
Optimal Scheduling of Contract Algorithms for Anytime Problems

Alejandro López-Ortiz
David. R. Cheriton School of

Computer Science
University of Waterloo

Waterloo ON Canada, N2L 3G1
alopez-o@uwaterloo.ca

Spyros Angelopoulos
David R. Cheriton School of

Computer Science
University of Waterloo

Waterloo ON Canada, N2L 3G1
sangelop@uwaterloo.ca

Angèle M. Hamel
Department of Physics and Computer Science

Wilfrid Laurier University
Waterloo, Ontario, Canada, N2L 3C5

ahamel@wlu.ca

Abstract

A contract algorithm is an algorithm which is given, as part of
the input, a specified amount of allowable computation time.
The algorithm must then compute a solution within the al-
loted time. An interruptible algorithm, in contrast, can be
interrupted at an arbitrary point in time and must produce a
solution. It is known that contract algorithms can simulate
interruptible algorithms using iterative deepening techniques.
This simulation is done at a penalty in the performance of the
solution, as measured by the so-called acceleration ratio. In
this paper we give matching (i.e. optimal) upper and lower
bounds for the acceleration ratio under this simulation. This
resolves an open conjecture of Bernstein et al. [IJCAI 2003]
who gave an ingenious optimal schedule under the restricted
setting of round robin and length-increasing processor sched-
ules, but whose optimality in the general unrestricted case
remained open.

Introduction
Anytime algorithms were first considered by
Horvitz (Horvitz 1987), (Horvitz 1998) and Dean and
Boddy (Dean & Boddy 1998). They occur in settings where
a computationally intensive problem is addressed under
uncertain resource constraints. These algorithms can pro-
duce solutions under arbitrary resource constraints, albeit
of potentially different quality depending on the amount
of resources alloted. An example of this is a problem in
which the answer must be provided when determined by an
external input over which we have no control. For instance,
consider an automated trading program for the stock market.
When a change in the bid price of a given stock occurs
the algorithm must produce a decision (buy/sell/hold) at
that very instant to take advantage of the newly posted
price. Another example is given by realtime applications.
For instance, consider an motion planning algorithm for
a robot in which a solution must be produced within a
certain, but varying, amount of time: for certain actions the
next step can be carefully computed; for others a move is
needed momentarily even if the algorithm is to produce a
suboptimal move. In this case the amount of time alloted is
given to the algorithm beforehand.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

More formally, consider the following scenario: we are
given a set P of n different problem instances, and we want
to design an algorithm that can be applied, potentially, to
any of those n problem instances. The computation time
available to the algorithm is not known in advance. More
precisely, at a given (unknown) point of time, an interrup-
tion occurs, at which point the algorithm is stopped and is
queried to report its (partial) solution to any possible in-
stance. Clearly, the algorithm must make judicious use of
its resources and ensure that it can produce a reasonably
good solution, despite having no knowledge of the exact
time at which interruptions may occur. As indicated before
it is hardly surprising that this setting arises very frequently
in the design of AI systems, in applications such as game-
playing programs (Althöfer 1997; Kao, Reif, & Tate 1993;
Kao et al. 1994), e-trading agents, and medical diagnosis
systems. Essentially the problem captures a fundamental
trade-off between the quality of the solution returned by the
algorithm and the amount of available computation time.

Algorithms which have the property that they can be in-
terrupted at any time, and thus queried for their solution to
a problem instance, are known as interruptible algorithms.
Such algorithms include versions of local search, e.g., sim-
ulating annealing and hill climbing. On the other side, con-
tract algorithms are given the amount of allowable compu-
tation time (i.e, the intended query time) as part of the in-
put. Clearly, contract algorithms are more specialized than
interruptible algorithms. More importantly, contract algo-
rithms are often instrumental in the design of interruptible
algorithms. Here, the objective is to define, for each prob-
lem instance, a sequence of contracts of increasing lengths
(i.e., processing times). Note that, conceptually, the set of
required contracts is infinite. Suppose then that a set M of
m processors of identical speed is available. The problem
we face is scheduling the contracts to each of the available
processors in a way that guarantees an efficient interrupt-
ible algorithm. In this setting, at query time, the algorithm
will report for each problem instance the solution of the cor-
responding contract of longest length which has been com-
pleted by the query time.

Several classes of algorithms fall into the paradigm of
contract algorithms. For instance, several examples of Fully
Polynomial-Time Approximation Schemes (FPTAS) which
are based on dynamic programming (DP) techniques can in-

874



deed be seen as contract algorithms. Here, the general ap-
proach is as follows. Given a (usually NP-hard) problem,
one first applies an appropriate scaling, then a subsequent
rounding, of the input so as to reduce the space of allowable
values for the input items. The scaling depends on a param-
eter ε: the smaller the ε, the smoother the scaling is. Subse-
quently, DP is applied on the scaled and rounded input: the
running time typically is a function of 1/ε, whereas the ap-
proximation ratio is typically within a factor of (1− ε) from
the optimal solution (assuming e.g., a profit-maximization
problem). Note that if the time the algorithm is allowed to
run, say T , is known in advance, the designer can choose
the smallest value of ε such that the running time cannot ex-
ceed T . However, if T is not known, and an interruption has
occurred, it is likely the algorithm will not return any mean-
ingful solution. For a concrete example, see the FPTAS for
the well-known knapsack problem due to Ibarra and Kim
(Ibarra & Kim 1975)

The efficiency of a scheduling for a set of contracts is de-
termined by the so-called acceleration ratio. A formal def-
inition is provided in the Preliminaries section; informally,
the acceleration ratio indicates how much faster the proces-
sors in M should be in order to guarantee a solution as good
as the one for an off-line algorithm that has foreknowledge
not only of the query time t but also of the problem instance
p of interest; such an algorithm would simply utilize a sin-
gle processor to run solely a contract for instance p, up to
time t. In a sense, the acceleration ratio reflects the loss in
optimality due to lack of future knowledge about the query
times and the problem instance in question, and is motivated
by similar considerations as the competitive ratio, which is
defined in the context of the analysis of online algorithms.

In the case of one problem instance and a single processor,
Russell and Zilberstein (Russell & Zilberstein 1991) showed
that iterative doubling of contract lengths gives rise to an in-
terruptible algorithm of acceleration ratio at most four. Zil-
berstein et al. (Zilberstein, Charpillet, & Chassaing 1999)
showed that this is the optimal acceleration ratio, in the sense
that any scheduling strategy defined over any set of contracts
has acceleration ratio at least four.

Zilberstein et al. (Zilberstein, Charpillet, & Chassaing
1999) studied the generalization of the problem in which
multiple problem instances are considered (assuming |M | =
1), and Bernstein et al. (Bernstein et al. 2002) studied the
generalization in which contracts for a single problem in-
stance must be scheduled in a set of multiple processors.
For both versions, algorithms with optimal acceleration ra-
tios were derived. The problem, in its full generality, in-
volves a set of processors and a set of problems both of
cardinality greater than one. Bernstein et al. (Bernstein,
Finkelstein, & Zilberstein 2003) showed an upper bound of
n
m (m+n

n )
m+n

m on the acceleration ratio; in addition, using el-
egant techniques, they showed that this bound is optimal for
a restricted, though natural and intuitive, class of schedules
that use a round robin and length-increasing strategy. Bern-
stein et al. leave open the question of whether this bound is
tight among all possible schedules. In this paper we answer
this question in the affirmative.

The work of Bernstein et al. (Bernstein, Finkelstein, &

Zilberstein 2003) drew a connection between the problem
of scheduling contract algorithms and another well-studied
problem in AI, namely that of robot searching on a set
of rays (Alpern & Gal 2003). In this problem, p robots
search for a target that is located in one of m concurrent
rays. We seek search strategies for the robots that min-
imize the competitive ratio, namely the maximum of the
ratio of the search cost using the strategy, and the (opti-
mal) distance from the starting position to the target, over
all possible positions of the target. Note that the two prob-
lems have striking similarities; the rays correspond to prob-
lem instances, the robots to processors, and the (unknown)
location of the target corresponds to the (also unknown)
query time. For the general problem of p robots and m rays
López-Ortiz and Schuierer (López-Ortiz & Schuierer 2004)
showed an optimal strategy that achieves competitive ratio
1+2m−p

p ( m
m−p )

m
p . Bernstein et al. (Bernstein, Finkelstein,

& Zilberstein 2003) later derived the same bound by directly
translating their solution in the context of contract schedul-
ing to the context of robot searching in rays.

The paper is organized as follows. In the Preliminaries
section we present formal definitions and preliminaries. Our
main result, namely Theorem 3, is presented in the Lower
Bound section. In particular, we show how to adapt, in a
non-trivial way, the approach of López-Ortiz and Schuierer
to show the optimality of the schedule of Bernstein et al.
without any restrictions on the scheduling strategy for con-
tracts.

Preliminaries
Let P denote the set of problem instances or simply prob-
lems. A contract c is a pair (p, d), where p ∈ P denotes
the problem instance to which c is assigned (also called the
problem tag of c) and d the duration or length of the contract,
which specifies the processing time required to complete c
(we assume all processors have the same speed). Let C de-
note a potentially infinite set of contracts. Define a schedule
X for a set of contracts C as a feasible assignment of all
contracts in C to the set M of m processors; in particular,
X can be described as a the set {(ci,mi, xi) : ci ∈ C},
where mi ∈ {0, . . . , m− 1} denotes the processor to which
ci is scheduled, and xi denotes the time its processing be-
gins. The schedule X must be feasible, in the sense that for
every two contracts ci = (pi, di), cj = (pj , dj) in C, which
are assigned to the same processor by X , and with cj sched-
uled immediately after ci in the said processor, we have that
xi + di ≤ xj . Namely, cj does not start before ci has been
completed.

Observation 1 Without loss of generality we consider only
schedules in which xi+di = xj for i and j as defined above;
that is, the processors are never idle.

To compare schedules we use the standard acceleration
ratio metric. Following (Bernstein, Finkelstein, & Zilber-
stein 2003), we assume that when a contract is completed at
time t its solution is available when the interruption occurs at
any time after t, including t. We also limit the interruptions
to occur only after at least one contract for each problem in
P has completed, otherwise the problem is vacuous. Denote

875



by l(X, p, t) the length of the longest contract for problem p
that has been completed by or at time t in X .

Definition 1 Given a set P of n problem instances and a set
M of m processors of identical speed, the acceleration ratio
of a schedule X for P , denoted by Rm,n(X) is defined as
the smallest value r, with r ≥ 1 such that for any allowable
interruption time t, and any problem p ∈ P , we have that
l(X, p, t) ≥ t/r. Then the acceleration ratio for P and a set
M of processors of identical speed is defined as

R∗
m,n = inf

X
Rm,n(X).

A schedule X is optimal if Rm,n(X) = R∗
m,n.

We argue that for a given schedule X , the acceleration
ratio Rm,n(X) can be determined by looking at a discrete
subset of the timeline, instead of all possible interruption
times t. Let ε denote an infinitesimally small positive value.
Then it is easy to see that it suffices to consider interruptions
that occur only at times T − ε, where T belongs in the set of
finish times of all contracts in X , excluding the first contract
for each problem. To see this, consider a certain interruption
t that does not conform with the above rule, and let t′ be the
earliest time in which a contract finishes in X such that t′ −
ε > t. Then for all problems p, l(X, p, t′−ε) = l(X, p, t); in
other words the algorithm has not made any progress on any
problem on the time interval [t, t′ − ε], thus t/l(X, p, t) <
(t′ − ε)/l(X, p, t′ − ε).

Figure 1 illustrates an example of a schedule of a set of
contracts. Note how the acceleration ratio peaks just before
each contract is completed.

Processor 3

Processor 2

Processor 1

Processor 0

Time

6

5

4

3

2

1

987654321

Ac
ce

ler
ati

on
 R

ati
o

Figure 1: Bar diagram depicting the scheduling of two prob-
lems on four processors, and a plot of time vs. acceleration
ratio for each problem. Problem 1 (solid line) has contracts
of lengths 1 on processor 0, 4 on processor 2, and 6 on pro-
cessor 1. Problem 2 (dashed line) has contracts of lengths 2
on processor 1, 3 on processor 3, and 5 on processor 0.

Observation 2 The acceleration ratio of a schedule X for
P is

Rm,n(X) = sup
p,t

{
t

l(x, p, t)

}
= sup
p,t∈T,ε→0

{
t − ε

l(x, p, t − ε)

}
.

Given a schedule X , and two problem instances p, p′ ∈
P , let C1, C2 denote two (potentially infinite) subsets of
X , such that all contracts in C1 have problem tag p, and
all contracts in C2 have problem tag p′. Consider a new set
of contracts C ′ which is identical to C, with the exception
that every contract in C1 acquires problem tag p′ instead of
p and every contract in C2 acquires problem tag p instead
of p′. Consider also the schedule X ′ which is otherwise
identical to X (except for the problem tag swaps described
above). We say that X ′ is obtained from X by a swap for
sets C1 and C2.

Following the convention of López-Ortiz and Schuierer
(López-Ortiz & Schuierer 2004), given two schedules X and
X ′, we say that X is contained in X ′ up to time T , denoted
by X ⊆T X ′ if the two schedules are identical up to time
T . Given a sequence of schedules V = (X1, X2, . . .) we say
that V converges to a limit schedule X if there is a strictly
increasing function T (n) with limn→∞ T (n) = ∞ such that
for each n, Xm ⊆T (n) Xm+1 for all m ≥ n. The limit
schedule X is defined in the obvious way.

Lower Bound
Before we proceed with the proof of the main result, we
present the intuition behind our approach which is illustrated
in Figure 2. Given an arbitrary schedule we implement
transformations that successively transform it into sched-
ules complying with the conditions of Lemma 1, Lemma
2, and Theorem 1 in that order. These transformations ei-
ther preserve or reduce the acceleration ratio. Interestingly,
the last transformation can possibly produce an object that
is not necessarily a schedule, but whose acceleration ratio is
nevertheless well defined. We then lowerbound the accel-
eration ratio of these objects and show that it matches the
upper bound of Bernstein et al. (Bernstein, Finkelstein, &
Zilberstein 2003).

(worst)

(best)

      ratio
      acceleration

Space of all schedules

Lemma 1

Lemma 2

Theorem 1

Figure 2: Illustration of the proof technique. The shaded
region corresponds to non-valid strategies, which could, in
principle, have acceleration ratio strictly smaller than the op-
timal acceleration ratio; however, we show that this never
happens, thus the region collapses to the line of all strategies
of optimal acceleration ratio.

Note that we can assume, without loss of generality, that
the schedule does not start a contract that is smaller than one
that has already completed on a given problem.

876



We are given a schedule X of contracts that includes the
contract (pi, di) and the next contract in the schedule involv-
ing pi that is completed is (pi, Di). We will follow this con-
vention throughout of denoting by lower case d and upper
case D the durations of a pair of consecutively completed
contracts on a given problem p, respectively.

Definition 2 Given a contract c of length Dc we define the
acceleration ratio at Dc immediately before completion of c
as r(c) = (Tc + Dc)/dc (assuming dc �= 0).

In particular, let C ′ denote the set of all contracts in the
schedule, excluding the first completed contract for each
problem. Then from Observation 1,

Rm,n(X) = sup
c∈C′,ε→0

Tc + Dc − ε

dc

which converges to supc∈C′ r(c).
Suppose time Ti is the time when a processor is to start

working on contract (pi, Di) and there is another problem
pj such that the terms (pj , dj) and (pj , Dj) appear in X .
Suppose a processor is to start working on contract (pj , Dj)
at time Tj .

Lemma 1 Given a schedule X with two problems pi and
pj as described above with dj < di and Tj > Ti, then
either Dj < Di or we can define a new schedule such that
Dj < Di and whose acceleration ratio is no worse than that
of the original schedule.

Proof. Suppose X is such that dj < di and Tj > Ti, and
suppose that Dj > Di. Execute a swap of program tags for
all contracts on pi that complete after (pi, di) and all con-
tracts on pj that complete after (pj , dj) as described above
to obtain a new schedule X ′. Then we will show the accel-
eration ratio of the new schedule X ′ is no worse than that of
the original schedule.

The acceleration ratio of the original schedule at Di, Dj

is

max
{

Ti + Di

di
,
Tj + Dj

dj

}

whereas the acceleration ratio after the swap is

max
{

Ti + Di

dj
,
Tj + Dj

di

}
.

Observe that everywhere else the acceleration ratio of the
schedule remains unchanged. Then since Tj > Ti and
Dj > Di,

Tj+Dj

dj
≥ Ti+Di

dj
, and since dj < di, we have

Tj+Dj

dj
≥ Tj+Dj

di
. Hence the acceleration ratio of the origi-

nal schedule is greater than or equal to the acceleration ratio
of the alternative schedule. �

Corollary 1 Given a schedule X there is another schedule
in which for any two problems pi and pj , with dj < di, and
Tj > Ti, it is always the case that Dj < Di.

Proof. We apply the process, i.e., appropriate problem
switching, as argued in the proof of Lemma 1 in the fol-
lowing way: Let F = {f1, f2, . . . , } be the sorted sequence
of contract lengths for all problems in X . Define p(f�) to

be the problem associated with finishing time f� in X . Let
pj = p(f�) and let dj be the length of the contract asso-
ciated to f�. Now starting with f1 and for each f� with
� = 1, 2 . . . we check that for each dj < di and Tj > Ti

we have Dj < Di and if not, we swap the contracts as de-
scribed in the proof of Lemma 1. �

We introduce some notation that will be needed in
Lemma 2. Let ST denote the set of all contracts com-
pleted by time T . Also let ST be the complement of ST ,
namely all contracts in X − ST . For any problem pj

let Dj = min{D : (pj , D) ∈ ST0+D0}. Observe that
dj = max{d : (pj , d) ∈ ST0+D0}.

Lemma 2 Let C1 = (p0, D0) be a contract scheduled by X
at time T0 and C2 = (pj , Dj) be any contract in ST0 . Then
there exists another schedule of no worse acceleration ratio
such that if d0 ≥ dj for a problem pj �= p0 then T0 + D0 ≥
Tj + Dj .

Proof. Assume this is not the case, i.e. the schedule X is
such that d0 ≥ dj for at least one problem pj �= p0 and
T0 + D0 ≤ Tj + Dj . Consider then the switch in which all
contracts for problems p0 and pj in ST0+D0 switch problem
tags. We will argue that the switch gives rise to a new sched-
ule which has no worse acceleration ratio. One can see that
it suffices to look at how the acceleration ratio is affected at
the points right before C1 and C2 are completed. First, note
that before the switch, the contribution of those two points
to the acceleration ratio is

α = max
{

T0 + D0

d0
,
Tj + Dj

dj

}

and after the switch, the corresponding contribution be-
comes

β = max
{

T0 + D0

dj
,
Tj + Dj

d0

}
.

Since dj ≤ d0 and T0 + D0 ≤ Tj + Dj we get that β ≤ α,
which means that the acceleration ratio does not worsen at
those two specific points. �

As in Lemma 1 we can apply this process repeatedly
starting with dj which is the length of the contract asso-
ciated to the smallest contract time f� with � = 1, 2 . . .
and checking that no larger contract d0 ≥ dj is such that
T0 + D0 ≤ Tj + Dj . If there are one or more such con-
tracts, we select the D0 with the smallest completion time
T0 + D0 and switch with (pj , Dj). We then proceed to the
next finishing time f�+1. This produces a schedule in which
for all contracts such that d0 ≥ dj with pj �= p0 we have
that T0 + D0 ≥ Tj + Dj .

Corollary 2 Let C = (pi, Di) denote the contract sched-
uled by X at time Ti. Then there exists another schedule
of no worse acceleration ratio in which there is no contract
Ck = (Tk, Dk) with dk > di such that Tk + Dk < Ti + Di.

Proof. Assume the contrary, and then apply Lemma 2 with
T0 = Tk and Tj = Ti. This shows then that there exists
another schedule in which Tk + Dk ≥ Ti + Di as claimed
and no worse acceleration ratio. �

Definition 3 A schedule X is said to be normalized if it sat-
isfies the conditions of Corollary 1 and Lemma 2.

877



Theorem 1 The acceleration ratio Rm,n(X) of an optimal
normalized schedule X = ((c0,m0, x0), (c1,m1, x1), . . .)
for n problems with m processors is at least

Rm,n(X) ≥ sup
k≥0

{
k+n∑

i=0

xs
i

/ k∑

i=k−m+1

xs
i

}
(1)

where Xs = (xs
0, x

s
1, . . .) is the sequence of the sorted x

values of Xand xs
i := 0 if i < 0.

Proof. Let X be an optimal normalized schedule. Consider
a time T0 such that processor M0 is about to begin a new
contract. Since X is a normalized schedule, M0 will choose
a problem P0 in a way that satisfies the conditions of Corol-
lary 1. Let D0 be the allotted time that M0 will spend on
P0 at time T0. Let the longest completed contract for prob-
lem P0 at time T0 + D0 be d0. In general, let Mj be the
processor responsible for the longest completed contract on
problem Pj at time T0 + D0, for 0 ≤ j ≤ n − 1.

Now consider the sequence of contract lengths of proces-
sor Mj completed up to T0 + D0 inclusively. These time
spans are elements in the sequence Xs; let Ij be the set of
indices in Xs of these scheduled time spans for processor
Mj .

Note that d0 = xs
k0

, for some k0 ≥ 0. Furthermore, let
dj be the longest completed contract for problem Pj at time
just before Tj + Dj ≤ T0 + D0. Note that dj = xs

kj
, for

some kj ≥ 0. Then by Lemma 2 we have dj < d0. The
acceleration ratio for the problem Pj at Dj is given by

∑
i∈Ij

xs
i

xs
kj

according to Observation 2, for 0 ≤ j ≤ m − 1. Hence,
the worst case acceleration ratio that has occurred up to time
T0 + D0 is at least

Rm,n(X) ≥ max
0≤j≤m−1

{∑
i∈Ij

xs
i

xs
kj

}
≥

∑m−1
j=0

∑
i∈Ij

xs
i

∑m−1
j=0 xs

kj

.

Here we make use of the fact that max {a/c, b/d} ≥ (a +
b)/(c + d), for all a, b, c, d > 0. Note that the sum
A =

∑m−1
j=0

∑
i∈Ij

xs
i contains as summands all xs

i that
have been completed up to time T0 + D0. In particular we
know that A includes all xs

j that are smaller than xs
k0

, as
Lemma 2 guarantees that any problem completed to a con-
tract dj smaller than a problem completed to a contract d0

will complete the next time around before T0+D0 and hence
the summation given at time T0 + D0 contains all xk’s (i.e.
dj’s) that are smaller than xk0 (i.e. d0). In other words,
every element up to xs

k0
in the sorted schedule Xs appears

in A. Since there are n problems all of which have been
explored to lengths exceeding xs

k0
then we have that A con-

tains all sorted values up to xs
k0

plus at least n larger val-
ues corresponding to the finished contracts in each of the
n problems. The smallest choices for these n values are
xs

k0+1, . . . , x
s
k0+n. Hence, we obtain

m−1∑

j=0

∑

i∈Ij

xs
i ≥

k0+n∑

i=0

xs
i .

Now consider the values xkj
= dj , for 1 ≤ j ≤ m− 1. The

value Dj is the time to which problem Pj will be completed
at time T0 +D0 by processor Mj and dj is the longest com-
pleted contract for Pj just before time Tj + Dj . Then by
Corollary 2 d0 is the largest time among the di’s. The m−1
largest di values are xs

k0−m+1, . . . x
s
k0−1 and

m−1∑

j=0

dj ≤
k0∑

i=k0−m+1

xs
i .

Hence,

Rm,n(X) ≥
∑m−1

j=0

∑
i∈Ij

xs
i

∑m−1
j=0 xs

kj

≥

k0+n∑
i=0

xs
i

k0∑
i=k0−m+1

xs
i

,

for all k0 ≥ n. �

In order to prove a lower bound on the right hand side of
Inequality (1) we make use of the results by Gal (Gal 1980)
and Schuierer (Schuierer 2001) which we state here with-
out proof and in a simplified form for completeness. Define
Ga = (1, a, a2, . . .) to be the geometric sequence in a and
X+i = (xi, xi+1, . . .) the suffix of sequence X starting at
xi.

Theorem 2 ((Schuierer 2001)) Let X = (x0, x1, . . .) be
a sequence of positive numbers, r an integer, and a =
limn→∞(xn)1/n, for a ∈ R ∪ {+∞}. If Fk, k ≥ 0, is a
sequence of functionals which satisfy

1. Fk(X) only depends on x0, x1, . . . , xk+r,
2. Fk(X) is continuous, for all xi > 0, with 0 ≤ i ≤ k + r,
3. Fk(αX) = Fk(X), for all α > 0,
4. Fk(X + Y ) ≤ max(Fk(X), Fk(Y )), and
5. Fk+i(X) ≥ Fk(X+i), for all i ≥ 1,

then
sup

0≤k<∞
Fk(X) ≥ sup

0≤k<∞
Fk(Ga).

In particular, in our case it is easy to see that, if we set

Fk(Xs) =
k+n∑

i=0

xs
i

/ k∑

i=k−m+1

xs
i ,

then Fk satisfies all conditions of Theorem 2. Hence,

Rm,n(X) ≥ sup
0≤k<∞

Fk(Xs)

≥ sup
0≤k<∞

Fk(Ga)

= sup
0≤k<∞

{
k+n∑

i=0

ai

/ k∑

i=k−m+1

ai

}
.

Note that if a ≤ 1, then the above ratio tends to infinity as
k → ∞. Hence, we can assume that a > 1 and obtain

Rm,n(X) ≥ sup
0≤k<∞

{
(ak+n+1 − 1)/(a − 1)

(ak+1 − ak−m+1)/(a − 1)

}

878



= sup
0≤k<∞

{
ak+n+1 − 1

ak+1 − ak−m+1

}

(a>1)
=

an

1 − a−m

=
an+m

am − 1
.

The above expression is minimized for a = ((m+n)/n)1/m

and the acceleration ratio is bounded from below by

Rm,n(X) ≥
(

m+n
n

)(m+n)/m

m+n
n − 1

=
( n

m

) (
m + n

n

)m+n
m

.

Theorem 3 Given n problems and m processors every
schedule simulating an interruptible algorithm using con-
tract algorithms has an acceleration ratio not less than

( n

m

)(
m + n

n

)m+n
m

.

Optimal Schedule
We now observe that, by construction of the functional Fk,
the schedule which explores contracts in round robin order
at lengths 1, a, a2, ... matches the lower bound for the accel-
eration ratio. In other words, the round robin and length-
increasing schedule proposed by Bernstein et al. (Bernstein,
Finkelstein, & Zilberstein 2003) is optimal among all possi-
ble schedules whether round robin and length-increasing or
not. This is not to say that all optimal schedules are round
robin and length-increasing, in fact one can easily construct
non-round robin schedules for the case when m is a multiple
of n. More formally,

Theorem 4 The optimal schedule for n problems and m
processors simulating an interruptible algorithm using con-
tract algorithms has an acceleration ratio of

( n

m

)(
m + n

n

)m+n
m

.

Conclusions
We resolved an open question in Bernstein et al. (Bernstein,
Finkelstein, & Zilberstein 2003) regarding the optimal ac-
celeration ratio of a schedule of contract algorithms for sim-
ulation of interruptible algorithms. This bridges the gap
between the acceleration ratio of round robin and length-
increasing and general schedules.

An open problem is to investigate whether the bounds
generalize to randomized or average case schedules. In ad-
dition, while the optimal schedule presented here parallels
search strategies in the case of p robots and m rays, the
exact correspondence remains to be shown. Such a corre-
spondence would extend the one established by Bernstein
et al. (Bernstein, Finkelstein, & Zilberstein 2003) for round
robin, length-increasing schedules and strategies.

References
Alpern, S., and Gal, S. 2003. The Theory of Search Games
and Rendezvous. Kluwer Academic Publishers.
Althöfer, I. 1997. A symbiosis of man and machine beats
grandmaster timoshchenko. Journal of the International
Computer Chess Association. 20(1):187.
Bernstein, D.; Perkins, T. J.; Zilberstein, S.; and Finkel-
stein, L. 2002. Scheduling contract algorithms on multiple
processors. In American Association for Artificial Intelli-
gence Conference, 702–706.
Bernstein, D. S.; Finkelstein, L.; and Zilberstein, S. 2003.
Contract algorithms and robots on rays: Unifying two
scheduling problems. In IJCAI, 1211–1217.
Dean, T., and Boddy, M. S. 1998. An analysis of time-
dependent planning. In American Association for Artificial
Intelligence Conference, 49–54.
Gal, S. 1980. Search Games. Academic Press.
Horvitz, E. 1987. Reasoning about beliefs and actions
under computational resource constraints. In Workshop on
Uncertainty in Artificial Intelligence, 301–324.
Horvitz, E. 1998. Reasoning under varying and uncertain
resource constraints. In American Association for Artificial
Intelligence Conference, 111–116.
Ibarra, O. H., and Kim, C. E. 1975. Fast approximation
algorithms for the knapsack and sum of subset problems.
Journal of the ACM 22(4):463–468.
Kao, M.-Y.; Ma, Y.; Sipser, M.; and Yin, Y. 1994. Opti-
mal constructions of hybrid algorithms. In Proc. 5th ACM-
SIAM Sympos. Discrete Algorithms, 372–381.
Kao, M.-Y.; Reif, J. H.; and Tate, S. R. 1993. Searching
in an unknown environment: An optimal randomized algo-
rithm for the cow-path problem. In Proc. 4th ACM-SIAM
Sympos. Discrete Algorithms, 441–447.
López-Ortiz, A., and Schuierer, S. 2004. On–line parallel
heuristics, processor scheduling and robot searching under
the competitive framework. Theoretical Computer Science
310:527–537. Extended abstract appeared in 8th Scandi-
navian Workshop on Algorithms and Theory, SWAT, 2002,
pp. 260-269.
Russell, S. J., and Zilberstein, S. 1991. Composing real-
time systems. In Proceedings of the 12th International
Joint Conference on Artificial Intelligence, 212–217.
Schuierer, S. 2001. Lower bounds in on-line geometric
searching. Computational Geometry: Theory and Applica-
tions 18(1):37–53.
Zilberstein, S.; Charpillet, F.; and Chassaing, P. 1999.
Real-time problem-solving with contract algorithms. In
Proceedings of the 16th International Joint Conference on
Artificial Intelligence, 1008–1015.

879


