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ABSTRACT 

Optimum scheduling of hydrothermal plants generation is of great importance to electric utilities. Many evolutionary 
techniques such as particle swarm optimization, differential evolution have been applied to solve these problems and 
found to perform in a better way in comparison with conventional optimization methods. But often these methods con-
verge to a sub-optimal solution prematurely. This paper presents a new improved particle swarm optimization tech-
nique called self-organizing hierarchical particle swarm optimization technique with time-varying acceleration coeffi-
cients (SOHPSO_TVAC) for solving short-term economic generation scheduling of hydrothermal systems to avoid 
premature convergence. A multi-reservoir cascaded hydrothermal system with nonlinear relationship between water 
discharge rate, power generation and net head is considered here. The performance of the proposed method is demon-
strated on two test systems comprising of hydro and thermal units. The results obtained by the proposed methods are 
compared with other methods. The results show that the proposed technique is capable of producing better results. 
 
Keywords: Hydrothermal Systems, Cascaded Reservoirs, Self-Organizing Hierarchical Particle Swarm Optimization 

with Time-Varying Acceleration Coefficients (SOHPSO_TVAC) 

1. Introduction 

The optimum scheduling of hydrothermal plants is one of 
the important planning task in power system operation. 
The generation scheduling problem consists of deter-
mining the optimal operation strategy for the next sched-
uling period, subjected to a variety of constraints. The 
main objective is to allocate generations of hydroelectric 
and thermal plants in such a way so as to minimize the 
total operation cost of the systems subjected to variety of 
constraints. With the insignificant operating cost of hy-
droelectric plants, the problem of minimizing the opera-
tional cost of a hydrothermal system essentially reduces 
to that of minimizing the fuel cost for thermal plants un-
der the various constraints on the hydraulic and power 
system network. It is basically a nonlinear programming 
problem involving non-linear objective function and a 
mixture of linear and non-linear constraints. 

The main constraints include the cascaded nature of 
the hydraulic network, the time coupling effect of the 
hydro sub problem where the water inflow of an earlier 
time interval affects the discharge capability at a later 

period of time, the varying hourly reservoir inflows, the 
physical limitations on the reservoir storage and turbine 
flow rate, the varying system load demand and the load-
ing limits of both thermal and hydro plants. 

The hydrothermal scheduling problem has been the 
subject of investigation for several decades and many 
methods have been applied to solve this problem. Some 
of these solution methods include decomposition tech-
niques [1], dynamic programming [2], semi-definite pro-
gramming [3] and concept of non-linear network flow [4]. 
In recent times, optimal hydrothermal scheduling prob-
lems have been solved by different heuristic techniques 
such as genetic algorithm [5] simulated annealing tech-
nique [6], evolutionary programming technique [7] etc. 
Yu, et al. used particle swarm optimization technique to 
solve short-term hydrothermal scheduling problem [8] 
with an equivalent thermal unit having smooth cost func-
tions. A modified hybrid differentia evolution technique 
was applied by Lakshminarasimman, et al. [9] to solve 
short-term hydrothermal generation scheduling problems 
with promising results. A comparison of particle swarm 
optimization and dynamic programming for large scale 
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hydro unit load dispatch was made by Cheng, et al. [10]. 
Recently, Catalao, et al [11] applied mixed- integer qua-
dratic programming method to determine scheduling of 
head dependent cascaded hydro systems. 

Particle swarm optimization (PSO) happens to be a 
comparatively new combinatorial metaheuristic technique 
which is based on the social metaphor of bird flocking or 
fish schooling [12]. This algorithm has come to existence 
in mid 90’s and has gained prominence from late 90’s. 
The PSO technique has been applied to various fields of 
power system optimization. Gaing used PSO to solve 
economic dispatch problem considering generator con-
straints [13]. Abido proposed a revised PSO technique 
for optimal design of voltage stabilizer [14]. Park, et al. 
presented a method for solving economic dispatch with 
non-smooth cost functions [15]. A hybrid method for 
optimal scheduling of short-term electric power genera-
tion of cascaded hydroelectric plants based on particle 
swarm optimization and chance-constrained programming 
was presented by Jiekang, et al. [16]. 

A novel parameter automation strategy called self-or- 
ganizing hierarchical particle swarm optimization tech- 
nique with time-varying acceleration coefficients (SOH- 
PSO_TVAC) is applied in this paper for the hydrother- 
mal scheduling to address the problem of premature 
convergence. In this case, the particle velocities are reini- 
tialized whenever the population stagnates at local opti- 
ma during the search. A relatively high value of the cog- 
nitive component results in excessive wandering of parti- 
cles while a higher value of the social component causes 
premature convergence of particles. Hence, time-varying 
acceleration coefficients (TVAC) [17] are employed to 
strike a proper balance between the cognitive and social 
component during the search. The proposed approach 
was first tested on a simple test system comprising of one 
equivalent thermal unit and four cascaded hydro unit and 
then the effectiveness of the SOHPSO_TVAC was dem- 
onstrated on a more practical system comprising of six 
thermal units and four cascaded hydro units. The results 
have been compared with other evolutionary methods 
and found to be superior. 

2. Problem Formulation 

Economic generation scheduling of hydrothermal sys-
tems involves the optimization of a problem with non- 
linear objective function subject to a mixture of linear, 
non-linear constraints. As the fuel cost of hydroelectric 
plants is insignificant in comparison with that of thermal 
power plants, the objective is to minimize the fuel cost of 
thermal power plants, while making use of the availabil-
ity of hydro-resources as much as possible. The objective 
function and associated constraints are described as fol-
lows: 

Minimize 

   
1 1

sNT

sit it sit
t i

F P f P
 

          (1) 

where,  sitF P  is the total fuel cost,  is the number 
of time interval for scheduling horizon, 

T

sN  is the num-
ber of thermal plants and sit  is the power generation 
by the i-th thermal plants at time t. 

P

Conventionally, the fuel cost curve for any unit can be 
represented by segments of quadratic functions of the 
active power output of the generator and can be ex-
pressed as 

  2
it sit si si sit si sitf P a b P c P         (2) 

where, si ,a sib , sic : fuel cost coefficients of the i-th 
thermal unit. 

For more practical and accurate modeling of fuel cost 
function, the above expression needs to be modified 
suitably. Modern thermal power plants comprise of gen-
erating units having multi-valve steam turbines in order 
to incorporate flexible operational facilities. The gener-
ating units with multi-valve turbines have very different 
cost curve compared with that defined by (2). The effect 
of valve-point effect loading may be considered by add-
ing a sinusoidal function [9] to the quadratic cost func-
tion described above. Hence, the function described by (2) 
is revised as follows: 

 

 
2

minsin

v
it sit si si sit si sit

si si si sit

f P a b P c P

e f P P

  

   
    (3) 

where  v
it sitf P is the fuel cost function of thermal units 

including the valve point loading effect and ,si sie f  are 
fuel cost coefficients of the i-th thermal generating unit 
reflecting the valve-point effect.  

The above objective function described by (3) is to be 
minimized subject to a variety of constraints as follows: 

1) Demand constraints  
The total power generated must balance the power 

demand plus losses, at each time interval over the entire 
scheduling period  

1 1

0
s hN N

sit hjt Dt Lt
i j

P P P P
 

          (4) 

where hjt  is the power generation of jth hydro gener-
ating unit at time t, 

P

Lt  is power demand at time t and P

LtP  is total transmission loss at the corresponding time.  
The hydropower generation is a function of water dis-

charge rate and reservoir storage volume, which can be 
described by (5) as follow: 

2 2
1 2 3

4 5 6

hjt j hjt j hjt j hjt hjt

j hjt j hjt j

P C V C Q C V Q

C V C Q C

  

  
     (5) 
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where 1 jC , 2 jC , 3 jC , 4 jC , 5 jC , 6 jC  are power genera-
tion coefficients of j th hydro generating unit, hjt  is the 
storage volume of j-th reservoir at time t and  is 
water discharge rate of j-th reservoir at time t. 

V

hjtQ

2) Power generation constraints 
min max

si sit siP P P             (6) 

min max
hj hjt hjP P P             (7) 

where min
si  and max

si  are the minimum and maxi-
mum power generation by i-th thermal generating unit, 

 and  are the minimum and maximum power 
generation by the j-th hydro generating unit respectively. 



min
hj max

hj

3) Water dynamic balance 

 
, 1

, ,
1

uj

mj mj

hjt hj t hjt hjt hjt

R

hm t hm t
m

V V I Q S

Q S 



 


   

 
     (8) 

where  is natural inflow of j-th hydro reservoir at 
time t, hjt  is spillage discharge rate of j-th hydro gen-
erating unit at time t, mj

hjtI
S

  is the water transport delay 
from reservoir m to j and uj  is the number of upstream 
hydro generating plants immediately above the j-th res-
ervoir.  

R

4) Reservoir storage volume constraints 

min max
hj hjt hjV V V             (9) 

where ,  are the minimum and maximum sto-
rage volume of j th reservoir. 

min
hjV max

hjV

5) Water discharge rate limit 
min max
hj hjt hjQ Q Q            (10) 

where,   and  are the minimum and maximum 
water discharge rate of  the j-th reservoir respectively. 

min
hjQ max

hjQ

3. Overview of Some PSO Strategies 

There are several variants of PSO. Some of the com-
monly used PSo are discussed in the following sections. 

3.1. Classical PSO 

The Particle Swarm Optimization (PSO) is one of the 
recent developments in the category of heuristic optimi-
zation technique. Kennedy and Eberhart [12] originally 
developed the PSO concept based on the behavior of 
individuals (i.e. particles or agents) of a swarm or group. 
PSO, as an optimization tool, provides a population- 
based search procedure in which individuals called 
agents or particles change their position with time. In a 
PSO algorithm, the particles fly around the multidimen-
sional search space in order to find the optimum solution. 
Each particle adjusts its position according to its own 

Let in a physical d-dimensional search space, the posi

experience and the experience of neighboring particle.  

-
tion and velocity of the i-th particle (i.e. i-th individual in 
the population of particles) be represented as the vec-
tors  1 2, , ,i i i idX x x x   and  , , ,iV v v v   re-
spec est po
is recorded and represented as 

1 2i i id

sition of the i-th patively. The previous b rticle 

 idest . The index of
icles i

1 2, , ,i i ipbest pbest pbest p 
n the group is rep-

resented by the dgbest . The modified velocity and posi-
tion of each par n be calculated using the current 
velocity and the distance from idpbest  to dgbest  as 
shown below: 

1k  

b
best e part

 the 

k

 (11) 

where 

 particle among all th

ticle ca

   
   
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k
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k
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V w V C rand pbest X

C rand gbest X

i N d N

   

   
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pN  is the number of particles in a swarm or 
group, gN

 V
 

 is the number of members or elements in a 
particle, k

id  is the velocity of individual i at iteration k, 
w  is the eight parameter or swarm inertia, 1C  and 

2  are the acceleration constants and 
w

C  rand   uni-
m random number in the range [0 1]. 
The updated velocity can be used to ch

is
for  

ange the posi-
tion of each particle in the swarm as depicted in (12) as:  

1 1k k k
id id idX X V             (12) 

t w  provides a Suitable selection of inertia weigh
balance between global and local explora ons, thus re-
quiring less iteration on average to find a sufficiently 
optimal solution. In general, the inertia weight w  is set 
according to the following equation:  

ti

max min
max

max

w w
w w iter

iter
        (13) 

where is the maximum number of iterations and 

T he weighting of 
th

maxiter  
 the cuiter  is rrent number of iterations. 

he constants 1C  and 2C  represent t
e stochastic acc ration rms that pull each particle 

toward the pbest  and 
ele  te

gbest  positions.  

3.2. Conce ing Acceleration pt of Time-Vary

It is the search toward the opti-

Coefficients (TVAC) 

 observed from (11) that 
mum solution is heavily dependent on the two stochastic 
acceleration components (i.e. the cognitive component 
and the social component). Thus, it is very important to 
control these two components properly in order to get 
optimum solution efficiently and accurately. It has been 
reported [18] that in PSO, problem-based tuning of pa-
rameters is a key factor to find the optimum solution ac-
curately and efficiently. Kennedy and Eberhart [12] re-
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ed optimization me-
th

ported that a relatively higher value of the cognitive 
component, compared with the social component, results 
in excessive roaming of individuals through a larger 
search space. On the other hand, a relatively high value 
of the social component may lead particles to rush to-
ward a local optimum prematurely. 

In general, for any population-bas
od like PSO, it is always desired to encourage the indi-

viduals to wander through the entire search space, during 
the initial part of the search, without clustering around 
local optima. In contrast, during the latter stages, it is 
desirable to enhance convergence towards the global 
optima so that optimum solution can be achieved effi-
ciently. For this, the concept of parameter automation 
strategy called Time Varying acceleration Coefficients 
(TVAC) had been introduced [17]. The main purpose of 
this concept is to enhance the global search capability 
during the early part of the optimization process and to 
promote the particles to converge toward the global op-
timum at the end of the search. For this, the cognitive 
component should be reduced while the social compo-
nent should be increased during search procedure. In 
TVAC, this can be achieved by changing the acceleration 
coefficients with time. With a large cognitive component 
and small social component at the beginning, the parti-
cles are encouraged to move around the search space, 
instead of moving towards the population best prema-
turely. On the other hand, during the latter stage of opti-
mization, a small cognitive component and a large social 
component encourage the particles to converge towards 
the global optimum. The concept of time varying accel-
eration coefficients (TVAC) can be introduced mathe-
matically as follows [17]. 

 1 1 1
max

1f i i

iter
C C C C

iter
         (14) 

 2 2 2
max

2f i i

iter
C C C C

iter
        (15) 

where f  are constants representing 

ierarchical PSO with 

It is ither based on a con-

1 1 2 2, , ,i f iC C C C
nd final values of cinitial a ognitive and social accelera-

tion factors respectively. 

3.3. Self-Organizing H
TVAC (SOHPSO_TVAC) 

 seen that the classical PSO is e
stant inertia weight factor or a linearly varying inertia 
weight factor. It is reported that the particles in classical 
PSO may converge to a local minimum prematurely due 
to lack of diversity in the population, particularly for 
complex problems [17]. In SOHPSO_TVAC, the previ-
ous velocity term in (11) is kept at zero. It is observed 
that in the absence of previous velocity term the particles 

rapidly rush towards a local optimum solution and then 
stagnate due to the lack of momentum. In fact in the ab-
sence of velocity term, the optimum solution depends 
highly on the initial population. To overcome this diffi-
culty, the modulus of velocity vector of a particle is re-
initialized with a random velocity (called reinitialization 
velocity) whenever it stagnates in the search space. 
Stagnation of particles highly influences the performance 
of PSO in searching global optimum. When a particle is 
stagnated, it’s pbest  remains unchanged over a large 
number of iterat hen more particles are stagnated, 
the gbest also remains unchanged and the PSO algorithm 
con  to a local minimum prematurely. The neces-
sary momentum is imparted to the particles by reinitiali-
zation of velocity vector with a random velocity. The 
above method can be implemented as follows [17]: 

ions. W

verges

 

   

 
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1 1 1 1
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2 2
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2

k
id f i i

k
id id f i

k
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iter
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iter
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pbest X C C
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rand gbest X

  
    
 

 
    

 

  

  (16) 

If 0idV   and 3 0.5rand   then 

x4 maid dV Vrand   els x   (17) 

Thus a series of part arm optimizers are
at

bers ge- 

thm 

C 

e V  5 maid drand V

icle sw  gener-
ed automatically inside the main PSO according to the 

behavior of the particles in the search space until the 
convergence criteria is satisfied. The variables 

1 2 3 4 5, , ,rand rand rand rand and rand  are num
nerated randomly between 0 and 1. A time varying reini- 
tialization strategy is used to overcome the difficulties of 
selecting appropriate reinitialization velocities.  

4. Development of the Proposed Algori

In this section, an algorithm based on SOHPSO_TVA
is described to obtain quality solutions for scheduling 
problems of hydrothermal systems with cascaded reser-
voirs. For any population based evolutionary algorithm 
like PSO, the representation of individuals and their ele-
ments is very important. For the present problem, the 
position of each particle (i.e. each individual in the pop-
ulation of particles) is composed of a set of elements and 
for the present problem it is the discharge rate of each 
hydro plant and the power generated by each thermal unit. 
The algorithm starts with the initialization process. Let 

         00 0 0 0
1 2, , , ,P X X X X

Pk N
      be the initial popu- 

pN  
er o

number of particles. For a system with lation of 

hN  numb f hydro units and sN  number of thermal 
s, position of k-th individual a population is ini-unit of 
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tialized randomly satisfying the constraints defined by (6)
and (10) and can be represented by 

         00 0 0 0

 

0

s

 (18) 

with   and 

e elem

and 

   0
1 1, , , , , , , , ,

h

T

k h hj s sihN sNX Q Q Q P P P     

(0) (0) (0) (0) (0)
1 2, , ,

T

hj hj hj hjt hjTQ Q Q Q Q   

(0) (0) (0) (0)
1 2, , , , ,

T

si si sit siTP P P P     . Th
(0)

(0)P ents si
(0)
hjtQ  

sitP  
the p

are the discharge rate o planf the j-th hydro t 
and ower output of the i-th thermal unit at time t. 
The range of the elements (0)

hjtQ  and (0)
sit  must satisfy 

the water discharge rate and  therm enerating ca-
pacity constraints as depicted in (6) and (10) respectively.
Assuming the spillage in (8) to be zero for simplicity, the 
water discharge rate of the j-th hydro plant in the de-
pendent interval is then calculated using (8) to meet ex-
actly the restrictions on the initial and final reservoir 
storage. The dependent water discharge rate must satisfy 
the constraints in (10). At the same time, to meet exactly 
the power balance constraints, the thermal generation of 
the dependent thermal generating unit is calculated using 
(4). Thus, the initial generation is checked against all the 
constraints. If the constraints are satisfied then movement 
towards the next step is undertaken. Now, the algorithm 
can be described as follows: 

Step 1: Initialize randomly e

 the al g
 

ach particle according to 
th

 value ac-
co

fitness value is better than the best fitness 
va

 particle 
ac

e 
of

ons reaches the maxi-
m

e latest 

e limit of each unit including individual dimensions, 
searching points and velocities according to (18). These 
initial particles must be feasible candidates for solutions 
that satisfy the practical operating constraints. 

Step 2: For each particle, calculate fitness
rding to (3). 
Step3: If the 
lue in history, set current value as the pbest . 
Step 4: Modify the member velocity ch of ea
cording to (16) and reinitialize it according to (17).  
Step 5: Choose the particle with the best fitness valu
 all the particles as the gbest .  
Step 6: If the number rati of ite
um, then go to Step 7 else go to Step 4. 
Step 7: The individual that generates th gbest  

is

mplemented using in house 

em-I 

 has been initially applied to a test 

valuate the performance of the 
pr

performance of PSO algorithm is quite sensitive 
to

 the solution of the problem. 

5. Simulation Results  

The proposed algorithm was i
Matlab code on 3.0 MHz, 2.0 GB RAM PC. It was ap-
plied on two illustrative test systems to obtain the simu-
lation results. 

5.1. Test Syst

The proposed method
system consisting of four cascaded hydro units and an 
equivalent thermal plant. 

This has been done to e
oposed method in comparison to other population 

based methods [8,9], on the same test system. The sche-
duling period has been kept to 24 hours with one hour 
time interval. The water transport delay between con-
nected reservoirs is also considered. For a direct com-
parison, effect of valve point loading is not considered in 
this case. The hydraulic network is shown in Figure 1. 
The load demand, hydro unit power generation coeffi-
cients, reservoir inflows, reservoir limits, the generation 
limits, cost coefficients of thermal unit and other data are 
taken from [8,9] and hence they are not shown in this 
paper. 

The 
 the various parameter settings. Tuning of parameters is 

essential in all PSO based methods. Based on empirical 
studies on a number of mathematical benchmark func-
tions [17] it has been reported the best range of variation 
as 2.5 - 0.5 for 1C  and 0.5 - 2.5 for 2C . The idea is to use 
a high initial value of the cognitive coefficient to make 
use of full range of the search space and to avoid prema-
ture convergence with a low social coefficient.  We ex-
perimented with the same range and several combina-
tions of the values of 1C  and 2C  were tested. The best 
results were obtained for 2.5 - 1.2 for 1C  and 0.8 – 2.5 
for 2C  out of 50 trial runs. The optimiza n is done with 
a randomly initialized population of 30 swarms. The 
maximum iteration was set at 500. 
 

tio

 

Plant 1 2 3 4 

uR
 0 0 2 1 

dt  2 3 4 0 

uR : no of upstream plan  dt : time de y to immedia e downstream nt. ts, la t  pla

Figure 1. Hydraulic system networks. 
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Table 1  obtained 
by

ance of the proposed method 

Table 1. Hourly discharge (×10  m ) for Test system-I using SOHPSO_TVAC. 

Hour h1 h2 h3 Qh4 

 shows the optimal water discharge
 the proposed method. The optimal hydrothermal gen-

eration schedule along with demand for 24 hours is 
shown in Table 2. From the Table 2, it is clearly seen 
that total demand is met by the total power (both hydro 
and thermal power) generated in every scheduling inter-
val. The proposed method converges to the optimal solu-
tion in 6.65 seconds. The optimal cost is found to be $ 
922018.24. The results of the proposed method are com-
pared with the results obtained by various versions of 
particle swarm optimization (PSO) techniques and ge-
netic algorithm [8], modified hybrid differential evolu-
tion [9], improved PSO technique [19] and are shown in 
Table 3. It is clearly seen that the proposed method 
based SOHPSO_TVAC yields comparable results. 

5.2. Test System-II 

To evaluate the perform
based on SOHPSO_TVAC, it was further applied to a 
test system that consists of a multi-chain cascade of four 
hydro units and six thermal units. The effect of valve 
point loading has been taken into account in this case to 
illustrate the robustness of the proposed algorithm. The 
scheduling period has been kept to 24 hours with one 

hour time interval. The water transport delay between 
connected reservoirs is also considered. The hydro sub-
system configuration, hydro unit power generation coef-
ficients, reservoir inflows, reservoir limits and other data 
related to hydro sub-system are same as that of test sys-
tem-I [8,9]. The load demand, generation limits and cost 
coefficients of six thermal units are given in Tables 4 
and 5 respectively. 

 
4 3

In this case also, the parameters were selected sepa-
rately. Out of 50 trial runs, best results were obtained for 
2.5 - 1.0 for 1 and 1.08 - 2.5 for 2 . The optimization 
is done with a randomly initialized population of 50 
swarms. The maximum iteration for this case was set at 
1000. The iteration number was increased at a step of 
fifty and beyond 1000 no improvement in results was 
obtained. Hence, maximum iteration was set at this value.  

C C

Optimal hourly water discharge rate obtained by the 
proposed algorithm for this system is shown in Table 6. 
Table 7 presents the optimal hydro-generation schedule 
including total hydropower generation while Table 8 
presents the optimal thermal-generation along with total 
thermal-power generation. From the Tables 7 and 8, it is 
clearly seen that total demand is exactly met by the total 
power (both hydro and thermal power) generated in 

Q  Q  Q  

1 13 14 0 2 8 1 9 .8283 .491 4.265 5.239

2 12.6601 9.2900 24.9872 17.2769 

3 5.9466 6.6413 22.9332 13.6824 

4 13.3810 14.3373 29.3514 18.3014 

5 8.2904 6.0950 28.7873 16.5410 

6 11.8885 11.9559 28.6013 14.0943 

7 12.6919 6.2446 15.9601 18.0801 

8 9.3017 8.6030 19.3372 14.6328 

9 11.3282 8.9676 14.8883 13.0162 

10 10.9708 7.6717 16.7851 16.4236 

11 9.4602 13.9516 15.3201 18.9266 

12 11.1395 14.0177 14.0084 13.1561 

13 14.5317 9.4261 14.0798 17.8119 

14 7.9011 8.9554 18.0524 16.6606 

15 8.3188 10.2877 24.4559 15.5128 

16 9.8519 7.3214 13.7804 13.0263 

17 6.6072 12.1301 22.8774 14.1860 

18 11.8547 6.4092 10.0867 16.8845 

19 12.9146 13.9743 13.8062 15.9441 

20 12.5296 12.0523 19.1564 19.4293 

21 8.9751 14.7372 17.1883 15.3933 

22 8.3536 11.6243 29.4380 17.6711 

23 13.9647 8.6715 15.8585 16.2179 

24 9.7047 13.2850 14.4794 19.7077 
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Table 2. Hy mal generation  Test Syste SO_TVA

Hour Ps1 

drother  (MW) for m-I using SOHP C. 

Ph1 Ph2 Ph3 Ph4 

1 97 7 87 1 21 6 23 93.454 .657 .825 0.3377 2.7249 

2 93.5193 64.7935 23.6970 229.6978 978.2924 

3 58.4330 78.5222 57.6787 210.2464 955.1197 

4 94.1196 83.3466 0.0000 198.7914 913.7424 

5 92.6744 72.8456 0.0000 220.9078 903.5722 

6 86.4760 74.3160 0.0000 191.6303 1057.5777 

7 85.4516 41.7571 43.1969 229.6711 1249.9233 

8 72.1956 55.8172 34.0058 219.9818 1617.9996 

9 79.3600 76.5117 49.5002 232.1563 1802.4718 

10 77.5266 48.6986 46.1335 266.1956 1681.4457 

11 72.0148 74.7016 50.6196 283.0959 1749.5681 

12 79.5559 70.6179 53.8710 237.5837 1868.3715 

13 83.9767 50.1964 55.1515 278.0854 1762.5900 

14 63.1928 46.7289 51.5653 268.6745 1769.8385 

15 67.5760 52.7787 24.7423 258.2166 1726.6864 

16 76.1820 36.8627 60.4846 234.3241 1662.1466 

17 58.5041 58.7856 45.1654 246.2596 1721.2853 

18 84.1886 27.4923 58.0117 272.4697 1697.8377 

19 83.9924 57.9884 62.2518 272.4128 1763.3546 

20 79.5395 46.5762 55.1625 295.3375 1803.3843 

21 64.5494 47.7753 60.4145 268.9274 1798.3334 

22 60.4338 35.1203 64.1562 281.8141 1678.4756 

23 74.3806 41.0008 63.0802 276.4471 1395.0913 

24 62.6654 35.5388 64.6617 294.0484 1133.0857 

 
Table 3. Comparison of cost and Computation time [8,9,19] for Test System-I using SOHPSO_TVAC. 

Method Cost ($) CPU Time (sec) 

GCP 9SO [8] 27288.00 182.4 

GWPSO [8] 930622.50 129.10 

LCPSO [8] 925618.50 103.50 

LWPSO [8] 925383.80 82.9 

GA [8] 942600.00 - 

M  

I  3  

Proposed SOHPSO_TVAC 

HDE [9] 921893.94 8 

HDE [9] 922872.68 9 

MDE [9] 922555.44 45 

DE [9] 923574.31 50 

PSO [19] 922553.49 8.46

922018.24 6.65 

 
Table 4. Load demand for Test System-II. 

Hour PD (M our PD (MW) W) Hour PD (MW) H

1 1270 9 1640 17 1330 

2 1290 10 1520 18 1540 

3 1260 11 1330 19 1340 

4 1190 12 1310 20 1280 

5 1190 13 1430 21 1540 

6 1310 14 1500 22 1120 

7 1450 15 1130 23 1450 

8 1800 16 1270 24 1590 
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Table 5. ost curve co nts and o ting limits rmal gene rs for Te tem-II. 

Unit 

 C efficie pera  of the rato st sys

 min

sP  sP  
s

a  sb  sc  se  sf
max

1 40 415 0.0050 1.89 150 300 0.035 

2 35 350 0.0055 2.0 115 200 0.042  0 

3 35 425 0.0060 3.50 40 200 0.042 

4 35 410 0.0050 3.15 122 150 0.063 

5 50 450 0.0050 3.05 125 150 0.063 

6 75 550 0.0070 2.75 120 150 0.063 

 
Table 6. Hourly plant discharge (×1 for Test S -II for using SOHPSO_TVAC. 

Hour

04 m3) ystem

 Qh1 Qh2 Qh3 Qh4 

1 6.972502 11. 24.907 17.407740150 634 985 

2 7.731941 13. 16.186 14.178124870 119 098 

3 7.477768 9.158731 13.950951 18.784392 

4 8.871571 14.010161 29.042359 15.487399 

5 14.277798 10.796809 21.769518 15.139450 

6 12.732249 11.668549 26.451547 17.772207 

7 10.138482 9.483738 15.355559 19.677885 

8 5.742317 8.004957 14.481912 20.665652 

9 6.944741 9.636653 20.646292 15.486904 

10 7.408659 7.848469 14.401946 20.656160 

11 8.948285 14.384019 10.811545 19.714787 

12 7.472149 14.970795 18.763718 14.584901 

13 7.505869 13.909323 23.308321 21.484800 

14 5.776865 6.598329 10.781980 22.006157 

15 5.015201 13.372890 28.618021 13.571865 

16 13.114330 14.072622 28.718159 19.642249 

17 13.178272 13.790026 15.070220 17.845279 

18 8.196122 12.311397 23.422576 23.441177 

19 12.524022 8.468255 19.765975 23.113251 

20 9.938308 7.244151 18.779339 17.879239 

21 8.160802 14.330810 10.896191 20.778777 

22 7.

23 8.

448584 

411573 

11.340049 

8.439337 

16.514698 

22.846284 

22.410447 

17.289667 

24 8.632123 6.812816 21.503769 18.486091 

 
every schedul interval. For e total power (

ydro and thermal power) generated during hour 12 is 
posed SOHPSO_TVAC. It is clearly seen from the con-
vergence characteristics that classical PSO converges to 

e to electric utilities. In this paper, a  

ing xample, both 
h
1310 MW while demand during the same interval is 1310 
MW as seen in Table 4. Computation time for optimal 
solution for this case is found to be 76.25 seconds and 
optimal fuel cost is found to be $104232.48. The same 
problem was also solved by the so called classical PSO 
described in section 3.1. For this case optimal cost was 
found to be $106322.23. Figure 2 compares the conver-
gence characteristic of fuel cost classical PSO and pro-

sub-optimal solution prematurely. It also seen that the 
proposed SOHPSO_TVAC algorithm successfully ad-
dresses the problem of premature convergence and pro-
duces better results. 

6. Conclusions 

Optimum scheduling of hydrothermal plants generation 
is of great importanc
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Table 7. Hydro Generation (MW) for Test System-II using SOHPSO_TVAC. 

Ph3 Ph4 Total MW (Hydro) Hour Ph1 Ph2 

1 68.223902 79.870276 17.415086 245.771899 411.281163 

2 412.759541 

72. 11 62. 65 52. 06 219. 60 

74.25182 81.695087 51.847937 204.964697 

3 8697 4689 8299 5892 407.757842 

4 81.748249 

99.

79.889387 0.000000 176.960986 338.598622 

5 

6 

394337 66.

92.957195 

076948 29.

67.112659 

128339 

0.000000 

187.504885 

205.072090 

382.104509 

365.141944 

7 82.085906 54.436703 53.410569 208.514325 398.447503 

8 55.002407 44.041311 57.276431 225.984299 382.304448 

9 

10 

64.941358 

69.115574 

51.400626 

40.982128 

43.193648 

58.410617 

200.031335 

242.928173 

359.566967 

411.436492 

11 79.568629 65.687318 57.545585 231.659008 434.460540 

12 71.617824 61.408143 51.601508 194.081949 378.709424 

13 72.543089 52.843556 30.587430 239.752425 395.726500 

14 60.290326 18.338580 58.858229 231.123599 368.610734 

15 54.554216 48.210457 0.000000 170.544137 273.308810 

16 103.048297 44.824854 0.000000 214.028806 361.901957 

17 102.219552 37.652148 59.021664 210.627995 409.521359 

18 79.125646 26.879337 32.984490 220.090011 359.079484 

19 99.045047 6.025023 51.820825 227.501503 384.392398 

20 87.391146 0.000000 55.708136 215.896854 358.996136 

21 76.429248 21.975673 61.093279 225.072949 384.571149 

22 71.492977 9.468806 62.964007 234.036600 377.962390 

23 77.764954 0.000000 42.199644 208.777956 328.742554 

24 79.240273 0.000000 48.618568 217.279495 345.138336 

 
Table 8. Thermal Generation (MW) fo tem-II us O_TVAC

Hour s1 Ps Ps6 Total  (Thermal)

r Test Sys ing SOHPS . 

P Ps2 Ps3 Ps4 5 MW

1 209.348051 858.718837 184.281276 108.431265 84.899313 147.603506 124.155426 

2 211.054495 877.240459 

297 06 184. 92 110. 80 83. 35 99. 33 76. 12 

1244.

189.794321 111.901474 137.639007 101.434318 125.416844 

3 .7249 6300 3542 8730 6252 0346 852.242158 

4 

5 

209.547896 

208.651252 

182.388407 

183.183484 

106.315822 

107.001379 

83.703034 

134.774553 

147.519088 

99.117685 

121.927131 

75.167138 

851.401378 

807.895491 

6 297.026672 183.828760 107.799894 133.337042 99.471626 123.394062 944.858056 

7 

8 

210.589658 

299.252972 

260.300077 

333.112614 

114.324085 

183.337976 

136.639403 

229.165002 

201.259709 

198.923506 

128.439565 

173.903482 

1051.552497 

1417.695552 

9 299.503327 260.615281 111.098576 234.256055 199.78993 175.169864 1280.433033 

10 

11 

299.772920 

210.167576 

185.682623 

260.689032 

113.141228 

111.548850 

134.802676 

87.224691 

199.416465 

100.723202 

175.747596 

125.186109 

1108.563508 

895.539460 

12 208.355239 259.064644 105.717785 85.035917 149.160068 123.956923 931.290576 

13 

14 

208.945245 

299.398231 

258.821928 

260.628553 

109.157954 

109.993129 

134.641022 

135.516992 

198.380268 

150.867596 

124.327083 

174.984765 

1034.273500 

1131.389266 

15 298.049942 109.739612 109.174060 84.678568 129.990498 125.058510 856.691190 

16 

17 

299.165804 

210.044864 

185.252126 

188.282655 

110.279713 

109.392485 

134.897376 

87.773298 

101.171056 

150.453875 

77.331968 

174.531464 

908.098043 

920.478641 

18 299.586350 260.219714 110.827288 184.992184 150.009217 175.285763 1180.920516 

19 

20 

299.559604 

210.025480 

184.661993 

187.944929 

110.535431 

111.772368 

134.980262 

134.894143 

100.257089 

151.137992 

125.  613223

125.228952 

955.607602 

921.003864 

21 297.326699 259.307088 109.783293 185.226451 198.381285 105.404035 1155.428851 

22 206.793580 181.526398 97.609726 83.142509 97.924818 75.040579 742.037610 

23 298.701053 257.472455 107.142068 184.288955 149.221054 124.431861 1121.257446 

24 298.757300 258.115619 184.684892 184.158452 148.407766 170.737635 861664 
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Figure 2. Convergence Characteristics for fuel cost. 
 
novel algorithm called self-organizing hierarchical 
cle swarm optimization technique with time-varying ac
cele ng

or

es to Short Term Operation 
Planning of Hydro-Thermal Power System,” IEEE Trans-
actions on Po . 1, February 1986,
pp. 41-47. doi 86.4334842

parti-

 
-

ration coefficients (SOHPSO_TVAC) for solvi
t-term economic generation scheduling of hydro-sh

thermal systems to avoid premature convergence has 
been proposed and successfully applied to solve daily 
hydrothermal scheduling problem. To evaluate the per-
formance of the proposed algorithm, it has been applied 
on two test systems comprising of a multi-chain cascade 
of hydro units and several thermal units and results are 
presented. The effect of valve point loading is also con-
sidered. The results obtained by the proposed method 
have been compared with other evolutionary algorithms 
like improved PSO, GA and modified hybrid differential 
evolution (MHDE). It is found that proposed method 
SOHPSO_TVAC can address the problem of premature 
convergence and produce better results. 
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ppendix A: List of Symbols 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

A

sit : output power of th thermal unit at time i t  
min
si , max

si : lower and upper generation limits for th i

thermal unit 

sia , sib , sic , sie , sif : cost curve coefficients of th 

ther

i

mal unit  

DtP : lo mand at time t  

hjtP : output p

ad de

ower of j-th hydro unit at time 

w an

o -th reservoir at time   

r

ate of j-th reservoir 

 minimum and maximum storage volume of 

t  
min
hj

ma
hj : lo er d upper generation limits for j th 

hydro unit 

 , x

hjtQ : water discharge rate f j t

hjtV : storage volume of j-th reservoir at time t  
min
hjQ , : minimum and maximum water discha ge max

hjQ

r
min

hj , 

j th rese

V max
hjV :

rvoir 

1 jC , 2 jC , 3 jC , 4 jC , 5 jC , 6 jC : power generation 

dro unit  coefficients of j-th hy
: flowhjt in  rate of j th reservoir at time t  

uj : number ofR  upstream units directly above th hydro 

plan  
t time 

j

t 

hjtS : spillage of j th reservoir a t  

mj : water transport elay from reservoir  to d  j m

sN : number of thermal generating units  

hN : number of hydro generating units
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