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Abstract—Optimal transmission scheduling in wireless cogni-
tive networks is considered under the spectrum leasing model. We
propose a cooperative scheme in which secondary nodes share the
time slot with primary nodes in return for cooperation. Coopera-
tion is feasible only if the system’s performance is improved over
the non-cooperative case. First, we investigate a scenario where
secondary users are interested in immediate rewards. Then, we
formulate another problem where the secondary users are guar-
anteed a portion of the primary utility, on a long term basis, in
return for cooperation. In both scenarios, our proposed schemes
are shown to outperform non-cooperative scheduling schemes,
in terms of both individual and total expected utility, for a
given set of feasible constraints. Based on Lyapunov Optimization
techniques, we show that our schemes are arbitrarily close to the
optimal performance at the price of reduced convergence rate.

I. INTRODUCTION

Cognitive Radio Networks (CRN) have recently been in-
vestigated extensively [1], [2]. The main advantage that CRN
present is the efficient utilization of the scarce radio spectrum
resources. By opportunistically exploiting the underutilized
spectrum, unlicensed (i.e., secondary) users can transmit over
the licensed bands, given that they do not hurt the licensed
(i.e., primary) users’ performance.

Approaches to cognitive radio can be divided into two
categories: commons model and property-rights model [3]. In
the commons model, the primary network is oblivious to the
secondary network activity and the aim of secondary nodes is
to detect and exploit the spectrum holes without interacting
with the primary system. These spectrum holes represent the
absence of primary activity either in time, frequency, or space.
In the property-rights model (spectrum leasing), primary nodes
own the spectrum and are willing to lease it to secondary nodes
in return for some form of service, for instance, cooperation
via relaying. Consider the following motivating scenario: In a
cellular network, a licensed wireless user is far away from
the base station and is experiencing low achievable rates.
At the same time, a cognitive node half way between the
licensed user and the base station has more favorable channel
conditions. The cognitive user wishes to access the channel
and communicate with the base station. After coordination, the
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primary user agrees to share a portion of its own time slot with
the secondary user in exchange for secondary user relaying
the primary user’s data to the base station. In our work,
we exploit this cooperative scenario between primary and
secondary nodes to improve the overall system performance.

Scheduling is an essential problem for any shared resource.
The problem becomes more challenging in a dynamic setting
such as wireless networks where the channel capacity is time
varying due to multiple superimposed random effects such as
mobility and multipath fading. Optimal scheduling in wireless
networks has been extensively studied in the literature under
various assumptions. It has been shown that policies that
exploit the time varying nature of the wireless channel to
schedule users are at least as good as static policies [4]. In
principle, these opportunistic policies schedule the user with
the favorable channel conditions to increase the overall perfor-
mance of the system. However, without imposing individual
performance guarantees for each user in the system, this type
of scheduling results in unfair sharing of resources and may
lead to starvation of some users, for example, those far away
from the base station in a cellular network. To mitigate this,
fairness constraints are added to the problem formulation.

Opportunistic scheduling was recently studied for cognitive
radio networks under the commons model [5], [6]. In these
works, Lyapunov optimization tools were used to design flow
control, scheduling and resource allocation algorithms and
explicit performance bounds were derived. Using the technique
of virtual queues, the joint problem of stabilizing the queues of
secondary nodes in addition to satisfying long term constraint
on the collision probability or interference on the primary
channels is transformed into a queue stability problem.

In this paper, we propose optimal opportunistic scheduling
policies for primary and secondary nodes in a cognitive radio
network in two cases. First, we consider the optimization
of the total expected utility while satisfying an average per-
formance constraint for each primary node in the network.
Here, we develop a cooperative scheduling policy by which
the performance is improved and shown to be at least the
same as the original primary-only system. In this cooperative
scenario, during a time slot, nodes cooperate using decode-
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and-forward multihop scheme [7] where secondary nodes relay
the messages of primary nodes to a common destination in a
portion of the time slot as a levy of using the already licensed
spectrum for a fraction of that time slot. The parameters
specifying the cooperation strategy are the fraction of the
time slot during which the secondary node relays the primary
user’s data and the fraction used to transmit the secondary
user’s own data. The problem is formulated in an optimization
framework where the objective is to maximize the average
system performance subject to long term constraints on the
primary nodes’ performance.

In the second part of the paper, another formulation is
considered in which the secondary nodes are guaranteed some
portion of the primary utility in an average sense, in return for
cooperation. This formulation presents a model of banking
between primary and secondary systems where rewards are
gained over the long term. We employ Lyapunov optimization
tools developed in [8], [9] to analyze our proposed schemes
and to derive explicit bounds on the performance achieved.
We show that our proposed schemes can be pushed arbitrarily
close to the optimal with a tradeoff between optimality and
the convergence rate of the algorithms.

The rest of the paper is organized as follows. Section II
presents the network model, the basic structure of the proposed
cooperative scheme and an introduction to the Lyapunov
analysis. In Section III, we introduce the formulation of
the scheduling problem with constraints on the minimum
achievable performance of the primary system. The structure
of the optimal policy is then derived and shown to hold for
both stationary and time varying policies. Then, in Section IV,
we formulate and solve another version of the problem where
constraints on the minimum performance of the secondary
nodes are added to the original set of constraints. Numerical
results are presented in Section V. Finally, Section VI con-
cludes the paper and presents possible future directions.

II. NETWORK MODEL

A. The Cognitive Network

Consider a cognitive radio network of 𝑀 primary users
and 𝑁 secondary users, all wishing to communicate with a
common destination as shown in Figure 1. This destination
can be viewed as a base station in a single-cell of a cellular
network or as an access point in a Wi-Fi network. We consider
a time-slotted system where the time slot is the resource to be
shared among different nodes. We adopt a non-interference
model where only one node, either primary or secondary,
is transmitting at any given time1. Random channel gains
between each node and other nodes in the network are assumed
to be independent and identically distributed (i.i.d) across time
according to a general distribution and independent across
users with values taken from a finite set. Moreover, we assume
that channel gains are time-varying, but fixed over the time slot

1The same analysis and results in the paper can be applied for the downlink
case where a primary user is the destination and the base station is the primary
transmitter. Conditions (3), (4) and (10) changes accordingly. We consider this
case in the journal version.
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Fig. 1. Network Model.

duration. We assume the availability of perfect channel state
information of all channels at the scheduler, i.e., knowledge
of channel coefficients immediately prior to transmission.

In the following analysis, we use the notation 𝑅𝑝
𝑚(𝑡), 𝑅𝑠

𝑛(𝑡)
to denote the achievable transmission rates from primary node
𝑚 to destination and from secondary node 𝑛 to destination,
respectively, at time slot 𝑡. The corresponding random rate
vectors are denoted as R𝑝(𝑡), R𝑠(𝑡). The achievable rate from
primary node 𝑚 to secondary node 𝑛 is denoted as 𝑅𝑟

𝑚𝑛(𝑡),
where the corresponding rate matrix is R𝑟(𝑡). The transmis-
sion rate is a function of the random channel conditions,
and thus a measure of the channel quality. We assume that
transmission rate processes are ergodic and bounded. As will
be clear in the next subsection, since our scheme works by
selecting a pair of nodes (primary and secondary) to transmit
at a given time slot, the utility achieved by a node is a function
of the cooperating pair. Consequently, the utility function of a
primary user 𝑚 when it cooperates with secondary user 𝑛 at
time slot 𝑡 is denoted as 𝑈𝑚𝑛(𝑡). Similarly, the utility function
of a secondary user 𝑛 that cooperates with primary user 𝑚 is
denoted as 𝑉𝑚𝑛(𝑡) . These utility functions are measures of
the level of satisfaction of users and thus they are generally
non-decreasing concave functions of the transmission rate.

Throughout the paper, we assume that both primary and
secondary users adopt fixed transmission power and adaptive
transmission rate strategies so that every node transmits at its
achievable rate in each time slot. We further assume all users
to be backlogged so that they always have packets to transmit
to the destination.

B. Cooperative Scheme

To schedule transmissions of different users, a scheduling
policy is required. In our cooperative framework, we allow
the scheduling policy to either schedule a primary user to
transmit during a given time slot, or to schedule a pair of
primary and secondary users to share the time slot, according
to the channel conditions. The scheduling policy 𝑄 is a rule
that selects the four-tuple (𝑚,𝑛, 𝛼, 𝛽) to transmit at time-slot
𝑡, where 𝛼 and 𝛽 specify the cooperation strategy the pair
of primary and secondary users 𝑚,𝑛 use. In a time slot 𝑡,
the scheduling policy is a function of the rate vectors R𝑝(𝑡),
R𝑠(𝑡), rate matrix R𝑟(𝑡) and possibly other variables related
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to past performance. Note that the scheduling policy we adopt
is opportunistic in the sense that it exploits the time-varying
nature of the wireless channel.

In our model, we focus on a cooperation based spectrum
leasing scenario. Under this model, scheduling is done such
that, if feasible, a pair of primary and secondary nodes coop-
eratively share a single time slot to improve the performance
of the original primary system and allow unlicensed users to
access the licensed spectrum, where feasibility is to be defined.
Cooperation is achieved as follows: For a fraction (1 − 𝛼),
0 ≤ 𝛼 ≤ 1, of the time slot, the primary node 𝑚 sends
its data (intended to destination) to secondary (relay) node
𝑛. In the remaining portion of the time slot, the scheduled
secondary node uses the channel to relay the primary user’s
data over a 𝛽 fraction, 0 ≤ 𝛽 ≤ 1, and then, transmits its
own data during the rest of the time slot, i.e., over 𝛼(1 − 𝛽)
fraction. This cooperative scheme is a form of implementation
of the spectrum leasing cognitive radio framework where
secondary users help primary system improve its performance
to access the licensed spectrum. By this scheme, our system
is in fact trying to reap the benefits of a form of spatial
diversity. We note that the structure of our scheme is similar
to the cooperative scheme of [10], however, we do not employ
distributed space time coding and allow only one secondary
node to cooperate in a given time slot.

We set 𝑛 = 0 by definition for the case when a primary
node 𝑚 is scheduled to transmit directly to the destination
without cooperating with secondary nodes. This case arises
when cooperation is either infeasible or leads to suboptimal
utility values. We set 𝑅𝑟

𝑚0(𝑡) = 𝑅𝑝
𝑚(𝑡), 𝑚 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑀}

and 𝛼 = 0 in such cases.
The utility function is taken to be a non-decreasing concave

function of the transmission rate. This choice is of practical
interest, since a small increase in the rate in the low rate regime
is generally more appreciated than a small increase in the high
rate regime. Given a scheduling decision 𝑄 = (𝑚′, 𝑛′, 𝛼, 𝛽),
we define the utility of the selected primary and secondary
users, 𝑈𝑚′𝑛′(𝑄, 𝑡) and 𝑉𝑚′𝑛′(𝑄, 𝑡), respectively, as

𝑈𝑚′𝑛′(𝑄, 𝑡) =

{
ℎ1(𝑅

𝑝
𝑚′(𝑡)) ; if 𝑛′ = 0

ℎ1((1− 𝛼)𝑅𝑟
𝑚′𝑛′(𝑡)) ; otherwise

(1)

𝑉𝑚′𝑛′(𝑄, 𝑡) =

{
0 ; if 𝑛′ = 0
ℎ2(𝛼(1− 𝛽)𝑅𝑠

𝑛′(𝑡)) ; otherwise
(2)

in a given time slot 𝑡. For all other primary and secondary
nodes (𝑚,𝑛) such that 𝑚 ∕= 𝑚′ and 𝑛 ∕= 𝑛′, we set
𝑈𝑚𝑛(𝑄, 𝑡) = 𝑉𝑚𝑛(𝑄, 𝑡) = 0. In the following, we sometimes
use the shorthand 𝑈𝑚𝑛(𝑡) and 𝑉𝑚𝑛(𝑡) in place of 𝑈𝑚𝑛(𝑄, 𝑡)
and 𝑉𝑚𝑛(𝑄, 𝑡) for simplicity. An example of utility functions
that can be used is ℎ(𝑥) = log(1 + 𝑥).

Note that we assume scheduler’s knowledge of the achiev-
able rates for the primary and secondary nodes at each time
slot. For the scheduler to choose a pair to transmit over a
given slot rather than scheduling a primary node for direct
transmission, feasibility conditions should hold. For a time slot

𝑡, the feasibility conditions can be summarized as follows:

0 < (1− 𝛼)𝑅𝑟
𝑚𝑛(𝑡) ≤ 𝛼𝑅𝑠

𝑛(𝑡). (3)

The strict inequality in (3) guarantees validity of the coopera-
tion whereas the second inequality asserts that the secondary
node 𝑛 has a sufficiently good channel to relay primary
transmission at a given time slot 𝑡. Given 𝛼, it can be seen
that

𝛽∗ =
(1− 𝛼)𝑅𝑟

𝑚𝑛

𝛼𝑅𝑠
𝑛

(4)

where 𝛽∗ is the optimal value of 𝛽. If 𝛽 <
(1−𝛼)𝑅𝑟

𝑚𝑛

𝛼𝑅𝑠
𝑛

,
secondary node 𝑛 does not have sufficient time to relay the
data of 𝑚. If 𝛽 >

(1−𝛼)𝑅𝑟
𝑚𝑛

𝛼𝑅𝑠
𝑛

, then unnecessary time is
wasted by node 𝑛. Thus, in the following we use the notation
𝑄 = (𝑚,𝑛, 𝛼) for the decision of a scheduling policy 𝑄. Note
that (3) implies 𝛽 ≤ 1.

Since we are interested in the maximization of the total
expected utility of both primary and secondary systems, (4) is
required to ensure superiority over non-cooperative schemes
as will be clear in Section III.

Let ℱ be the set of feasible policies at a given time slot. The
set ℱ is constructed from all the tuples (𝑚,𝑛, 𝛼) such that (3)
holds for some 0 ≤ 𝛼 ≤ 1. We set the tuple (𝑚, 0, 0) ∈ ℱ by
definition.

Let the total utility of the system (both primary and sec-
ondary), when scheduling policy 𝑄 is employed at a given
time slot 𝑡, be 𝑊 (𝑄, 𝑡). Then,

𝑊 (𝑄, 𝑡) =

𝑀∑
𝑚=1

𝑁∑
𝑛=0

𝑈𝑚𝑛(𝑡) + 𝑉𝑚𝑛(𝑡). (5)

Note that when the scheduling policy 𝑄 selects the tuple
(𝑚′, 𝑛′, 𝛼), the system receives a reward of 𝑊 (𝑄, 𝑡) =
𝑈𝑚′𝑛′(𝑄, 𝑡)+𝑉𝑚′𝑛′(𝑄, 𝑡). The total expected utility is defined
as �̄� (𝑄, 𝑡) ≜ 𝔼[𝑊 (𝑄, 𝑡)] where the expectation is taken over
the random achievable rates (random channel conditions), and
possibly over the randomized policy.

C. Lyapunov Drift with Optimization

In our work, we use Lyapunov drift and optimization tools to
show the optimality of our schemes. The advantage of this tool
is the ability to deal with performance optimization and queue
stability problems simultaneously in a unified framework.
Moreover, the concept of virtual queues simplifies the analysis
of the system when long term performance constraints are
imposed [8]. In fact, the problem is transformed into a network
stability problem.

We first introduce two definitions: Let 𝑍𝑖(𝑡), 𝑖 ∈
{1, 2, ⋅ ⋅ ⋅ , 𝐿} be a queue backlog process and Z(𝑡) =
(𝑍1(𝑡)𝑍2(𝑡) ⋅ ⋅ ⋅𝑍𝐿(𝑡)) in a network with 𝐿 nodes. Suppose
that the goal is to stabilize the backlog process Z(𝑡) while
maximizing the time average of a scalar-valued utility function
𝑔(⋅) of another process R(𝑡). Suppose that the optimal value of
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𝑔(⋅) is 𝑔∗. Define the following quadratic Lyapunov function
and conditional Lyapunov drift

𝐿(Z(𝑡)) ≜
𝐿∑

𝑙=1

𝑍2
𝑙 (𝑡), (6)

Δ(Z(𝑡)) ≜ 𝔼 [𝐿(Z(𝑡+ 1))− 𝐿(Z(𝑡))∣Z(𝑡)] . (7)

We restate a result of [9] that is critical to establish the
optimality of our proposed scheme.

Theorem 1: (Lyapunov Optimization) [9] For the scalar
valued function 𝑔(⋅), if there exists positive constants 𝐾, 𝜖, 𝐵,
such that for all time slots 𝑡 and all unfinished work vectors
Z(𝑡) the Lyapunov drift satisfies the condition

Δ(Z(𝑡))−𝐾𝔼[𝑔(R(𝑡))∣Z(𝑡)] ≤ 𝐵 − 𝜖

𝐿∑
𝑙=0

𝑍𝑙(𝑡)−𝐾𝑔∗,

then the time average utility and queue backlog satisfy:

lim inf
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

𝔼[𝑔(R(𝜏))] ≥ 𝑔∗ − 𝐵

𝐾
, (8)

lim sup
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

𝐿∑
𝑙=1

𝔼[𝑍𝑙(𝜏)] ≤ 𝐵 +𝐾(𝑔 − 𝑔∗)
𝜖

, (9)

where 𝑔 = lim sup𝑡→∞
1
𝑡

∑𝑡−1
𝜏=0 𝔼[𝑔(R(𝜏))].

We note that Theorem 1 is a modified version of the Theorem
in [9], since we are interested in the average of the utility
function. In our analysis, the function 𝑔(⋅) represents the total
utility of the system in a time slot given by (5) which is
function of the utility matrices (1), (2) and the scheduling
policy 𝑄.

In our problem, since the utility of individual primary and
secondary users is bounded, it can be shown that the total util-
ity 𝑊 (𝑄, 𝑡) is bounded. It follows that the total expected utility
can be pushed arbitrarily close to the optimum by choosing
𝐾 sufficiently large. However, this leads to increasing bound
on the average queue size given in (9).

III. PRIMARY CONSTRAINTS AND IMMEDIATE REWARDS

In this section, the goal is to schedule the transmissions of
primary and secondary nodes to achieve maximum average
sum utility of primary and secondary systems while maintain-
ing minimum performance levels for each primary node. Here,
the secondary user 𝑛 is allowed to access the spectrum only
if cooperation improves the instantaneous utility of a primary
user 𝑚 Hence, we define ℱ1 as the set of tuples (𝑚,𝑛, 𝛼)
satisfying the following condition:

𝑅𝑝
𝑚(𝑡) ≤ (1− 𝛼)𝑅𝑟

𝑚𝑛(𝑡) ≤ 𝛼𝑅𝑠
𝑛(𝑡) (10)

for some 0 < 𝛼 < 1. This constraint sets an upper bound on
the range of 𝛼 for the possible cooperation between each pair
(𝑚,𝑛). Note that ℱ1 ⊂ ℱ . We discuss two types of scheduling
policies. First, we consider stationary scheduling polices that
depend only on the values of the rates R𝑝(𝑡),R𝑠(𝑡),R𝑟(𝑡).
Then we investigate the more general time-varying policies.

A. Problem Formulation

The optimal opportunistic scheduling problem with min-
imum performance constraints was previously solved in [4].
By including 𝑁 secondary nodes to the system, our model can
be viewed as a generalization to the model in [4]. In addition,
setting 𝑁 = 0 in our scheme yields the scheme in [4] as will
be shown in the next subsection.

The problem can be stated formally as follows:

max
𝑄∈ℱ1

�̄� (𝑄, 𝑡)

s.t. 𝔼

[
𝑁∑

𝑛=0

𝑈𝑚𝑛(𝑄, 𝑡)

]
≥ 𝐶𝑚, (11)

𝑚 ∈ {1, 2, . . . ,𝑀}, where 𝐶𝑚 is the minimum performance
constraint for each primary user 𝑚. To compare to the non-
cooperative system, an example of the choice of the constraints
𝐶𝑚 is given at the end of Section III-B.

The aforementioned problem formulation along with (10)
implies that the secondary users are rewarded access to the
channel immediately during a time slot if their cooperation
improves the performance of the primary system.

B. Optimal Stationary Policy

In this subsection, we propose a stationary scheduling policy
in a form similar to the optimal policies reported in [4], and
show that it solves (11) for the given cognitive radio network.

Scheduling Algorithm 𝑄1𝑎:
For every time slot 𝑡 and the given the values of 𝑈𝑚𝑛(𝑡) and

𝑉𝑚𝑛(𝑡) for all 𝑚,𝑛, the solution to the scheduling problem
(11) is given by

𝑄1𝑎 = argmax
(𝑚,𝑛,𝛼)∈ℱ1

{𝜆∗
𝑚𝑈𝑚𝑛(𝑄, 𝑡) + 𝑉𝑚𝑛(𝑄, 𝑡)} , (12)

where 𝜆∗
𝑚,𝑚 ∈ {1, 2, . . . ,𝑀} are real-valued parameters

satisfying:
1) min𝑚 𝜆∗

𝑚 = 1.

2) 𝔼

[∑𝑁
𝑛=0 𝑈𝑚𝑛(𝑄1𝑎, 𝑡)

]
≥ 𝐶𝑚 ∀ 𝑚.

3) If 𝔼
[∑𝑁

𝑛=0 𝑈𝑚𝑛(𝑄1𝑎, 𝑡)
]
> 𝐶𝑚, then 𝜆∗

𝑚 = 1 ∀ 𝑚.

Theorem 2: Scheduling Algorithm 𝑄1𝑎 solves (11).
Proof: The proof is provided in Appendix A.

The structure of the derived scheduling policy suggests
that when a primary user 𝑚 experiences unfavorable channel
conditions, the associated parameter 𝜆∗

𝑚 will be larger than
one. Then, it attains average utility that is only equal to
its corresponding constraint. Otherwise, this primary user is
granted a utility strictly larger than its minimum requirement.

The policy in (12) is stationary since it only depends on the
values of the utility functions. Note that for any time slot 𝑡,
given the values of 𝑅𝑝

𝑚(𝑡), 𝑅𝑠
𝑛(𝑡) and 𝑅𝑟

𝑚𝑛(𝑡) for all 𝑚 and
𝑛, the scheduler is able to construct the set of feasible policies
ℱ1 by associating the ranges 𝑟−𝛼 ≤ 𝛼 ≤ 𝑟+𝛼 and 𝑟−𝛽 ≤ 𝛽 ≤ 𝑟+𝛽
for each pair (𝑚,𝑛). These ranges are chosen to satisfy the
feasibility conditions in (10), where 0 ≤ 𝑟−𝛼 , 𝑟

+
𝛼 , 𝑟

−
𝛽 , 𝑟

+
𝛽 ≤

1. Then it decides which pair (or single primary user) are
relatively best according to (12). The choice of the pair (𝑚,𝑛)
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is a combinatorial optimization problem which may require
discrete exhaustive search. The optimal value of 𝛼 can be
obtained easily since (12) can be shown to be concave in 𝛼.

The parameters 𝜆∗
𝑚,𝑚 ∈ {1, 2, . . . ,𝑀} depend on the

choice of ℎ1(.), ℎ2(.) and the distribution of the utility func-
tions which in turn depends on the distribution of the under-
lying channel variations. Hence, 𝜆∗

𝑚 needs to be estimated
online in practice. This can be carried out using stochastic
approximation techniques similar to the one explained in [4].
An estimation technique is presented in Section V.

Example: The above algorithm can be compared to non-
cooperative algorithms as follows. Consider for example the
utilitarian fairness constraints problem solved in [4] with the
constraints 𝑎𝑚 = 𝛾𝑚�̄� (�̂�) for each primary user 𝑚 ∈
{1, 2, . . . ,𝑀} where

∑𝑀
𝑚=1 𝛾𝑚 ≤ 1 and �̄� (�̂�) is the

average performance achieved under the optimal (primary-
only) scheduling policy �̂�. According to this definition of 𝑎𝑚,
the problem is always feasible. Let Γ, 1 ≤ Γ ≤ Γ𝑚𝑎𝑥 be
the improvement factor with respect to the system with no
cooperation where Γ𝑚𝑎𝑥 is to be specified by the boundary
of the feasibility region (see Section III-D). Now consider
a network of 𝑀 primary and 𝑁 secondary nodes such that
the scheduler executes the optimal policy �̂� to schedule only
the primary nodes but does not act on it and simultaneously
executes and implements our cooperative scheduling policy
𝑄1𝑎. Since the scheduling policy �̂� converges as the number
of time slots 𝑡 → ∞ [4], we can set 𝐶𝑚 = Γ𝑎𝑚 in (11). As
long as 1 ≤ Γ ≤ Γ𝑚𝑎𝑥, it follows that our cooperative scheme
improves the performance of individual primary nodes over
the non-cooperative scheme, and hence improves the overall
performance.

C. Optimal Time Varying Policy

In this subsection, we solve problem (11) using the stochas-
tic network optimization tool of [9]. This tool yields a schedul-
ing policy that is similar in structure to (12). However, the
policy derived in this subsection does not need the computation
of the online parameters 𝜆∗

𝑚.
Define the time average expected utility as follows.

�̄� (𝑄) =
1

𝑡

𝑡−1∑
𝜏=0

𝔼[𝑊 (𝑄, 𝑡)], (13)

where 𝑊 (𝑄, 𝑡) is defined in (5).
Let 𝑈 𝑡

𝑚(𝑄, 𝑡) ≜
∑𝑁

𝑛=0 𝑈𝑚𝑛(𝑄, 𝑡), 𝑉 𝑡
𝑛(𝑄, 𝑡) ≜∑𝑀

𝑚=1 𝑉𝑚𝑛(𝑄, 𝑡). For each of the constraints in (11),
we construct a virtual queue such that the queue dynamics is
given by

𝑋𝑚(𝑡+ 1) = [𝑋𝑚(𝑡)− 𝑈 𝑡
𝑚(𝑄, 𝑡)]+ + 𝐶𝑚, (14)

𝑚 ∈ {1, 2, . . . ,𝑀}, where [𝑥]+ ≜ max{𝑥, 0}. Note that
stabilizing the queues in (14) is equivalent to satisfying the
constraints in (11) since a queue is stable if the arrival rate is
less than the service rate. Let 𝑈 𝑡

𝑚(𝑄, 𝑡) ≤ 𝑈𝑚𝑎𝑥, 𝑉 𝑡
𝑛(𝑄, 𝑡) ≤

𝑉 𝑚𝑎𝑥 for all 𝑚 ∈ {1, 2, . . . ,𝑀}, 𝑛 ∈ {1, 2, . . . , 𝑁},
𝑡 ≥ 0 and for all 𝑄 ∈ ℱ1. These upper bounds are

justified since we assume bounded transmission rates. Let
X(𝑡) = (𝑋1(𝑡)𝑋2(𝑡) ⋅ ⋅ ⋅𝑋𝑀 (𝑡)) be the vector of virtual
queues. Define the following quadratic Lyapunov function and
conditional Lyapunov drift:

𝐿1(X(𝑡)) ≜
𝑀∑

𝑚=1

𝑋2
𝑚(𝑡), (15)

Δ1(X(𝑡)) ≜ 𝔼 [𝐿1(X(𝑡+ 1))− 𝐿1(X(𝑡))∣X(𝑡)] . (16)

Define the following conditional expectation:

�̄� 𝑡
𝑚(𝑄, 𝑡) ≜ 𝔼[𝑈 𝑡

𝑚(𝑄, 𝑡)∣X(𝑡)]. (17)

The following Lemma is useful in establishing the optimality
of our algorithm.

Lemma 3: For every time slot 𝑡 and any policy 𝑄, the
Lyapunov drift in (16) can be upper bounded as follows:

Δ1(X(𝑡))−𝐾𝔼[𝑊 (𝑄, 𝑡)∣X(𝑡)] ≤ 𝐵1 + 2
𝑀∑

𝑚=1

𝑋𝑚(𝑡)𝐶𝑚

−
𝑀∑

𝑚=1

(𝐾 + 2𝑋𝑚(𝑡))�̄� 𝑡
𝑚(𝑄, 𝑡)−

𝑁∑
𝑛=1

𝐾𝑉 𝑡
𝑛(𝑄, 𝑡), (18)

where 𝐵1 =
∑𝑀

𝑚=1 𝐶
2
𝑚 + 𝑀(𝑈𝑚𝑎𝑥)2 and 𝐾 is a system

parameter that characterizes a tradeoff between performance
optimization and delay in the virtual queues.

Proof: The proof is given in Appendix B.
Now, we present our opportunistic scheduling algorithm that

involves cooperation between primary and secondary nodes to
achieve better performance.

Scheduling Algorithm 𝑄1𝑏:
At each time slot 𝑡, observe the virtual queue backlog 𝑋𝑚(𝑡)

for each primary user 𝑚 and the achievable transmission
rates, and choose (𝑚,𝑛, 𝛼) solving the following optimization
problem.

𝑄1𝑏 = argmax
(𝑚,𝑛,𝛼)∈ℱ1

{(
1 +

2𝑋𝑚(𝑡)

𝐾

)
𝑈𝑚𝑛(𝑡) + 𝑉𝑚𝑛(𝑡)

}

Then, update the virtual queues according to the queue dy-
namics in (14).

Note that we assume knowledge of the utility functions and
channel states at the scheduler at each time slot. Hence, the
queue states are known constants in the above optimization
problem. Comparing to Algorithm 𝑄1𝑎, let �̃�𝑚(𝑡) ≜ 1 +
2𝑋𝑚(𝑡)

𝐾 ≥ 1. It is clear that both algorithms have exactly
the same form. However, contrary to the algorithm in Section
III-B, 𝑄1𝑏 does not require the knowledge of the statistics
of the channel states or need the computation of online
parameters.

We analyze our algorithm using the Lyapunov drift with
optimization [9]. We define a class of policies that will be
useful to prove the optimality of the scheduling algorithm
𝑄1𝑏. Consider the class of scheduling algorithms 𝒮 that sched-
ules users according to a stationary and possibly randomized
function of only the achievable rates and independent of the
queue states. It was shown in [8], [9] that the optimality is
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achieved within the class of stationary policies 𝒮 , for a large
class of network flow problems including fairness problems.
Since the channel states are chosen from a finite set and the
set {(𝑚,𝑛, 𝛼) ∣ 𝑚 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑀}, 𝑛 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑁}, 𝛼 ∈
[0, 1]} is closed and bounded, we have the following lemma
(which can be proved using similar arguments as in [8]). Let
the feasibility region of (11) be Λ and let 𝝐 ≜ (𝜖 𝜖 ⋅ ⋅ ⋅ 𝜖).

Lemma 4: If the vector C = (𝐶1 𝐶2 ⋅ ⋅ ⋅𝐶𝑀 ) is feasible
(i.e., C ∈ Λ), then there exists a stationary randomized policy
𝑄𝑠1 that solves (11) and satisfies the following:

𝔼[𝑊 (𝑄𝑠1 , 𝑡)] = �̄� ∗
1 , (19)

𝔼
[
𝑈 𝑡
𝑚(𝑄𝑠1 , 𝑡)

] ≥ 𝐶𝑚,𝑚 ∈ {1, 2, . . . ,𝑀}, (20)

where �̄� ∗
1 is the optimal performance for the problem (11)

over all scheduling policies. Moreover, if C is strictly interior
to Λ, then there exists 𝜖 > 0 with (C+𝝐) ∈ Λ and a stationary
scheduling policy 𝑄𝑠1(𝜖) satisfying:

𝔼
[
𝑈 𝑡
𝑚(𝑄𝑠1(𝜖), 𝑡)

] ≥ 𝐶𝑚 + 𝜖,𝑚 ∈ {1, 2, . . . ,𝑀} (21)

and achieving an optimal total average utility �̄� ∗
1 (𝜖) such that

�̄� ∗
1 (𝜖) ≤ �̄� ∗

1 and �̄� ∗
1 (𝜖) → �̄� ∗

1 as 𝜖 → 0.
We are now ready to present bounds on the performance of

our proposed algorithm 𝑄1𝑏. The following Theorem shows
that all the virtual queues are strongly stable [9]. Hence, all
time average constraints in (11) are satisfied.

Theorem 5: If C is strictly in the interior of Λ, then the
proposed algorithm in 𝑄1𝑏 stabilizes the virtual queues and
achieves the following bounds:

lim inf
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

𝔼[𝑊 (𝑄1𝑏, 𝜏)] ≥ �̄� ∗
1 − 𝐵1

𝐾
, (22)

lim sup
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

𝔼

[
𝑀∑

𝑚=1

𝑋2
𝑚(𝑡)

]
≤ 𝐵1 +𝐾𝑊𝑚𝑎𝑥

𝜖𝑚𝑎𝑥
, (23)

where 𝑊𝑚𝑎𝑥 = 𝑈𝑚𝑎𝑥 + 𝑉 𝑚𝑎𝑥 and 𝐵1 =
∑𝑀

𝑚=1 𝐶
2
𝑚 +

𝑀(𝑈𝑚𝑎𝑥)2 and 𝜖𝑚𝑎𝑥 is the largest 𝜖 such that C+ 𝝐 ∈ Λ.
Proof: Consider the upper bound given by Lemma

3. From Lemma 4, there exists a stationary policy 𝑄𝑠1(𝜖)

that satisfies the constraints (21). By the definition of 𝑄1𝑏,
𝑅𝐻𝑆𝑄1𝑏

≤ 𝑅𝐻𝑆𝑄𝑠1(𝜖)
where 𝑅𝐻𝑆𝑄 is the right hand

side (RHS) of inequality (18) evaluated for the policy 𝑄.
Now consider evaluating 𝑅𝐻𝑆𝑄𝑠1(𝜖)

using (21). Expanding
the RHS of (18) and using the property that the utility is
independent of queue states, it is straightforward to see that
𝑅𝐻𝑆𝑄𝑠1(𝜖)

= 𝐵1 − 2𝜖
∑𝑀

𝑚=1 𝑋𝑚(𝑡) − 𝐾�̄� ∗
1 (𝜖). It follows

that

Δ1(X(𝑡))−𝐾𝔼[𝑊 (𝑄1𝑏, 𝑡)∣X(𝑡),Y(𝑡)] ≤ 𝑅𝐻𝑆𝑄1𝑏

≤ 𝑅𝐻𝑆𝑄𝑠1(𝜖)
= 𝐵1 − 2𝜖

𝑀∑
𝑚=1

𝑋𝑚(𝑡)−𝐾�̄� ∗
1 (𝜖),

which is in exactly the same form of the condition in Theorem
1. Applying the result of Theorem 1, we have the following

bounds

lim inf
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

𝔼[𝑊 (𝑄1𝑏, 𝜏)] ≥ �̄� ∗
1 (𝜖)−

𝐵1

𝐾
, (24)

lim sup
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

𝔼

[
𝑀∑

𝑚=1

𝑋2
𝑚(𝑡)

]
≤ 𝐵1 +𝐾𝑊𝑚𝑎𝑥

2𝜖
, (25)

where (25) follows since 0 ≤ 𝑊 (𝑄, 𝑡) ≤ 𝑊𝑚𝑎𝑥 for all 𝑄.
The choice of 𝜖 affects the bounds only and does not affect
the policy 𝑄1𝑏. Therefore, (24) and (25) can be optimized
separately. Taking 𝜖 → 0 in (24) yields (22) and taking 𝜖 =
𝜖𝑚𝑎𝑥

2 in (25) yields (23), concluding the proof.

D. A Note on Feasibility

In the algorithms developed in Sections III-B and III-C, we
assumed the feasibility of the set of constraints on the primary
users’ performance. In fact, the feasibility region characteriza-
tion depends on the statistics of the channel conditions. Since
our scheduling schemes can only improve the performance of
the primary-only network, the feasibility region given in [4]
is strictly a subset of the feasibility region of our policy. In
addition, it can be shown, using similar techniques as in [4],
that our feasibility region is convex. Specifically, the region is
a subset of an 𝑀 -dimensional space such that the vertex on the
𝑚th axis is (0 0 ⋅ ⋅ ⋅𝔼[�̃�𝑚] ⋅ ⋅ ⋅ 0), where 𝔼[�̃�𝑚] is the average
utility achieved by applying our cooperative algorithm on a
network composed of only the 𝑚th primary user in addition
to 𝑁 secondary users.

Considering the example presented in Section III-B, Γ𝑚𝑎𝑥

specified the maximum gain the cooperative system can
achieve over the non-cooperative counterpart. It is clear that
Γ𝑚𝑎𝑥 can be characterized by the boundary of the feasibility
region. More specifically, if (𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑀 ) is the performance
vector in the non-cooperative system defined in Subsection
III-B, and if the feasibility region of our cooperative system
is Λ, then Γ𝑚𝑎𝑥 is given by:

Γ𝑚𝑎𝑥 = max
Γ≥1

Γ

s.t. (Γ𝑎1 Γ𝑎2 ⋅ ⋅ ⋅Γ𝑎𝑀 ) ∈ Λ. (26)

The solution to (26) can be determined numerically if the
channel statistics are known. A more rigorous characterization
of the feasibility region is beyond the scope of this work and
is part of our future work.

IV. SECONDARY CONSTRAINTS AND LONG TERM

REWARDS

A. Formulation and Optimal Algorithm

In this section, we study a generalized version of the
problem studied in Section III. Here, a long term constraint is
imposed on the minimum performance of each secondary user.
More specifically, a portion of the primary utility achieved
by cooperation is guaranteed for each cooperating secondary
node, in an average sense. In fact, the formulation of the
problem below allows for the idea of banking between primary
and secondary nodes. That is, in contrast to the immediate
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rewards of Section III, here, secondary nodes are guaranteed
a specific share over a large number of time slots. This is
achieved by allowing 𝛼 to take values such that 𝛼 ≤ 1, i.e.,
we lift the constraint imposed in the first inequality of (10).
The problem is formulated as follows:

max
𝑄∈ℱ

�̄� (𝑄)

s.t.:1) 𝔼
[
𝑈 𝑡
𝑚(𝑄, 𝑡)

] ≥ 𝐶𝑚, 𝑚 ∈ {1, 2, . . . ,𝑀},

2) 𝔼
[
𝑉 𝑡
𝑛(𝑄, 𝑡)

] ≥ 𝔼

[
𝑀∑

𝑚=1

𝜙(𝑈𝑚𝑛(𝑄, 𝑡))

]
, (27)

𝑛 ∈ {1, 2, . . . , 𝑁},
where 𝜙(⋅) is a non-negative, non-decreasing scalar-valued
function. We assume that the constraints in (27) are within the
feasibility region. Define 𝜈𝑛(𝑄, 𝑡) ≜

∑𝑀
𝑚=1 𝜙(𝑈𝑚𝑛(𝑄, 𝑡)).

For each of the constraints above, we construct a virtual queue
such that the queue dynamics are given by

𝑋𝑚(𝑡+ 1) = [𝑋𝑚(𝑡)− 𝑈 𝑡
𝑚(𝑄, 𝑡)]+ + 𝐶𝑚, (28)

𝑌𝑛(𝑡+ 1) = [𝑌𝑛(𝑡)− 𝑉 𝑡
𝑛(𝑄, 𝑡)]+ + 𝜈𝑛(𝑄, 𝑡), (29)

𝑚 ∈ {1, 2, . . . ,𝑀}, 𝑛 ∈ {1, 2, . . . , 𝑁}. We assume that
𝜈𝑛(𝑄, 𝑡) ≤ 𝜈𝑚𝑎𝑥 for all 𝑛 ∈ {1, 2, . . . , 𝑁}, 𝑡 ≥ 0 and for
all 𝑄 ∈ ℱ . Let Y(𝑡) = (𝑌1(𝑡)𝑌2(𝑡) ⋅ ⋅ ⋅𝑌𝑁 (𝑡)) be the vector
of virtual queues of secondary nodes. Define the following
quadratic Lyapunov function and conditional Lyapunov drift

𝐿2(X(𝑡),Y(𝑡)) ≜
𝑀∑

𝑚=1

𝑋2
𝑚(𝑡) +

𝑁∑
𝑛=1

𝑌 2
𝑛 (𝑡), (30)

Δ2(X(𝑡),Y(𝑡)) ≜
𝔼 [𝐿2(X(𝑡+ 1),Y(𝑡+ 1))− 𝐿2(X(𝑡),Y(𝑡))∣X(𝑡),Y(𝑡)] .

(31)

We also define the following conditional expectation.

𝜈𝑛(𝑄, 𝑡) ≜ 𝔼[𝜈𝑛(𝑄, 𝑡)∣X(𝑡),Y(𝑡)]. (32)

The Lyapunov drift in (31) is bounded by the following
Lemma where the proof is very similar to the proof of Lemma
3 and is omitted for brevity.

Lemma 6: For every time slot 𝑡, the Lyapunov drift defined
in (31) can be upper bounded as follows.

Δ2(X(𝑡),Y(𝑡))−𝐾𝔼[𝑊 (𝑄, 𝑡)∣X(𝑡),Y(𝑡)]

≤ 𝐵2 + 2

𝑀∑
𝑚=1

𝑋𝑚(𝑡)𝐶𝑚 −
𝑀∑

𝑚=1

(𝐾 + 2𝑋𝑚(𝑡))�̄� 𝑡
𝑚(𝑄, 𝑡)

−
𝑁∑

𝑛=1

(𝐾 + 2𝑌𝑛(𝑡))𝑉
𝑡
𝑛(𝑄, 𝑡) +

𝑁∑
𝑛=1

2𝑌𝑛(𝑡)𝜈𝑛(𝑄, 𝑡),

where 𝐵2 =
∑𝑀

𝑚=1 𝐶
2
𝑚 + 𝑀(𝑈𝑚𝑎𝑥)2 + 𝑁((𝜈𝑚𝑎𝑥)2 +

(𝑉 𝑚𝑎𝑥)2) and 𝐾 is a system parameter that characterizes
a tradeoff between performance optimization and unfinished
work in the virtual queues.

Now we present our opportunistic scheduling algorithm.
Scheduling Algorithm 𝑄2:
At each time slot 𝑡, the scheduler observes the state of

the virtual queues 𝑋𝑚(𝑡), 𝑌𝑛(𝑡) and the achievable rates

𝑅𝑝
𝑚(𝑡), 𝑅𝑟

𝑚𝑛(𝑡) and 𝑅𝑠
𝑛(𝑡) for all 𝑚 ∈ {1, 2, . . . ,𝑀} and

𝑛 ∈ {1, 2, . . . , 𝑁}, and then solves the following optimization
problem:

𝑄2 = argmax
(𝑚,𝑛,𝛼)∈ℱ

{(
1 +

2𝑋𝑚(𝑡)

𝐾

)
𝑈𝑚𝑛(𝑡)

+

(
1 +

2𝑌𝑛(𝑡)

𝐾

)
𝑉𝑚𝑛(𝑡)−

(
2𝑌𝑛(𝑡)

𝐾

)
𝜙(𝑈𝑚𝑛(𝑡))

}
The virtual queues are then updated according to the queue
dynamics in (28), (29).

The structure of the scheduling policy suggests that when
a secondary virtual queue 𝑌𝑛(𝑡) is congested, then the system
has a debt to pay to secondary user 𝑛. This is accomplished
by favoring instantaneous allocations that reduce this debt
by increasing payments (i.e., higher weight for 𝑉𝑚𝑛(𝑡)) and
reduced additional debt (i.e., lower 𝜙(𝑈𝑚𝑛(𝑡))). Therefore, it
is possible that the system allocates an entire time slot to a
secondary user without requiring the relay of a primary user’s
data. Similarly, it is also possible that a secondary user relays
primary data without obtaining immediate share of that time
slot to transmit its own data.

B. Algorithm Analysis

The analysis follows the same strategy as in Section III-C.
Let �̄� ∗

2 be the optimal time average system utility achieved
over all scheduling policies for the problem (27), and consider
the class of stationary randomized scheduling algorithms that
are independent of the queue states.

Lemma 7: If vectors C and 𝔼[𝝂] = 𝔼[(𝜈1 𝜈2 ⋅ ⋅ ⋅ 𝜈𝑁 )] are
feasible, then there exists a stationary randomized policy 𝑄𝑠2

that solves (27) and satisfies the following:
𝔼[𝑊 (𝑄𝑠2 , 𝑡)] = �̄� ∗

2 , (33)

𝔼
[
𝑈 𝑡
𝑚(𝑄𝑠2 , 𝑡)

] ≥ 𝐶𝑚, 𝑚 ∈ {1, 2, . . . ,𝑀}, (34)

𝔼
[
𝑉 𝑡
𝑛(𝑄𝑠2 , 𝑡)

] ≥ 𝔼 [𝜈𝑛(𝑄𝑠2 , 𝑡)] , (35)

where �̄� ∗
2 is the optimal performance for the problem (27)

over all scheduling policies. Moreover, if C and 𝔼[𝝂] are
strictly interior to the feasibility region, then there exists 𝜖′ > 0
and a stationary scheduling policy 𝑄𝑠2(𝜖′) satisfying:

𝔼
[
𝑈 𝑡
𝑚(𝑄𝑠2(𝜖′), 𝑡)

] ≥ 𝐶𝑚 + 𝜖′, 𝑚 ∈ {1, 2, . . . ,𝑀}, (36)

𝔼
[
𝑉 𝑡
𝑛(𝑄𝑠2(𝜖′), 𝑡)

] ≥ 𝔼 [𝜈𝑛(𝑄𝑠2 , 𝑡)] + 𝜖′, (37)

with an optimal total average utility �̄� ∗
2 (𝜖

′) such that
�̄� ∗

2 (𝜖
′) ≤ �̄� ∗

2 where �̄� ∗
2 (𝜖

′) → �̄� ∗
2 as 𝜖′ → 0.

Theorem 8: If the constraints in (27) are feasible, then
the proposed algorithm 𝑄2 stabilizes the virtual queues and
achieves the following bounds.

lim inf
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

𝔼[𝑊 (𝑄2, 𝜏)] ≥ �̄� ∗
2 − 𝐵2

𝐾
,

lim sup
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

𝔼

[
𝑀∑

𝑚=1

𝑋2
𝑚(𝑡) +

𝑁∑
𝑛=1

𝑌 2
𝑛 (𝑡)

]
≤ 𝐵2 +𝐾𝑊𝑚𝑎𝑥

𝜖′𝑚𝑎𝑥

,

where �̄� ∗
2 is the optimal value for the time average expected

utility, 𝐵2 =
∑𝑀

𝑚=1 𝐶
2
𝑚 + 𝑀(𝑈𝑚𝑎𝑥)2 + 𝑁((𝜈𝑚𝑎𝑥)2 +
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(𝑉 𝑚𝑎𝑥)2), 𝑊𝑚𝑎𝑥 = 𝑈𝑚𝑎𝑥 + 𝑉 𝑚𝑎𝑥 and 𝜖′𝑚𝑎𝑥 is the largest
𝜖′ such that constraints (36) and (37) are feasible.

Proof: The proof uses Lemma 6 and Lemma 7 and is
similar to the proof of Theorem 5.

V. NUMERICAL RESULTS

In this section, we simulate a wireless network with 𝑀 = 4
primary nodes and a varying number of secondary nodes all
communicating with a common destination. First, we present
a comparison between our cooperative scheduling scheme
and the optimal non-cooperative scheme. Channel states vary
randomly between ’Good’ and ’Bad’ for primary and sec-
ondary users and evolve independently across users and across
time. For all pairs (𝑚,𝑛), the transmission rates are set to
𝑅𝑝

𝑚(𝑡) = {100, 15} units/slot with probability {0.5, 0.5},
𝑅𝑟

𝑚𝑛(𝑡) = {100, 15} units/slot with probability {0.6, 0.4},
and 𝑅𝑠

𝑛(𝑡) = {100, 15} units/slot with probability {0.6, 0.4}.
Given these channel statistics, we run the simulation for
200, 000 time slots which is sufficient for the convergence
of algorithm 𝑄1𝑎 for the above channel statistics. For the
utility functions, we employ the functions ℎ1(𝑥) = ℎ2(𝑥) =
log(1 + 𝑥).

For the constraints on the primary users performance in the
non-cooperative system, we adopt a fair sharing policy, that is,
the achievable primary system utility is to be divided evenly
among the primary users. We set the constraints 𝐶𝑚 in (11) as
in the example given is Section III-B for the sake of compari-
son with non-cooperative systems. Applying scheduling policy
𝑄1𝑎, we let Γ = 1.01 and use a stochastic approximation
approach to estimate the parameters 𝜆∗

𝑚,𝑚 ∈ {1, 2, . . . ,𝑀}
as follows. First, from the constraints on the primary user
performance, we see that for 𝑚 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑀}, 𝜆∗

𝑚 is the
root to the following equation.

𝑓𝑚(𝜆𝑚) = (𝜆𝑚 − 1)

(
𝔼

[
𝑁∑

𝑛=0

𝑈𝑚𝑛(𝑄1𝑎, 𝑡)

]
− 𝐶𝑚

)

But since we only have knowledge about the instantaneous
channel gains, we need to estimate the distribution of the utility
functions. Hence, using the observation we have, we can write
an estimate 𝑔𝑘𝑚 of 𝑓𝑘

𝑚 as:

𝑔𝑘𝑚(𝜆𝑚) = (𝜆𝑘
𝑚 − 1)

(
𝑁∑

𝑛=0

𝑈𝑚𝑛(𝑄1𝑎, 𝑡)− 𝐶𝑚

)

where k is the iteration index. Since this estimator is unbiased
(𝔼[𝑔𝑘𝑚 − 𝑓𝑘

𝑚(𝜆𝑘
𝑚)] = 0, ∀𝑚), then, we can use a stochastic

approximation algorithm of the form

𝜆𝑘+1
𝑚 = 𝜆𝑘

𝑚 − 𝛿𝑘𝑔𝑘𝑚

where 𝛿𝑘 can be taken to be 1/𝑘 [4].
For a given time slot 𝑡, it can be shown that (12) is a concave

function in 𝛼. The optimization over 𝛼 is then done over all
pairs so that 𝛼 satisfies condition (10) yielding 𝛼∗

𝑚𝑛 for every
pair (𝑚,𝑛). Then the tuple (𝑚,𝑛, 𝛼∗

𝑚𝑛) ∈ ℱ1 that maximizes
(12) is selected by the scheduler at this time slot. For each pair
(𝑚,𝑛), since the objective function (12) is concave in 𝛼 and
the constraint is linear, then Karush-Kuhn-Tucker conditions

are both necessary and sufficient to solve the problem (12),
along with (10) [11].

In Figure 2, the average system utility is plotted with
respect to the number of cognitive nodes. As shown in the
figure, the cooperative scheme achieves higher average system
utility compared to the non-cooperative scheme. For 𝑁 = 1,
the constraints are infeasible to achieve, however the policy
𝑄1𝑎 still performs better than the non-cooperative policy. For
𝑁 > 1, the constraints are feasible. Moreover, exploiting
the opportunity relaying offers, we could achieve non zero
secondary system average utility. Figure 2 also shows the per
user (primary) performance. It can be seen that the smallest
per user performance is still better than the non-cooperative
case with at least the value Γ.

Next, we apply scheduling policy 𝑄2 when 𝑀 = 4 and
the number of secondary users is fixed at 𝑁 = 5 for the
same channel statistics used in the first simulation. In Figure
3, the running average of the expected utility of secondary
node 3 up to time 𝑡 is plotted and compared to the average
primary utility achieved through cooperation with secondary
node 3 for 𝜙(𝑈𝑚𝑛(𝑄, 𝑡)) = 𝑏𝑈𝑚𝑛(𝑄, 𝑡), and 𝑏 = 1.5 . In
this experiment, we set 𝐶𝑚 = 3.5 ∀𝑚. Stability is achieved
for all primary and secondary virtual queues and hence the
constraints for the primary and secondary users are met.
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Fig. 2. Average total system utility.

VI. CONCLUSION

We have studied optimal transmission scheduling policies in
a cognitive radio network under a cooperation based spectrum
leasing model for the heavy traffic scenario. We show that
our cooperative scheme improves the basic primary network
performance and allows secondary nodes to access the licensed
spectrum in return for cooperation. Immediate and long term
rewards for secondary users are studied where we introduce
the idea of banking between primary and secondary users.
Possible extensions include considering the joint control and
scheduling problem and the effect of finite buffers.
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APPENDIX A
PROOF OF THEOREM 2

The proof is similar to the proof of the optimal policies in
[4]. However, the scheduling policy 𝑄 in our work decides a
tuple of three variables each time slot instead of only choosing
a primary user.

In the following, we drop the parameter 𝑡. Let 𝑄 be a
scheduling policy satisfying 𝔼

[∑𝑁
𝑛=0 𝑈𝑚𝑛(𝑄)

]
≥ 𝐶𝑚 for

all 𝑚 ∈ {1, 2, . . . ,𝑀}. Then, it follows that

�̄� (𝑄) ≤ �̄� (𝑄) +

𝑀∑
𝑚=1

(𝜆∗
𝑚 − 1)

(
𝑁∑

𝑛=0

𝔼 [𝑈𝑚𝑛(𝑄)]− 𝐶𝑚

)

=

𝑀∑
𝑚=1

𝑁∑
𝑛=0

𝔼[𝑈𝑚𝑛(𝑄) + 𝑉𝑚𝑛(𝑄)]

+
𝑀∑

𝑚=1

𝑁∑
𝑛=0

(𝜆∗
𝑚 − 1)𝔼[𝑈𝑚𝑛(𝑄)]−

𝑀∑
𝑚=1

(𝜆∗
𝑚 − 1)𝐶𝑚

=

𝑀∑
𝑚=1

𝑁∑
𝑛=0

𝔼[𝜆∗
𝑚𝑈𝑚𝑛(𝑄) + 𝑉𝑚𝑛(𝑄)]−

𝑀∑
𝑚=1

(𝜆∗
𝑚 − 1)𝐶𝑚

since 𝜆∗
𝑚 ≥ 1. From the definition of 𝑄1𝑎, we have

𝜆∗
𝑚𝑈𝑚𝑛(𝑄) + 𝑉𝑚𝑛(𝑄) ≤ 𝜆∗

𝑚𝑈𝑚𝑛(𝑄1𝑎) + 𝑉𝑚𝑛(𝑄1𝑎)

Therefore, we can write

�̄� (𝑄) ≤
𝑀∑

𝑚=1

𝑁∑
𝑛=0

𝔼[𝜆∗
𝑚𝑈𝑚𝑛(𝑄1𝑎) + 𝑉𝑚𝑛(𝑄1𝑎)]

−
𝑀∑

𝑚=1

(𝜆∗
𝑚 − 1)𝐶𝑚 = �̄� (𝑄1𝑎)

+
𝑀∑

𝑚=1

(𝜆∗
𝑚 − 1)

(
𝑁∑

𝑛=0

𝔼[𝑈𝑚𝑛(𝑄1𝑏)]− 𝐶𝑚

)
= �̄� (𝑄1𝑎)

where the last step follows from the properties of 𝜆∗
𝑚, com-

pleting the proof.

APPENDIX B
PROOF OF LEMMA 3

We use the simplified notation �̄� 𝑡
𝑚 in place of �̄� 𝑡

𝑚(𝑄, 𝑡).
From the dynamics of the virtual queues (14), we can write

𝑋2
𝑚(𝑡+ 1) ≤ 𝑋2

𝑚(𝑡)

+ 𝐶2
𝑚 + (𝑈 𝑡

𝑚(𝑡))2 − 2𝑋𝑚(𝑡)[𝑈 𝑡
𝑚(𝑡)− 𝐶𝑚]

for 𝑚 ∈ {1, 2, . . . ,𝑀}, where the above inequality follows
from the fact that

(
[𝑎]+

)2 ≤ (𝑎)2 ∀𝑎. Therefore, the Lyapunov
drift in (16) can be upper bounded as

Δ1(X(𝑡)) ≤
𝑀∑

𝑚=1

(
𝐶2

𝑚 + 𝔼[(𝑈 𝑡
𝑚(𝑡))2∣X(𝑡)]

− 2𝑋𝑚(𝑡)�̄� 𝑡
𝑚 + 2𝑋𝑚(𝑡)𝐶𝑚

)
Using the bounds on the utility functions 𝑈𝑚𝑎𝑥, we have

Δ1(X(𝑡)) ≤ 𝐵1 + 2
𝑀∑

𝑚=1

𝑋𝑚(𝑡)(𝐶𝑚 − �̄� 𝑡
𝑚) (38)

where 𝐵1 =
∑𝑀

𝑚=1 𝐶
2
𝑚 + 𝑀(𝑈𝑚𝑎𝑥)2. Subtracting the term

𝐾𝔼[𝑊 (𝑄, 𝑡)∣X(𝑡)] from both sides of (38), expanding and
rearranging terms, and using 𝑉 𝑡

0 (𝑡) = 0 ∀ 𝑡, (18) follows.
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