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ABSTRACT

Several papers have discussed the idea of extending image sensor dynamic range by capturing several images
during a normal exposure time. Most of these papers assume that the images are captured according
to a uniform or an exponentially increasing exposure time schedule. Even though such schedules can be
justified by certain implementation considerations, there has not been any systematic study of how capture
time schedules should be optimally determined. In this paper we formulate the multiple capture time
scheduling problem when the incident illumination probability density function (pdf) is completely known
as a constrained optimization problem. We aim to find the capture times that maximize the average signal
SNR. The formulation leads to a general upper bound on achievable average SNR using multiple capture
for any given illumination pdf. For a uniform pdf, the average SNR is a concave function in capture times
and therefore well-known convex optimization techniques can be applied to find the global optimum. For a
general piece-wise uniform pdf, the average SNR is not necessarily concave. The cost function, however, is
a Difference of Convex (D.C.) function and well-established D.C. or global optimization techniques can be
used.

Keywords: Signal-to-Noise Ratio(SNR), Dynamic Range(DR), multiple capture, high speed imaging, image
sensor

1. INTRODUCTION

High frame rate CMOS image sensors with non-destructive readout capabilities have been recently demon-
strated.1,2 As discussed in many papers,3,4 this capability can be used to enhance the sensor dynamic range.
The idea is to capture several images during a normal exposure time – shorter integration time images
capture the brighter areas of the scene while longer integration time images capture the darker areas of the
scene. This method has been shown to achieve better SNR than other schemes such as logarithmic sensors
and well capacity adjusting.5

One important problem in the implementation of multiple capture that has not received much attention
is the selection of the number of captures and their time schedule to achieve a desired image quality. Sev-
eral papers4,5 have assumed exponentially increasing capture time schedules, while others6,7 have assumed
uniformly spaced capture time schedules. Even though such schedules can be justified by certain implemen-
tation considerations, there has not been any systematic study of how optimal capture time schedules can be
determined. By finding optimal schedules, one can achieve the image quality requirements with less captures,
which is desirable since reducing the number of captures reduces the imaging system computational power,
memory, and power consumption requirements as well as the noise generated by the multiple readouts.

To determine the capture time schedule, scene illumination information is needed. Such information may
not be available before taking one or more captures of the scene. Thus in general an “online” scheduling
algorithm that determines the time for the next capture based on updated information about the scene
illumination gathered during previous captures may be needed. Finding such optimal online schedules
appears intractable. Instead, in this paper, we investigate the time capture scheduling problem assuming
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complete scene illumination information. This can be viewed as an “offline” version of the problem. Optimal
solutions to the offline scheduling problem can provide guidance for developing online scheduling heuristics
as well as performance bounds on such heuristics.

In the following section we provide background on the image sensor pixel model assumed, define SNR
and dynamic range, and briefly discuss the multiple capture method. In Section 3, we formulate the mul-
tiple capture time scheduling problem when the incident illumination probability density function (pdf) is
completely known. We use average pixel signal SNR as an objective function since it generally provides good
indication of image quality. To simplify the analysis, we assume that read noise is much smaller than shot
noise and thus can be ignored. With this assumption the simple Last-Sample-Before-Saturation (LSBS)
algorithm for synthesizing high dynamic range image from multiple captures is optimal with respect to
SNR.6 We use this formulation to establish a general upper bound on achievable average SNR using multiple
capture for any given illumination pdf. In Section 4 we show that for a uniform pdf, the average SNR is a
concave function in capture times and therefore the global optimum can be easily found using well-known
convex optimization techniques. In Section 5 we show that for a general piece-wise uniform pdf, the average
SNR is not necessarily concave. The cost function, however, is a Difference of Convex (D.C.) function and
well-established D.C. or global optimization techniques can be used.

2. BACKGROUND

We assume image sensors operating in direct integration, e.g., CCDs and CMOS PPS, APS, and DPS.
Figure 1 depicts a simplified pixel model and the charge Q(t) versus time t for such sensors. During capture,
each pixel converts incident light into photocurrent iph. The photocurrent is integrated onto a capacitor and
the charge Q(T ) (or voltage) is read out at the end of exposure time T . Dark current idc and additive noise
corrupt the photocharge. The noise can be expressed as the sum of three independent components, (i) shot
noise U(T ) ∼ N (0, q(iph + idc)T ), where q is the electron charge, (ii) readout circuit noise V (T ) (including
quantization noise) with zero mean and variance σ2

V , and (iii) reset noise and FPN C with zero mean and
variance σ2

C . Thus the output charge from a pixel can be expressed as

Q(T ) =
{

(iph + idc)T + U(T ) + V (T ) + C, for Q(T ) ≤ Qsat

Qsat, otherwise,

where Qsat is the saturation charge, also referred to as well capacity. The SNR can be expressed as

SNR(iph) =
(iphT )2

q(iph + idc)T + σ2
V + σ2

C

for iph ≤ imax, (1)

where imax ≈ Qsat/T refers to the maximum non-saturating photocurrent. Note that SNR increases with
iph, first at 20dB per decade when reset, FPN and readout noise dominate, then at 10dB per decade when
shot noise dominates. SNR also increases with T . Thus it is always preferable to have the longest possible
exposure time. However, saturation and motion impose practical upper bounds on exposure time.

Sensor dynamic range8 is defined as the ratio of the maximum non-saturating photocurrent imax to the
smallest detectable photocurrent imin = q

T

√
1
q idcT + σ2

V + σ2
C . Dynamic range can be extended by capturing

several images during exposure time without resetting the photodetector.3,4 Using the Last-Sample-Before-
Saturation (LSBS) algorithm4 dynamic range can be extended at the high illumination end as illustrated in
Figure 1(b). Liu et. al. , have shown how multiple capture can also be used to extend dynamic range at
the low illumination end using weighted averaging. Their method reduces to the LSBS algorithm when only
shot noise is present.6

3. PROBLEM FORMULATION

We assume complete knowledge of the scene induced photocurrent pdf ∗ and seek to find the capture time
schedule {t1, t2, ..., tN} for N captures that maximizes the average SNR with respect to the given pdf fI(i)

∗This is equivalent to knowing the scene illumination pdf for a known sensor response.
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Figure 1. (a) Photodiode pixel model, and (b) Photocharge Q(t) vs. Time t under two different illumina-
tions. Assuming multiple capture at uniform capture times τ, 2τ, . . . , T and using the LSBS algorithm, the
sample at T is used for the low illumination case, while the sample at 3τ is used for the high illumination
case.

(see Figure 2). We assume that the pdf is zero outside a finite length interval (imin, imax). For simplicity
we ignore all noise terms except for shot noise due to photocurrent. Let ik be the maximum non-saturating
photocurrent for capture time tk, 1 ≤ k ≤ N . Thus

tk =
Qsat

ik
,

and determining {t1, t2, ..., tN} is equivalent to determining the set of currents {i1, i2, ..., iN}. The SNR as a
function of photocurrent is now given by

SNR(i) =
Qsati

qik

for ik+1 < i ≤ ik and 1 ≤ k ≤ N . To avoid saturation we assume that i1 = imax.

Under these assumptions, the capture time scheduling problem is as follows:

Given fI(i) and N , find {i2, ..., iN} that maximizes the average SNR

E (SNR(i2, ..., iN )) =
Qsat

q

N∑
k=1

∫ ik

ik+1

i

ik
fI(i) di, (2)

subject to: 0 ≤ imin = iN+1 < iN < . . . < ik < . . . < i2 < i1 = imax < ∞.

Upper bound: Note that since we are using the LSBS algorithm, SNR(i) ≤ Qsat
q and thus for any N ,

maxE (SNR(i1, i2, ..., iN )) ≤ Qsat

q
.

This provides a general upper bound on the maximum achievable average SNR using multiple capture. Now,
for a single capture with capture time corresponding to imax, the average SNR is given by

E (SNRSC) =
Qsat

q

∫ imax

imin

i

imax
fI(i) di =

QsatE(I)
qimax

,

where E(I) is the expectation (or average) of the photocurrent i for given pdf fI(i). Thus for a given fI(i),
multiple capture can increase average SNR by no more than a factor of imax/E(I).
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Figure 2. Photocurrent pdf showing capture times and corresponding maximum non-saturating photocur-
rents. Note that the positions of capture times are not drawn in scale.

4. OPTIMAL SCHEDULING FOR UNIFORM PDFS

In this section we show how our scheduling problem can be optimally solved when the photocurrent pdf is
uniform.

In this case, the scheduling problem becomes:

Given a uniform photocurrent illumination pdf over the interval (imin, imax) and N , find {i2, ..., iN} that
maximizes the average SNR

E (SNR(i2, ..., iN )) =
Qsat

q(imax − imin)

N∑
k=1

(ik − i2k+1

ik
), (3)

subject to: 0 ≤ imin = iN+1 < iN < . . . < ik < . . . < i2 < i1 = imax < ∞.

Note that for 2 ≤ k ≤ N , the function (ik − i2k+1
ik

) is concave in the two variables ik and ik+1 (which can
be readily verified by showing that the Hessian matrix is negative semi-definite). Since the sum of concave
functions is concave, the average SNR is a concave function in {i2, ..., iN}. Thus the scheduling problem
reduces to a convex optimization problem with linear constraints, which can be optimally solved using
well known convex optimization techniques such as gradient/sub-gradient based methods. Table 4 provides
examples of optimal schedules for 2 to 10 captures assuming uniform photocurrent pdf over (0, 1]. Note that
the optimal capture times are quite different from the commonly assumed uniform or exponentially increasing
time schedules. Figure 3 compares the optimal average SNR to the average SNR achieved by uniform and
exponentially increasing schedules. To make the comparison fair, we assumed the same maximum exposure
time for all schedules. Note that using our optimal scheduling algorithm, with only 10 captures, the E(SNR)
is within 14% of the upper bound. This performance cannot be achieved with the exponentially increasing
schedule and requires over 20 captures to achieve using the uniform schedule.

5. SCHEDULING FOR PIECE-WISE UNIFORM PDFS

In the real world, not too many scenes exhibit uniform illumination statistics. On the other hand, the
optimization problem for general pdfs appears to be quite intractable. In this section we investigate the
scheduling problem for piece-wise uniform illumination pdfs. Since any pdf can be approximated by a piece-
wise uniform pdf, solutions for piece-wise uniform pdfs can provide good approximations to solutions of the
general problem. Such approximations are illustrated in Figures 4 and 5. The empirical illumination pdf
of the scene in Figure 4 has two non-zero regions corresponding to direct illumination and the dark shadow
regions, and can be reasonably approximated by a 2 segment piece-wise uniform pdf. The empirical pdf of
the scene in Figure 5, which contains large regions of low illumination, some moderate illumination regions,
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Optimal Exposure Times (tk/t1)
Capture Scheme t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

2 Captures 1 2 – – – – – – – –
3 Captures 1 1.6 3.2 – – – – – – –
4 Captures 1 1.44 2.3 4.6 – – – – – –
5 Captures 1 1.35 1.94 3.1 6.2 – – – – –
6 Captures 1 1.29 1.74 2.5 4 8 – – – –
7 Captures 1 1.25 1.61 2.17 3.13 5 10 – – –
8 Captures 1 1.22 1.52 1.97 2.65 3.81 6.1 12.19 – –
9 Captures 1 1.20 1.46 1.82 2.35 3.17 4.55 7.29 14.57 –
10 Captures 1 1.18 1.41 1.71 2.14 2.76 3.73 5.36 8.58 17.16

Table 1. Optimal capture time schedules for a uniform pdf over interval (0, 1].
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Figure 3. Performance comparison of optimal schedule, uniform schedule, and exponential (with exponent
= 2) schedule. E (SNR) is normalized with respect to the single capture case with i1 = imax.
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and small very high illumination regions is approximated by a 3 segment piece-wise uniform pdf. Of course
better approximations of the empirical pdfs can be obtained using more segments, but as we shall see, solving
the scheduling problem becomes more complex as the number of segments increases.
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Figure 4. An image with approximated two-segment piece-wise uniform pdf
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Figure 5. An image with approximated three-segment piece-wise uniform pdf
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First consider the scheduling problem for a two-segment piece-wise uniform pdf. We assume that the
pdf is uniform over the intervals (imin, imax1), and (imin1, imax). Clearly, in this case, no capture should be
assigned to the interval (imax1, imin1), since one can always do better by moving such a capture to imin1.
Now, assuming that k out of the N captures are assigned to segment (imin1, imax), the scheduling problem
becomes:

Given a 2-segment piece-wise uniform pdf with k captures assigned to interval (imin1, imax) and N−k captures
to interval (imin, imax1), find {i2, ..., iN} that maximizes the average SNR

E (SNR(i2, ..., iN )) =
Qsat

q


c1

k−1∑
j=1

(ij −
i2j+1

ij
) + c1(ik − i2min1

ik
) + c2

i2max1 − i2k+1

ik
+ c2

N∑
j=k+1

(ij −
i2j+1

ij
)


 ,

(4)
where the constants c1 and c2 account for the difference in the pdf values of the two segments,

subject to: 0 ≤ imin = iN+1 < iN < . . . < ik+1 < imax1 ≤ imin1 ≤ ik < . . . < i2 < i1 = imax < ∞.

The optimal solution to the general 2-segment piece-wise uniform pdf scheduling problem can thus be
found by solving the above problem for each k and selecting the solution that maximized the average SNR.

Simple investigation of the above equation shows that E (SNR(i2, ..., iN )) is concave in all the variables
except ik. Certain conditions such as c1i

2
min1 ≥ c2i

2
max1 can guarantee concavity in ik as well, but in

general the average SNR is not a concave function. A closer look at equation (4), however, reveals that
E (SNR(i2, ..., iN )) is a Difference of Convex (D.C.) function,9,10 since all terms involving ik in equation (4)
are concave functions of ik except for c2i

2
max1/ik, which is convex. This allows us to apply well-established

D.C. optimization techniques (e.g., see 9,10). It should be pointed out, however, that these D.C. optimization
techniques are not guaranteed to find the global optimal.

In general, it can be shown that average SNR is a D.C. function for any M-segment piece-wise uniform pdf
with a prescribed assignment of the number of captures to the M segments. Thus to numerically solve the
scheduling problem with M-segment piece-wise uniform pdf, one can solve the problem for each assignment
of captures using D.C. optimization, then choose the assignment and corresponding “optimal” schedule that
maximizes average SNR.

One particularly simple yet powerful optimization technique that we have experimented with is Sequen-
tial Quadratic Programming (SQP) with multiple randomly generated initial conditions. Figures 6(a) and
(b) compare the solution using SQP with 10 random initial conditions to the uniform schedule and the
exponentially increasing schedule for the two piece-wise uniform pdfs of Figures 4 and 5. Due to the simple
nature of our optimization problem, we were able to use brute-force search to find the globally optimal
solutions, which turned out to be identical to the solutions using SQP. Note that unlike other examples, in
the 3-segment example, the exponential schedule initially outperforms the uniform schedule. The reason is
that with few captures, the exponential assigns more captures to the large low and medium illumination
regions than the uniform.

6. DISCUSSION

The paper presented the first systematic study of optimal selection of capture times in a multiple capture
imaging system. Previous papers on multiple capture have assumed uniform or exponentially increasing
capture time schedules justified by certain practical implementation considerations. It is advantageous in
terms of system computational power, memory, power consumption, and noise to employ the least number
of captures required to achieve a desired dynamic range and SNR. To do so, one must carefully select the
capture time schedule to optimally capture the scene illumination information. To develop understanding of
the scheduling problem and as a first step towards developing online algorithms, we formulated the offline
scheduling problem, i.e., assuming complete prior knowledge of scene illumination pdf, as an optimization
problem where average SNR is maximized for a given number of captures. Ignoring read noise and FPN and
using the LSBS algorithm, our formulation leads to a general upper bound on the average SNR for any illumi-
nation pdf. For a uniform illumination pdf, we showed that the average SNR is a concave function in capture
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Figure 6. Performance comparison of the optimal schedule, uniform schedule, and exponential (exponent
= 2) schedule for the scenes in Figures 4 and 5. E (SNR) is normalized with respect to the single capture
case with i1 = imax.

times and therefore the global optimum can be found using well-known convex optimization techniques. For
a general piece-wise uniform illumination pdf, the average SNR is not necessarily concave. Average SNR is,
however, a D.C. function and can be solved using well-established D.C. or global optimization techniques.

The offline scheduling algorithms we discussed can be directly applied in situations where enough infor-
mation about scene illumination is known in advance. It is not unusual to assume the availability of such
prior information. For example all auto-exposure algorithms used in practice, assume the availability of
certain scene illumination statistics. Our results can also be used to develop heuristic online algorithms that
can perform better than the offline algorithm with only partial information of scene illumination statistics.
In situations where read noise and FPN is too high to neglect, our results may not be completely satisfac-
tory, since the LSBS algorithm is no longer optimal and dynamic range can also be extended at the low
illumination end as shown by Liu et. al. .6 Our upper bound on average SNR of Qsat/q still holds, however.
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