorithm (such as Dijkstra’s algorithm
or the Bellman-Ford algorithm), where we set the weight for
link l to the sensitivity value β∗(l). After we have identified the
shortest path, we attempt to support the additional traffic along
this path. If the new value of �C is infeasible, we either reduce
the step-size ε until the additional traffic can be supported, try
supporting additional traffic for another source-destination pair,
or otherwise reach a prespecified termination condition.

Indeed, since H(·) is convex, we can use the optimal routing
framework developed by Bertsekas et al. (e.g., see [3]). In
this class of algorithms, any feasible routing is first chosen.
By incrementally adjusting the routing in an iterative manner,
flows are shifted towards shortest paths at each iteration, and
eventually a globally optimum routing is obtained. There are
many possible variations, for example regarding whether flow
is shifted simultaneously for every source destination pair, or
whether flow is shifted one at a time for each source desti-
nation pair. In the present context, we are faced with a more
difficult problem, since apparently H(·) is not differentiable
everywhere. In addition, since evaluating the function H(·) is
not trivial, it is more difficult to ascertain whether a given
routing is feasible, i.e. the capacity of a given link depends
on the rate carried by other links. Nevertheless, our initial
numerical experiments that are based on (13) and framework
developed by Bertsekas et. al. suggest that such an approach
may be quite useful in practice.

In the examples, we will present below, it is apparent that
H(·) is piecewise linear, which results in “sharp corners”.
When we use the above algorithm, it is possible that the
link sensitivities can change abruptly. This can be partially
addressed by choosing the step size ε sufficiently small. We
can also “backtrack” by re-adjusting the rate allocations after
each iteration, if necessary, to shift traffic towards shorter paths.

As expected, since H(·) is convex, we find that β∗(l)
increases after we allocate additional traffic on link l. As a result
of this, routes which initially appear unattractive sometimes
become more attractive after traffic is added on other links. As
we will see, this phenomenon can lead to traffic from the same
source-destination pair being routed over multiple paths, which
is somewhat counterintuitive since all links share a common
frequency band.

We remark that the approach of using optimal values of the
dual variables as link weights in shortest path routing has also

been used before in the context of revenue maximization in
wired networks, by Mitra et. al. [13]. This work focuses on
the asymptotic behavior of the link sensitivities with respect to
uniform increases in demand rates. The authors of this previous
work also observed the optimality of route diversification
for price elastic traffic associated with maximizing network
revenue.

The potential energy efficiency of a given link can be
evaluated, assuming that all other links are idle. For our model,
the minimum transmission energy required per bit on a link
(i, j) is inversely proportional to G(i, j). A minimum energy
path is defined as a path which has the smallest possible energy
required to transport a fixed amount of data, irregardless of
the delay associated with transporting that data. Previous work
on routing in wireless networks (for example see [16][15]) is
focused on energy efficiency without regard to delay, i.e. such
work proposes using minimum energy paths.

In our framework, we find that the paths over which traffic is
allocated in some optimum routings does not always correspond
to using minimum energy paths. However, when required data
rates are sufficiently low, our routing framework will apparently
always use minimum energy paths. This is illustrated by
example in the next section.

IV. RESOURCE ALLOCATION EXAMPLES

In this section, we illustrate the gains of using our wireless
resource allocation framework through a series of network
topologies. We focus on simple examples in an attempt to gain
insight from optimal allocations.

A. Example 1: String Topology

A string topology consists of a row of nodes connected by
means of directed links as shown in Figure 1. This topology
represents a “transport” network carrying data over long dis-
tances. Node 1 is the source of data and node 5 is the sink.
Each node in this example has an omnidirectional antenna, and
all nodes have identical peak transmission power constraints of
1 Watt. The path-loss between nodes was modeled as an inverse
square of the distance for all the examples in this paper, i.e.
G(i, j) = 1

d(i,j)2 . The ambient noise power at all the nodes is
assumed to be constant. We compare the maximum throughput
of the single session between node 1 to node 5 achieved by
our link scheduling policy to a TDMA scheduling policy. The
TDMA policy schedules exactly one link at a time, activating
each link at maximum power for a fourth of the time. We plot
the ratio of throughputs achieved by the our link scheduling
algorithm to TDMA with increasing values of ambient noise
in Figure 2. The ambient noise is normalized with respect
to the peak received power (from a single transmitter) in the
network and is scaled by log2(.) (for all graphs in this section).
The maximum throughput achieved by our policy is higher
than TDMA for all values of ambient noise. In low noise
regimes, TDMA is a near-optimal policy. However, as the level
of ambient noise at nodes increases, the gains in throughput of
our policy increase significantly. The optimal policy schedules
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Fig. 1. String Topology

multiple transmissions at the same time, even in fairly low
ambient noise regimes, thereby exploiting spatial reuse and
thus outperforming TDMA. This effect is more pronounced
in moderate and high ambient noise regimes where the optimal
policy schedules concurrent transmissions even though they are
in close geographic proximity.

To get a sense of how energy efficient the optimal policy is as
it supports increasing traffic demands, we plot the total average
power with increasing traffic rates for the session between node
1 and node 5 in Figure 3. For this experiment, we fix the level
of the logarithm of the normalized value of ambient noise to
−0.67. This value corresponds to the 3rd data point on the
x-axis in Figure 2. We also set W ′ = 107.

Figure 3 indicates that the total minimum average power
is a linear function of the traffic demand for average rates
below 4 Mbits/sec. Below 4 Mbits/sec, our scheduling policy
reduces essentially to TDMA. Specifically, only one link is
active at any time, each link is active for the same fraction
and for some fraction of time all links are idle. As the traffic
demand of the session increases beyond 4 Mbits/sec, the total
average power increases at a faster rate. For traffic load between
4 Mbits/sec and 4.98 Mbits/sec, the transmission modes in
the optimal policy are given by [{(1, 2)}, {(2, 3)}, {(3, 4)}
and {(1, 2), (4, 5)}]. For traffic loads above 4.98 Mbits/sec to
the maximum throughput possible, the optimal transmission
modes are [{(1, 2)}, {(2, 3)}, {(3, 4)}, {(1, 2), (3, 4)} and
{(1, 2), (4, 5)}]. We see that in order to support high traffic
loads, the optimal link scheduling policy activates a large num-
ber of links simultaneously. Note that the transmission modes
in the optimal policy are half-duplex. Therefore, transmissions
in the optimal schedule cannot consume a total average power
of more than 2000 mW for this topology.

B. Example 2: Diamond Topology

In this experiment, we consider an asymmetric diamond topol-
ogy as shown in Figure 4 to illustrate the substantial increase
in throughput by splitting traffic over multiple routes including
paths that are energy inefficient. Nodes in this topology are
equipped with omnidirectional antennas, and the peak trans-
mission power each node is fixed at 1 Watt. Node 1 is the only
source of data and node 4 is the sink. We assume G(1, 4) =

1
d(1,4)4 ; the path loss between all other nodes is given by the
inverse square law of distance. We consider our integrated
routing and scheduling algorithm over this diamond topology,
where all possible routes from the source to the destination are
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Fig. 2. String Topology: Ratio of maximum throughput for optimum
scheduling Vs TDMA.
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Fig. 3. String Topology: Total Minimum Average Power in milliwatts Vs
Increasing traffic demands in Mbits/sec

allowed except for the single hop route (1, 4). For comparison
purposes, we also considered our scheduling algorithm where
only the links (1, 2), and (2, 4) are allowed to be used, which
corresponds to routing over a single minimum energy path
1 → 2 → 4.

We compare the ratio of throughputs for these polices in Fig-
ure 5. Clearly, using multiple paths yields higher throughputs
for all values of ambient noise. The increase in throughput
by splitting traffic over multiple paths is significant even for
moderate levels of ambient noise. This result is somewhat
surprising, since all links are sharing a common bandwidth and
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Fig. 4. Diamond Topology
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Fig. 5. Diamond Topology: Ratio of throughputs achieved by using multiple
paths to using a single path 1 → 2 → 4.
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Fig. 6. Diamond Topology: Total Minimum Average Power in milliwatts Vs
Increasing traffic demands in Mbits/sec

we have a per-node peak power constraint. An intuitive expla-
nation of this is that by splitting the traffic over both paths, the
transmission modes {(1, 2), (3, 4)} and {(2, 4), (1, 3)}, which
do not have much interference, can be alternated in time. This
results in substantial delivery of data to the destination in every
slot. If we only allow the path 1 → 2 → 4, in order to avoid
self interference, the links (1, 2) and (2, 4) must be active one
at a time, so that node 4 will only be delivered data in every
other slot.

To illustrate energy efficiency issues, we plot the total minimum
average power with increasing traffic demand at node 1 in
Figure 6. The logarithm of the normalized value of ambient
noise for this point is 0.45 and corresponds to the 3rd data
point on the x-axis in Figure 5. We set W ′ = 107. The
maximum data rate achieved by TDMA using the minimum
energy path 1 → 2 → 4 is 3.65 Mbit/sec. In comparison,
our policy is capable of supporting a data rate of up to
5.05 Mbits/sec by using both the minimum energy path as
well as the non-minimum energy path. For traffic loads below
3.65 Mbits/sec, our policy is essentially identical to TDMA
over the path 1 → 2 → 4. As the traffic load increases
beyond 3.65 Mbits/sec, the optimal policy uses starts using
both paths by scheduling transmission modes {(1, 2), (3, 4)}
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Fig. 7. Hierarchical Topology: Access Network

and {(1, 3), (2, 4)} in addition to TDMA transmission modes.
The average power required to achieve higher traffic demands
beyond 3.65 Mbits/sec increases with a greater slope as can be
seen in Figure 6. The maximum throughput of 5.05 Mbits/sec is
achieved by splitting traffic by using both paths and scheduling
transmission modes {(1, 2), (3, 4)} and {(1, 3), (2, 4)} for a
dominant fraction of time and scheduling transmission modes
{(1, 2)}, {(2, 4)} for the remaining time. The optimal policy
transmits a fair amount of traffic on both available paths, but
transmits a greater share of its traffic on its minimum energy
path. We have noted a 10 to 20% reduction in the throughput
gains of the optimal policy than what is shown in figure 5 for
the case when G(1, 4) = 1

d(1,4)2 .

C. Example 3: Hierarchical Topology

A hierarchical topology as shown in Figure 7 represents a
complex topology such as an access network, where the number
of nodes in each tier decrease as we get closer to the access
point node 6. This experiment highlights the significant gains in
throughput by jointly routing and scheduling to an alternative
policy that optimally schedules links over pre-determined min-
imum energy routes. Nodes 1, 2 and 3 are sources of data and
node 6 is the sink. We assume G(1, 6) = 1

d(1,6)4 and G(2, 6) =
1

d(2,6)4 ; the path loss between all other nodes is given by the
inverse square law of distance. The minimum energy paths for
the source nodes are: {1 → 3 → 6}, {2 → 3 → 6} and
{3 → 6} respectively. Our integrated routing and scheduling
algorithm is allowed to utilize all possible paths to route their
data to node 6. We constrain the rates of each source to be
identical. We plot the ratio of the total maximum throughput of
our routing policy to that achieved by using only the minimum
energy paths, as a function of ambient noise in Figure 8.

We find that at low noise levels, our policy supports a through-
put at least 30% more than the data rate achieved using
minimum energy paths alone. As the level of ambient noise
increases, our policy supports a significantly higher throughput.
The base policy schedules links in a TDMA sequence for
all values of ambient noise. The optimal policy schedules
concurrent links even for low levels of ambient noise. In the
optimal policy, nodes 1 and 2 route a significant amount of
their traffic over non-minimum energy paths 1 → 4 → 6 and
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Fig. 8. Hierarchical Topology: Ratio of maximum throughputs achieved by
using multiple paths to that using minimum energy paths only

2 → 5 → 6 respectively, while transmitting a relatively small
fraction of their traffic over their minimum energy paths, for
all values of ambient noise. For low ambient noise, the optimal
policy schedules the transmission modes {(1, 3)}, {(2, 3)}
and {(3, 6)} according to TDMA but also allows modes
{(1, 4), (5, 6)} and {(2, 5), (4, 6)} to be active for reasonable
fractions of time. As the level of ambient noise increases, the
optimal policy splits node 3’s traffic over paths 3 → 4 → 6 and
3 → 5 → 6. In fact, for sufficiently high ambient noise, the
optimal policy schedules a large number of concurrent links,
the dominant transmission modes being {(1, 4), (5, 6), (2, 3)}
and {(2, 5), (4, 6), (1, 3)} and {(1, 4), (2, 5), (3, 6)}.

V. DISCUSSION

We have found that it is easy to generalize our problem
formulation in a number of directions. For instance, we could
minimize the total average transmitter and receiver energy
required to achieve the target capacity on links in the network.
This is discussed in the following subsection. Another con-
straint we could impose in our problem formulation (9) is a
maximum peak power constraint for an arbitrary collection of
nodes, rather than per each node. This may be useful to limit
signal emissions from an entire network or subnetwork.

A. Minimizing Total Average Transmitter and Receiver Power

The total energy required to transmit a packet over a slot is
the energy expended in the electronic circuitry to transmit at the
desired power level [12]. The efficiency of power amplifiers is
typically around 10% and therefore, the total power consump-
tion at node T (l) link is roughly 10P (l). [12] notes that the
energy involved in coding (e.g. convolution coding) packets is
typically negligible.

The energy required to receive a packet of information is
comprised of two components. The first component is the
electronic energy required to operate PLL’s, registers etc. and
this is proportional to the data rate of the link. The second
component is the energy required to decode the packet. While
the decoding energy increases greatly as the SINR of the

link decreases, this component of energy can be substantially
lowered (by orders of magnitude) by using Application Specific
Integrated Circuits to decode the received signal.

We therefore ignore the decoding energy component and
coarsely model the power expended by a receiver R(l) as a
linear function of the data rate of link l. Let PR(l) denote the
power expended by node R(l) to receive data at rate X(l).
Then PR(l) = θ(l)X(l) where θ(l) is the energy expended per
bit that is constant for each receiver node R(l). The new cost
function that we would like to minimize is

h(�P avg) =
∑

l∈E

α(l)P avg(l) +
∑

l∈E

θ(l)Xavg(l) (18)

where h(�P avg) is the sum total of average transmission and
receiver power. The dual objective function corresponding to
the new primal function (18) would have an additional average
receiver power term. The dual problem corresponding to the
new primal problem is similar to (11) except that without loss
of generality, we can constrain β(l) ≥ θ(l) for each link
l ∈ E . This constraint, β(l) ≥ θ(l), allows us to exploit the
coordinate concavity property and use the link scheduling and
power control algorithms originally developed to solve problem
(11), for the new dual problem.

Accounting for receiver power in our formulation changes
the choice of routes and the rate allocations on links in each
route. The changes in the routing policy are more pronounced
in a network where nodes are in fair proximity to each other.
Using multiple hops in such topologies would consume higher
receiver energy than using a single hop, making multihop
routing inefficient. In such topologies, ignoring receiver energy
consumption in the problem formulation would have yielded
multihop routing as the optimal routing policy.

Our integrated routing, scheduling and power control frame-
work is well suited for slow fading wireless channels which are
relatively constant for long durations of time. Outdoor wireless
channels with strong line-of-sight paths typically tend to have
a very stable channel strength and could be approximated as
a constant for a time interval (block fading model) ranging
from a few to several minutes. By periodically measuring the
channel and accounting for the changing traffic requirements
for each source-destination pair, we can compute the optimal
routing, scheduling and power control policy and adapt it to
the changing network conditions.

VI. CONCLUSION

We have developed an integrated routing, link scheduling
and power allocation policy for a general multihop network
that minimizes the total average power consumption to support
minimum average rate requirements per link. Our policy can
support higher throughputs than with conventional approaches
to radio resource allocation, at the expense of decreased energy
efficiency. Our policy requires time synchronization between
transmitters, and requires that channel conditions remain con-
stant over several time slots. It appears to be most appropriate
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in the context of providing a means for wireless interconnection
of fixed stationary nodes, such as wireless access nodes.

We find that our optimal power control policies are such
that each node is either transmitting at peak power to a single
receiver or not transmitting at all, which makes it simpler to
implement. This also means that nodes can go to “sleep” much
of the time, when they are not transmitting or receiving, which
potentially conserves a great deal of energy [4]. The optimal
link schedule time-shares a small number of optimal subsets
of links (≤ LE + 1) in order to achieve the required data
rates. The collection of optimal transmission modes depend
on the level of ambient noise and the capacity allocations on
links. The optimal policy for low required data rates or in low
ambient noise regimes schedules links in a TDMA sequence. In
moderate or high noise regimes, or to achieve higher data rates,
the optimal strategy involves scheduling multiple simultaneous
transmissions even though they may be in close geographic
proximity.

A byproduct of solving the scheduling and power control
problem yields link sensitivities that tell us the change in the
minimal total average power with respect to a perturbation of
the required data rate on a link. The minimal required average
power is a convex function of the required data rates on each
link. This leads us to a routing algorithm that is based on
previously developed non-linear programming techniques.

We find that using minimum-energy paths to route traffic and
TDMA to schedule links is near-optimal in low noise regimes
and in the case where the required average data rates are small.
As the level of ambient noise increases, or the required average
data rates increase, our optimal routing policy exploits the use
of multiple paths to support higher data rates, and the optimal
scheduling policy makes use of concurrent transmissions on
links. We find that non-minimum energy paths can be exploited
to increase throughput, despite the fact that all links share a
common bandwidth.
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