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Abstract. Spatial capture–recapture (SCR) has emerged as the industry standard for esti-
mating population density by leveraging information from spatial locations of repeat encoun-
ters of individuals. The precision of density estimates depends fundamentally on the number
and spatial configuration of traps. Despite this knowledge, existing sampling design recom-
mendations are heuristic and their performance remains untested for most practical applica-
tions. To address this issue, we propose a genetic algorithm that minimizes any sensible,
criteria-based objective function to produce near-optimal sampling designs. To motivate the
idea of optimality, we compare the performance of designs optimized using three model-based
criteria related to the probability of capture. We use simulation to show that these designs out-
perform those based on existing recommendations in terms of bias, precision, and accuracy in
the estimation of population size. Our approach, available as a function in the R package
oSCR, allows conservation practitioners and researchers to generate customized and improved
sampling designs for wildlife monitoring.

Key words: camera traps; density; genetic algorithm; optimal design; sampling design; SCR; spatial
capture–recapture; spatial sampling; spatially explicit capture–recapture; trap spacing.

INTRODUCTION

The need for conservation managers and practitioners

to obtain reliable estimates of population size (Williams

et al. 2002) has driven the rapid development of data col-

lection and estimation methods. Capture–recapture

(CR), and more recently, spatial capture–recapture

(SCR; Efford 2004, Borchers and Efford 2008) methods

were developed specifically for this purpose and are now

routinely applied in ecological research. Concurrently,

SCR methods estimate detection, space use, and density

by analyzing individual encounter histories while explic-

itly incorporating auxiliary information from the spatial

organization of encounters (Efford 2004, Royle et al.

2014). Despite widespread adoption and rapid method

development, recommendations about spatial sampling

design have received relatively little attention and are

arguably heuristic.

The effects of sampling design have been investigated

for both CR (Bondrup-Nielsen 1983, Dillon and Kelly

2007) and SCR methods. Although CR methods aim to

balance the number of captures and the number of

recaptures, SCR requires a third consideration: the spa-

tial pattern of recaptures at multiple traps. The ability to

estimate density reliably is directly related to these con-

siderations: the number of captured individuals n is the

sample size; the number of recaptures is directly related

to the baseline detection rate, g0; and the number and

spatial distribution of recaptures are directly related to

the spatial scale parameter σ, as well as the spatial distri-

bution of activity centers. Therefore, improving sampling

design has great potential to increase the quality of the

data and the precision of parameter estimates.

Several simulation studies evaluating SCR designs

have shown that inference is robust to the spatial config-

uration of traps, as long as some minimum requirements

are met: the trap spacing must not be too large relative

to individual space use in order to estimate σ reliably,

but the array must not be too small such that too few

individuals are exposed to capture (Sollmann et al. 2012,

Tobler and Powell 2013, Sun et al. 2014, Wilton et al.

2014, Efford and Boulanger 2019). Repeated illustra-

tions of this trade-off have led to recommendations that

trap spacing should be approximately two times σ, which

maximizes accuracy and minimizes bias of abundance

estimates (Sollmann et al. 2012, Efford and Fewster

2013, Efford and Boulanger 2019). Although most of
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this research has focused on uniform grids, simulation

has also shown that clustered designs can outperform

uniform designs (Efford and Fewster 2013, Sun et al.

2014), particularly for heterogeneously distributed popu-

lations (Efford and Fewster 2013, Wilton et al. 2014). In

summary, formalization of the factors that contribute to

optimal sampling design for SCR is in its infancy,

described only in generalities. In particular, it is unclear

whether existing design heuristics generally hold for spa-

tially varying density patterns, or in highly structured

landscapes where recommended regular trapping arrays

cannot be accommodated, and guidance for generating

clustered designs is lacking.

Generally speaking, sampling design for SCR can be

conceived as a problem of selecting a subset of all possi-

ble trap locations that maximizes some SCR-relevant

objective function. Here we develop an analytical frame-

work that directly addresses this challenge. Our

approach generates a near-optimal sampling design with

respect to some appropriately-defined objective function

and information about available resources (traps), a set

of all possible trap locations, and information about

SCR model parameters. To motivate the idea of optimal-

ity, we use simulation to compare the performance of

existing recommendation to designs optimized using

three model-based criteria related to current thinking

about the relationship between data quality and estima-

tor bias and precision. We explore design performances

for scenarios where we vary the spatial coverage of traps,

the landscape geometry, and deviations from uniform

spatial distribution of individuals. Finally, our approach

is available as a function in the R package oSCR

(Sutherland et al. 2019).

METHODS

The standard SCR model

Typically, SCR models have two components: a spatial

model of abundance describing the distribution of indi-

viduals characterized by the center of their home range

(hereafter referred to as an activity center), and a spatial

model of detection that relates encounter rates to the

distance between the activity center and a detector (e.g.,

a camera trap). The most basic form assumes a uniform

prior for the distribution of activity centers, si:

si ∼ Uniform Sð Þ,

where S, referred to as the state-space, describes all pos-

sible locations of activity centers. To facilitate analysis,

S is represented as a uniform grid of points representing

the centroids of equal-sized pixels. All individuals within

the region, N, are exposed to capture, resulting in the

observation of n individuals and hence n0 = N − n unob-

served individuals.

Although several formulations of the encounter model

exist, we use, without loss of generality, a half-normal

encounter model that describes encounter probability as

a decreasing function of distance from an individual’s

activity center si:

pijk ¼ g0� exp �d si,x j

� �2
= 2σ2
� �

� �

, (1)

where pijk is the probability of detection of individual i

with activity center si at trap j during sampling occasion

k; d si,x j

� �

is the distance between the activity center si
and the trap xj, and g0 and σ are the baseline encounter

probability and spatial scale parameters, respectively.

Model-based objective functions

From Eq. 1, we can use values of g0 and σ (e.g., from

the literature or estimates from a pilot study), to com-

pute the probability that an individual with an activity

center si is detected in any trap in an array X, which we

denote as �p:

�p si,Xð Þ¼ 1�
Y

J

j¼1

1�p si,x j

� �� �

:

The corresponding marginal probability of not being

encountered is thus: �p0 si,Xð Þ¼ 1��p si,Xð Þ. Taking the

average over all G activity center locations in the land-

scape S, we can compute the marginal probability of

encounter:

�p Xð Þ¼
1

G
∑
s
�p si,Xð Þ:

We can also compute the probability of being captured

in exactly one trap:

�p1 si,Xð Þ¼ �p0 si,Xð Þ ∑
J

j¼1

p si,x j

� �

1�p si,x j

� � :

Finally, the marginal probability of being encountered

at more than one trap—that is, of a spatial recapture—

is:

�pm Xð Þ¼
1

G
∑
s

1��p0 si,Xð Þ��p1 si,Xð Þf g:

Given that the precision of SCR density estimates

depends on the total number of individuals captured n,

and the number of spatial recaptures m (Royle et al.

2014, Efford and Boulanger 2019), Q
�p and Q

�pm
represent

logical criteria for optimizing SCR designs (Royle et al.

2014: Chap. 10). Herein lies one of our novel contribu-

tions: we suggest three design criteria: Q
�p ¼��p Xð Þ,

Q
�pm

¼��pm Xð Þ, and Q
�pb
¼Q

�pþQ
�pm
. Importantly, if

approximate values of the SCR parameters, g0 and σ,

are available, these objective functions can be evaluated

analytically for any number and configuration of traps,

providing a metric for efficient identification of optimal

SCR designs.
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Optimization method

We applied a genetic algorithm (GA) to the task of

finding a design that minimizes any criterion, noting

that optimality here is with respect to the defined cri-

teria and, in the context of the GA, is near-optimal

(see Appendix S1; Goldberg 1989). The GA is a ran-

dom search algorithm that produces multiple genera-

tions of solutions, where subsequent generations retain

characteristics of top-performing solutions from the

previous generation. Generations are produced until

converging on a near-optimal solution. Wolters (2015)

adapted the algorithm to solve a k-of-n problem that

describes concisely the challenge of the SCR sam-

pling design: the selection of some number of traps k

in a landscape of n possible locations according to

some objective function. We provide a detailed

description of the general GA, the k-of-n adaptation,

and our implementation in the R package oSCR in

Appendix S1–S4.

Conceptually, minimizing the space-filling objective

function Q
�p maximizes the expected sample size n. In

contrast, minimizing Q
�pm

prioritizes the exposure of

individuals to more than one trap and should maximize

the number of spatial recaptures m. The third criterion,

Q
�pb
, attempts to balance Q

�p and Q
�pm
.

Design constraints

We were primarily interested in evaluating the perfor-

mance of SCR designs produced by our framework

under a range of biologically-realistic scenarios in an

attempt to develop a more general understanding of

how performance varies as a function of the following

design constraints: geometry, defined as the shape of the

study area and ease at which a regular square trapping

grid can be deployed; density pattern, defined as the nat-

ure of departure from uniform distribution of individu-

als; and effort, defined as the number of traps available

for the design.

Geometry.—As has been typical in studies investigating

SCR sampling designs, we begin using a square study area

with complete accessibility that lends itself to uniform

trapping grids (the regular area, Fig. 1). To replicate the

design challenges posed when generating real-world

designs, we also consider an irregular area (Fig. 1). For

this, we use one of the study areas that motivated this

work: a large area in northern Pakistan (3,865 km2) that

is the focus of a snow leopard (Panthera uncia) camera-

trapping study, but has several logistical challenges that

determine accessibility (i.e., remoteness, private property,

altitude, and slope). To define the complete region of the

FIG. 1. Simulation structure. Here we show all possible trap locations overlaid on the uniform landscape for the regular (top)
and irregular (bottom) study-area geometries alongside a single realization of three (uniform: left; weak: middle; strong: right) land-
scape covariates. For the regular geometry, we tested 12 designs each. For the irregular geometry, we tested nine designs each. This
makes for a total of 63 scenarios.
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state-space, we used a 3σ buffer around the trapping

extent. The regular area is represented by 24 × 24 land-

scape with a resolution of 0.5 units; the irregular study

area is represented by 89.85 × 133.04 landscape with a

resolution of 1.73 units, for a total of 2,304 cells in each of

the geometries (Fig. 1). Although these two state-spaces

differ in absolute terms, we ensured comparability in rela-

tive terms by the definition of area-specific sigma (see:

Evaluation by simulation).

Density pattern.—Existing investigations of SCR sam-

pling designs typically assume a homogeneous distribu-

tion of individuals (but see Efford and Fewster 2013).

Here we formally test the adequacy of designs under

specific violations of this assumption. We consider three

spatial density patterns: one uniform and two spatially

varying. To generate nonuniform density patterns, we

simulated landscapes defined by a parametric Gaussian

random field that allows for specification of the degree

and range of spatial autocorrelation. Gaussian random

fields were generated using the R package NLMR (Sci-

aini et al. 2018). The values of the simulated landscape

were scaled from 0 to 1 and individual activity centers

distributed according to the following cell probabilities:

πi ¼
eβ1∗X i

∑eβ1∗X i
, (2)

where Xi is the scaled landscape value at pixel i and β1 is

defined as 1.2 to represent a weak but apparent density

pattern. The two inhomogeneous density patterns differ

in the scale of spatial autocorrelation. For consistency,

we defined this distance in relative terms to the length of

the longest side of the state-space: 6% for a weak density

pattern that produces a patchy landscape, and 100% for

a strong density pattern produces a landscape with a

more continuous gradient (see Fig. 1 for a single realiza-

tion of the density patterns). Using these three density

patterns allows us to evaluate designs through a full

range of biological realism, with uniform and strong

density patterns representing the polar ends of reality,

and the patchy landscape representing the most realistic

sampling scenario.

Design generation.—Designs were generated using fixed

values of g0 and σ (see: Evaluation by simulation), a set

of potential trap locations, and the number of traps that

are available to deploy. It is assumed that the user has

knowledge of or access to data on the approximate val-

ues of SCR parameters, would be able to produce a set

of all potential sampling points, and would have some

idea of resources (traps) available. For the regular area,

we generated Q
�p, Q�pm

, and Q
�pb

designs for each of the

three levels of effort where there was no restriction on

where traps could be placed. In addition, we generated a

regular 2σ design for comparison. For the irregular area

in the mountains of Pakistan, we generated only criteria-

based designs at each of the three levels of effort (Fig. 2).

In this case, areas known to be too remote, too high in

altitude, or too steep to be accessed were removed from

the set of potential trap locations. Mirroring real design

challenges faced by managers, it was not practical to

generate a 2σ grid for the irregular area, and therefore, it

is not included. This full scenario analysis resulted in a

total of 21 designs; 12 designs for the regular area (the 3

optimized and the 2σ design), and 9 designs for the irreg-

ular area (optimized designs only).

Evaluation by simulation

We exposed a population of N = 300 individuals to

sampling via each of the 21 designs described above. We

simulated encounter histories assuming proximity detec-

tors and under the binomial encounter model (Eq. 1)

with g0 = 0.2, k = 5. The two geometries differ in terms

of their spatial units so area-specific σ values were cho-

sen such that the number of home ranges required to fill

the areas and achieve an equal density was equivalent:

σreg = 0.80 and σirreg = 2.59. We simulated individuals

according to the three density patterns (Eq. 2), resulting

in a total of 63 scenarios of interest (three density pat-

terns for each of the 21 designs (Fig. 2, Appendix S2).

For each scenario, we simulated 300 realizations of

activity centers. Covariate surfaces were generated ran-

domly using the same seeds, again resulting in variation

among simulations but consistency across scenarios. In

some cases, the realization of activity centers did not

provide at least one spatial recapture; we recorded the

number of these failures and generated a new realization

of activity centers until a single spatial recapture was

obtained in order to proceed with model fitting. This

only occurred for Q
�p designs with minimum effort, and

for less than 5% of the simulations.

We analyzed the resulting encounter history data

using a null SCR model (d.) and, for spatially-structured

density scenarios, a density-varying model (ds). This

allowed us to test if accounting for the landscape would

improve bias and precision in parameter estimates. For

each simulation, and each model, we retained estimates

of g0, σ, and total abundance (N̂).

We compared estimates of model parameters to the

data-generating values in terms of bias (percent relative

bias [%RB]), precision (coefficient of variation [CV]),

and accuracy (scaled root-mean-square error [SRMSE]).

All simulations were conducted in R, SCR models were

fit using the package oSCR (Sutherland et al. 2019), and

designs were generated using the scrdesignGA() function

also in oSCR (detailed workflow provided in Appendix

S3). Design generation and simulations were performed

in Rversion 3.6.1 (R Development Core Team 2019).

RESULTS

We first focus on relative bias. Encouragingly, under the

regular-area, homogeneous-density scenario, designs

Article e03262; page 4 GATES DUPONT ETAL. Ecology, Vol. 102, No. 3



generated using the genetic algorithm perform as well as

existing 2σ recommendations, producing unbiased esti-

mates of abundance for nearly all combinations of design

and effort (Fig. 3, Table 1). In the case of the irregular

geometry with uniform density, Q
�pm

designs perform well

for all levels of effort, but performance of Q
�p and Q

�pb
designs declines as the number of traps is reduced, a con-

sequence of widely-spaced traps and consequently very

few spatial recaptures (Fig. 3, Table 1, Appendix S5–S7).

For scenarios from the regular study area with inho-

mogeneous density, all designs produced unbiased

estimates of abundance, generally. There is a slight bias

(�5%) introduced as the number of traps declines, even

for the 2σ designs. However, this phenomenon is less

apparent in Q
�pm

designs, suggesting improved perfor-

mance. In the irregular study area, design performance

is more dependent on the spatial structure of density.

Once again, Q
�pm

designs produced unbiased estimates,

and Q
�p and Q

�pb
designs performed poorly with fewer

traps (Fig. 3, Table 1, Appendix S5–S7).

Interestingly, explicitly including the landscape covari-

ate governing spatial variation in density (i.e., ds rather

FIG. 2. Irregular study area with designs generated using our new framework with three SCR-intuitive, model-based criteria
(Q

�p, Q�pm
, and Q

�pb
), under three levels of effort. One hundred forty-four traps represent the same number of traps as used to generate

a full 2σ grid in a regular study area of the same area. One hundred traps is nearly two-thirds as many traps, and 49 is nearly one-
third as many traps. Each pixel of the state-space is colored according to the probability of capture p, for an individual with an
activity center at the centroid of the pixel.
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than d.) does not improve performance metrics for any

of the designs in any scenario (Fig. 3, Table 1), reinforc-

ing the general opinion that SCR models are robust to

misspecification of the density model. In fact, fitting the

data-generating model for the inhomogeneous cases

actually performs worse in low-effort scenarios. This

suggests that the low numbers of traps do not adequately

represent the variation in the landscape, and therefore,

the model is unable to estimate the underlying landscape

effect reliably (Fig. 3, Table 1).

Estimator precision and accuracy generally follow the

same patterns as for the bias (Appendix S5–S7, respec-

tively). Design performance declines as effort decreases for

all designs across every scenario. In the regular study area

with uniform density, the 2σ and Q
�pm

designs share similar

levels of precision, and the Q
�p and Q

�pb
designs with mini-

mal effort are less precise in comparison, with this pattern

being magnified in the irregular area. Generally, there is a

slight loss of precision in estimates across all designs, but

this effect is less apparent for Q
�pm

designs, which maintain

their relative equivalency to the standard recommendation,

including for the lowest level of effort (when considering

comparison across geometries). In scenarios with inhomo-

geneous density, both Q
�p and Q

�pb
designs with minimum

effort show precision that is obviously reduced using the

null model. However, the density-varying model once again

shows no noticeable improvement, and causes a decrease in

precision forQ
�pm

designs with the fewest traps.

Overall, designs generated using our proposed frame-

work showed comparable performance to standard

FIG. 3. Percent relative bias (%RB) of estimates of total abundance from the tested sampling designs under three levels of effort
on three density surfaces within two geometries, where estimates are the result of one of two SCR models: density invariant (d., open
shapes) or density-varying (ds, closed shapes). The four designs—2σ, Q

�p, Q�pm
, Q

�pb
—are represented by the four shapes: circles, trian-

gles, squares, and diamonds, respectively. To illustrate estimator precision, vertical lines are 50% confidence intervals, noting that
the 50% intervals are proportional to 95% intervals but offer a visual balance of bias and associated variance. The thick horizontal
line represents no bias in estimates, with the thin horizontal lines representing an allowable amount of bias (�5%).
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recommendations, and critically, these designs are robust

to a variety of constraints that include effort, density sig-

nal, and geometry.

DISCUSSION

In this study, we develop a conceptual and analytical

framework for generating near-optimal designs for SCR

studies. We suggested three intuitive and statistically-

grounded design criteria that can be optimized to pro-

duce candidate designs.We demonstrate that designs gen-

erated using our framework can perform at least as well

as those based on existing heuristics, and further, that the

generality and flexibility of our approach means it can be

applied to any species or landscape according to logistics

and available resources.

It is worth noting that the designs produced using this

framework can be considered approximate in terms of

specific location, and that the actual, finer-scale site-se-

lection for traps can be informed by knowledge of the

species’ biology and behavior (e.g., Fabiano et al. 2020).

Further, although we develop this framework with cam-

era traps in mind, this method can easily be applied to

determine the general location of other noninvasive sur-

veys, wherein the selection of a sampling location

instead activates some other form of sampling effort (see

Fuller et al. 2016, Sutherland et al. 2018). Importantly,

the degree of sampling effort must be maintained among

all selected sampling locations.

The designs we created using model-based criteria

exhibit their own unique behaviors (Fig. 2, Appendix

TABLE 1. Percent relative bias of baseline detection (g0), space use (σ), and total abundance (EN) for each simulation scenario,
varying: design criterion (Design), landscape shape (Geometry), the number of traps (Effort), and density pattern (Density). We
present results from null (d.) and varying-density (ds) models.

Effort Density Design

Regular Irregular

g0 σ EN g0 σ EN

d. ds d. ds d. ds d. ds d. ds d. ds

49 Uniform 2σ 2.52 – −0.38 – 0.78 – – – – – – –

Q
�p 0.82 – −1.00 – 7.27 – 2.27 – −1.84 – 8.34 –

Q
�pm

1.33 – −0.19 – 1.76 – 1.78 – −0.15 – 0.62 –

Q
�pb

−0.61 – −2.06 – 13.32 – 2.53 – −4.11 – 17.90 –

Weak 2σ 3.16 3.16 −0.62 −0.61 −0.26 −0.05 – – – – – –

Q
�p −0.58 −0.58 0.20 0.25 5.70 5.75 −1.51 −1.51 −1.11 −1.07 9.93 9.89

Q
�pm

0.08 0.08 0.06 0.11 0.99 1.99 1.15 1.15 −0.27 −0.22 0.07 2.74

Q
�pb

−2.73 −2.73 −2.36 −2.16 16.12 14.83 0.19 0.19 −1.48 −1.46 13.68 14.09

Strong 2σ 2.26 2.26 −0.47 −0.48 1.82 3.48 – – – – – –

Q
�p 1.84 1.84 −0.75 −0.78 6.43 6.55 1.18 1.18 −0.27 −0.32 5.80 6.17

Q
�pm

2.09 2.09 −0.47 −0.48 1.20 6.82 2.29 2.29 −1.03 −1.01 2.40 9.02

Q
�pb

0.99 0.99 −3.47 −3.41 14.54 14.10 2.75 2.75 −3.32 −3.26 15.13 15.14

100 Uniform 2σ 2.04 – −0.69 – 0.58 – – – – – – –

Q
�p 2.42 – −0.61 – 0.90 – 1.42 – −0.77 – 2.11 –

Q
�pm

−0.97 – 0.20 – 1.07 – 0.74 – −0.18 – 0.83 –

Q
�pb

0.07 – 0.05 – 1.12 – −0.15 – −0.51 – 2.55 –

Weak 2σ −0.13 −0.13 0.15 0.14 −0.34 −0.19 – – – – – –

Q
�p 0.61 0.61 −0.27 −0.29 0.95 0.98 0.97 0.97 −0.48 −0.49 1.82 1.89

Q
�pm

1.68 1.68 −0.77 −0.78 −0.24 0.34 −0.09 −0.09 0.09 0.08 0.34 1.04

Q
�pb

1.07 1.07 −0.16 −0.18 0.01 0.03 1.23 1.23 −0.30 −0.27 1.06 1.11

Strong 2σ 0.35 0.35 −0.30 −0.30 1.42 1.72 – – – – – –

Q
�p 0.18 0.18 −0.93 −0.95 2.89 3.12 1.07 1.07 −0.46 −0.49 0.93 1.40

Q
�pm

0.64 0.64 −0.04 −0.05 0.90 1.47 1.97 1.97 −0.56 −0.59 −0.44 1.34

Q
�pb

0.60 0.60 −0.43 −0.43 1.36 1.44 0.21 0.21 −0.05 −0.06 0.40 0.80

144 Uniform 2σ 1.32 – −0.25 – 0.27 – – – – – – –

Q
�p −1.06 – 0.28 – 1.53 – 0.72 – 0.08 – −0.27 –

Q
�pm

0.93 – −0.28 – 0.88 – 0.53 – 0.00 – 0.75 –

Q
�pb

0.35 – −0.07 – 0.90 – 2.12 – −0.77 – 0.72 –

Weak 2σ 0.49 0.49 −0.33 −0.33 0.41 0.50 – – – – – –

Q
�p 0.64 0.64 −0.24 −0.25 0.44 0.47 0.61 0.61 −0.20 −0.20 0.50 0.51

Q
�pm

1.31 1.31 −0.47 −0.48 −0.39 −0.21 0.03 0.03 0.05 0.04 0.07 0.43

Q
�pb

−0.02 −0.02 −0.32 −0.33 1.00 0.98 0.77 0.77 −0.25 −0.26 0.93 0.92

Strong 2σ 0.70 0.70 −0.25 −0.25 0.80 1.01 – – – – – –

Q
�p 1.35 1.35 −0.31 −0.32 0.32 0.47 −0.13 −0.13 0.21 0.19 0.33 0.66

Q
�pm

0.14 0.14 0.15 0.14 0.32 0.58 1.74 1.74 −0.55 −0.57 −0.22 0.69

Q
�pb

1.18 1.18 −0.19 −0.20 −0.03 0.14 −0.59 −0.59 0.12 0.09 0.20 0.62
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S2). The Q
�p criteria generate space-filling designs to

maximize the area covered and thereby the expected sample

size of unique individuals. Asmore traps are added, the inner

area becomes fully saturated (such that it is ensured that

every possible home range will contain at least one trap),

and the criterion instead focuses on selecting external traps

that patrol the edge of the trapping extent in order to

increase the probability of capture for individuals outside of

that area. However, despite the benefit of increasing the sam-

ple size (n captured individuals), traps placed too distant

from each other fail to generate important spatial recaptures.

This is precisely the issue that propagated failures for both

Q
�p andQ�pb

designswithminimum effort (Appendix S8).

In contrast, Q
�pm

designs are space-restricting as a result

of an inherent trade-off between increasing the number of

individuals exposed to capture and having traps close

together to ensure captures at more than one trap. With

fewer traps, however, the effective sampling area is mark-

edly decreased (Fig. 2), thereby reducing the sample size.

This observation further motivated our evaluations of the

designs for inhomogeneous density, which, along with the

reduced spatial coverage and hence nonrepresentative

sampling, is likely responsible for the bias observed in

those scenarios, as well as the lower precision.

The Q
�pb
designs can best be described as clustered space

filling (Fig. 2, Appendix S2), as this criterion aims to bal-

ance the objectives of Q
�p and Q

�pm
, which it can do effec-

tively when provided with a sufficient number of traps.

However, as seen with Q
�p designs, the Q

�pb
design perfor-

mance suffers when too few traps are employed because of

even larger distances between traps as a result of cluster-

ing, greatly reducing performance even beyond that of Q
�p.

More generally, these designs support previous recom-

mendations while also providing new insights. When full

effort is possible in the regular area geometry, the Q
�p

design fully saturates the trapping extent with some

traps to spare in order to meet its objective, while Q
�pm

does not quite fill the trapping area (Fig. 2, Appendix

S2). Interestingly, the 2σ design falls somewhere between

these two extents, likely striking an effective balance

between the number of captures (as in Q
�p) against the

number of spatial recaptures (as in Q
�pm
), which we also

see with Q
�pb
and similar to the effect described by Efford

and Boulanger (2019). Despite these differences in spa-

tial configuration, differences in design performance are

mostly negligible (Fig. 3, Table 1, Appendix S5–S7).

As shown by Sun et al. (2014), incorporating trap clus-

tering into sampling designs can be advantageous, as doing

so allows for increased likelihood of spatial recaptures to

facilitate estimation of the spatial scale parameter σ. How-

ever, the clustered designs proposed by Sun et al. (2014)

follow a regular pattern such that there are a limited num-

ber of levels of trap spacing, whereas the designs we gener-

ated result in a wider distribution of distances between

traps. This shifts the importance away from a regular spa-

tial structure of trap configuration to one that is decidedly

irregular in order to gain better resolution of movement

distances for estimating σ. This is especially useful

knowledge and central to generating designs for irregular

study areas. Interestingly, this results in designs with smal-

ler effective sampling areas, suggesting that it might be bet-

ter to reduce the total area covered by the design rather

than focus on completely covering the area (within reason).

A major insight here is that hierarchical clustering (the

selection of approximately 2σ-spaced clusters of traps with

further reduced within-cluster spacing) emerges naturally

from the Q
�pm

criterion, effectively formalizing the cluster-

ing heuristic proposed by Sun et al. (2014).

Our proposed criteria produced designs that perform

well, yet there is scope for refinement. With a decrease in

effective sampling area, the introduction of bias and impre-

cision in parameter estimates could be complicated further

when the population being sampled has a stronger degree

of spatial structuring than we tested here. Designs sampling

only areas where individuals are concentrated will result in

overestimates of population size and density relative to the

whole study area, whereas those sampling away from con-

centrated areas will do just the opposite. This effect is par-

ticularly noticeable from the density-varying model (ds),

which generally has relatively lower performance over the

fully invariant model as it is including information from

nearby traps sampling a landscape that is intrinsically spa-

tially autocorrelated. Advancing this framework to gener-

ate designs that explicitly account for the spatial patterns in

density as a function of a given landscape is clearly an area

for further development, especially if the inferential objec-

tive is to estimate density–landscape relationships rather

than density or total abundance.

Recently, SCR sampling design for multispecies sam-

pling has been considered, with some discussion of how the

distribution of trap spacing can allow for better estimates

for species with a variety of home range sizes (Rich et al.

2019). However, the design proposed for this purpose lacks

a reproducible framework that can be generalized to any

biological community. Alternatively, employing our frame-

work for multispecies sampling could be a straightforward

approach to this problem, with important implications for

the use of SCR to be more easily applied for the study of

ecological communities. Again, a highly appealing feature

of ourQ
�pm

approach is the emergence of designswithmuch

better distribution of trap spacing than under regular

designs such as 2σ grids, ideal for sampling groups of spe-

cieswith varying spatial movement ecology.

We considered three criteria that are intuitive in the con-

text of the performance trade-off of sample size (n) and

spatial recaptures (m). Although intuitive, alternative crite-

ria surely exist. For example, Efford and Boulanger (2019)

propose an approximation of the variance of density that is

related to n and m, and therefore can easily be formulated

as an objective function to be optimized in the same way as

Q
�p and Q

�pm
. Indeed, the function scrdesignGA() is

designed such that any user-defined objective functions can

be used (e.g., Durbach et al. 2020).We hope that this ability

to generate and evaluate designs simultaneously (and effi-

ciently) based on a variety of design criteria will motivate

further research on SCR study design.
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Our results show that designs obtained under our pro-

posed criteria perform well relative to design heuristics and

can be obtained efficiently as solutions to an optimization

problem for arbitrary configurations of possible trapping

locations and landscapes, unlike standard recommenda-

tions based on 2σ and cluster designs. Both CR and SCR

studies are extremely expensive and require substantial

effort to conduct, making it imperative that managers are

provided with a method to select detector placement before

deployment, such as the approach we have presented here.

As a result, designs will produce a greater amount of

expected information and will lead to more accurate esti-

mates of parameters that describe biological populations of

interest, which is critical to global conservation efforts, espe-

cially for low-density and declining species that are of con-

servation concern but challenging to monitor.
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