
Optimal Scheduling of Contract Algorithms with Soft Deadlines

Spyros Angelopoulos
Max-Planck-Institut für Informatik

Campus E1 4
Saarbrücken 66123, Germany

sangelop@mpi-inf.mpg.de

Alejandro López-Ortiz
David R. Cheriton School

of Computer Science
University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1
alopez-o@uwaterloo.ca

Angèle M. Hamel
Dept. of Physics and Computer Science

Wilfrid Laurier University
Waterloo, Ontario, Canada, N2L 3C5

ahamel@wlu.ca

Abstract

A contract algorithm is an algorithm which is given, as part
of its input, a specified amount of allowable computation
time. In contrast, interruptible algorithms may be interrupted
throughout their execution, at which point they must report
their current solution. Simulating interruptible algorithms by
means of schedules of executions of contract algorithms in
parallel processors is a well-studied problem with significant
applications in AI.
In the classical case, the interruptions are hard deadlines in
which a solution must be reported immediately at the time the
interruption occurs. In this paper we study the more general
setting of scheduling contract algorithms at the presence of
soft deadlines. This is motivated by the observation of prac-
titioners that soft deadlines are as common an occurrence as
hard deadlines, if not more common. In our setting, at the
time t of interruption the algorithm is given an additional win-
dow of time w(t) ≤ c · t to continue the contract or, indeed,
start a new contract (for some fixed constant c). We explore
this variation using the acceleration ratio, which is the canon-
ical measure of performance for these schedules, and derive
schedules of optimal acceleration ratio for all functions w.

Introduction
Anytime algorithms, which were introduced and developed
by Horvitz (Horvitz 1987) (Horvitz 1998) and Dean and
Boddy (Dean and Boddy 1998), arise in situations where
the available computation time is uncertain. Such algorithms
will produce solutions of varying quality, depending on how
much computation time they are allowed.

One can distinguish between two main types of anytime
algorithms. Interruptible algorithms are algorithms whose
allowable running time is not known a priori, and can be in-
terrupted (queried) at any point during their execution. Con-
tract algorithms, on the other hand, are algorithms whose
allotted execution time is known beforehand as part of the
algorithm’s input. Such algorithms are thus less flexible than
interruptible algorithms, however they tend to be simpler to
implement.

Hence the following problem arises: We are given a set
of n problem instances and a machine consisting of m iden-
tical parallel processors, and we seek an efficient strategy

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for scheduling multiple executions of n contract algorithms
(one for each problem) on the processors. At any point of
time an interruption may occur, during which a solution may
be requested for any of the n problems. The performance
of the algorithm at interruption time is related to the length
(duration) of the longest completed execution of a contract
algorithm for the requested problem: Specifically, we would
like this length to be as large as possible, under the intuitive
assumption that the longer the available computation time,
the better the solution will be. This problem has been ex-
tensively studied in the literature, and we refer to it as the
(classical) hard deadline problem.

However, in practice, it has been observed that often the
time of interruption does not define an absolute hard dead-
line at which time a solution has to be produced. Instead, the
specifications of the application may be such that a “grace
period” may be desirable, especially if there are concerns
about the quality of the solution. Consider the example of
a medical diagnostic system: the doctor may query the sys-
tem for a diagnosis, but if the diagnosis is not satisfactory,
the doctor may allow the system some additional time, at
the end of which she may reconsult. The amount of ad-
ditional time should depend on the application: a hospital
intensive care unit system should allow smaller windows of
additional computation time than a system run by a consul-
tation diagnostic center. To this goal, Zilberstein et al. (Zil-
berstein, Charpillet, and Chassaing 2003) consider the case
in which there is a time dependent utility function which
indicates the decrease in the value of the solution as time
elapses. In our work, we consider the case in which the in-
terruption marks a point in time from which a solution must
be produced shortly. More precisely, at interruption time t,
the interruptible algorithm is given a window w(t) of addi-
tional time, and within which a solution must be reported for
the queried problem. There is no penalty for using this time;
on the other hand, the algorithm has to report a solution by
time t + w(t). This is similar to the work of Manolache et
al. in which they consider the expected completion time in
a setting where the deadlines are soft, all problems must be
solved and there is a maximum global deadline which can-
not be exceeded (Manolache, Eles, and Peng 2004).

We focus on window functions which are upper-bounded
by linear functions of time: namely, w(t) ≤ c · t for some
constant c. This is motivated by the observation that it would

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

868

be unrealistic to allow larger windows, since otherwise the
algorithm could hardly qualify as “interruptible”. We also
assume that w(t) is a continuous, increasing function of
time, and that the function is known to the algorithm in ad-
vance. Note that if w(t) is not known in advance, but rather
revealed at the time of interruption, in the worst case the
problem degenerates to the problem of hard deadlines, if the
window is too small.

For the classical problem, the standard measure of the ef-
ficiency of an interruptible algorithm is the acceleration ra-
tio. Informally, the acceleration ratio measures the increase
in processor speed required for the simulation to produce a
solution of the same quality as the optimal solution. Here,
by optimal solution we refer to an algorithm which knows
beforehand both the exact interruption time and the queried
problem; such an optimal, ideal algorithm can dedicate a
single processor and run a single contract of length equal to
the interruption time for the problem in question.

Simulating interruptible algorithms using contract algo-
rithms has been studied under several variants. Examples
include the case of one problem and one processor, in work
by Russell and Zilberstein (Russell and Zilberstein 1991)
and Zilberstein et al. (Zilberstein, Charpillet, and Chas-
saing 1999), many problems and one processor by Zilber-
stein et al. (Zilberstein, Charpillet, and Chassaing 1999),
and one problem and many processors by Bernstein et al.
(Bernstein et al. 2002). For all of these problems, sched-
ules of optimal acceleration ratio were derived. For the
most general case, namely solving many problems using
many processors, Bernstein et al.(Bernstein, Finkelstein,
and Zilberstein 2003) showed an optimal simulation un-
der the restrictive, but natural assumption that the sched-
ule has a cyclic format. In subsequent work, López-Ortiz et
al. (Lopez-Ortiz, Angelopoulos, and Hamel 2006) removed
the assumption of cyclicality, and showed that the schedule
of (Bernstein, Finkelstein, and Zilberstein 2003) is optimal
among all possible schedules. The acceleration ratio of the
optimal schedule is a function of n and m, and is equal to
(1 + n

m)(1 + m
n)

n
m .

The main contribution of this paper is a schedule of con-
tract algorithms which guarantees optimal acceleration ra-
tio under no restrictive assumptions (c.f. Corollary 2 and
Theorem 4). To simplify exposition and analysis, in what
follows we concentrate on the the case of linear windows,
namely w(t) = ε · t for some constant ε. It turns out that
this is the most challenging case: a very similar analysis
can be applied to a much wider class of window functions,
namely for all increasing functions w such that w(t) ≤ c · t,
for some constant c: in this more general case, ε is defined
as limt→∞(w(t)/t) (which always exists), and the same
bounds apply w.r.t. ε as in the case of a linear function.

Due to space limitation, certain technical proofs are either
omitted or only sketched in this paper.

Preliminaries
We follow the notation of Bernstein et al. (Bernstein, Finkel-
stein, and Zilberstein 2003) and Lopez-Ortiz et al. (Lopez-
Ortiz, Angelopoulos, and Hamel 2006). Let P denote a set
of n problems. A contract c is a pair (p, L), where p ∈ P

is the problem c is working on and L is the length of time
(duration) the contract is designated to work on p. Let C
denote a potentially infinite set of contracts. Then a sched-
ule X of contracts is a feasible assignment of contracts to
processors. More formally, X = {(ci,mi, xi) : ci ∈ C},
where mi is the processor to which ci is scheduled and xi
is the length of contract ci. For a contract ci we denote by
Tci , Gci and Lci its start time, its completion or finish time
and its length or duration, respectively. Since idle time in
the schedule leads to suboptimal solutions, it will always be
the case that Lci = Gci − Tci . Define by `p,t the length of
the longest contract for problem p that has been completed
by time t in X , and by cp,t the contract of length `p,t (we
can assume without loss of generality that no two contracts
in the schedule are of the same length). We use the notation
t+ (resp. t−) to denote time infinitesimally bigger (resp.
smaller) than t.

Given a time t of interruption and a problem p that an
answer is required for, we define an interruption as the pair
i = 〈t, p〉. As it is common in the field we assume that
interruptions occur only after one contract for each problem
has been completed.

Bernstein et al. (Bernstein, Finkelstein, and Zilberstein
2003) define the class of cyclic schedules as schedules which
have the following natural properties: Let Pci be the prob-
lem instance worked on by contract ci.

1. Property 1 (Problem Round Robin) If ci is the ith contract,
the problem instance Pci is such that Pci = i mod n.

2. Property 2 (Length Increasing) For all ci, cj if Pci = Pcj
and i < j, then Li < Lj .

3. Property 3 (Processor Round Robin) mi = i mod m for
all i.

An exponential schedule is a cyclic schedule in which the
lengths of contracts in the round-robin order increase expo-
nentially. More formally, the i-th contract in the order has
length bi for some fixed number b.

Definition 1 Given a set P of n problem instances and a
set M of m processors of identical speed, the acceleration
ratio of a schedule X for P , denoted by α(X) (or sim-
ply α when X is implied from context) is defined as the
maximum ratio (over all problems p ∈ P and interrup-
tion times t) of the ratio of the interruption time over the
longest contract length completed by the interruption. For-
mally: α(X) = maxp,t t

`p,t
. Then the acceleration ratio for

P and a set M of processors of identical speed is defined as
α∗ = infX α(X). A schedule X is optimal if α(X) = α∗.

Lemma 1 (Bernstein et al. 2003) For all cyclic schedules
X , α(X) = supk

Gk+n
Lk

, where k denotes a contract index in
the cyclic schedule, and Gk+n denotes the completion time
of contract ck+n.

Since exponential schedules are also cyclic, the above
holds also for exponential schedules.

869

Acceleration ratio for the soft-deadline
problem

In this section we propose expressions for the acceleration
ratio for the soft deadline problem and we prove a first
lower-bound on the quality of any schedule of contract al-
gorithms with respect to these measures.

First of all, it is easy to observe that the acceleration ratio
α as defined for the classical case (see Definition 1) is not
appropriate for the version we study. This is due to the fact
that α does not take into account the additional window of
time, nor the progress the interruptible algorithm could make
within the additional window (for instance `p,(1+ε)t could be
much bigger than `p,t). We thus need to adapt the measure
to the requirements of the problem.

The algorithm may perform one of several actions in the
additional window of time. Suppose that at interruption time
t the algorithm is queried for a solution to problem p. If the
algorithm is working on a contract for p, then the algorithm
may choose to continue working on the contract (e.g., if it
can finish the contract by time t(1+ε)). A further possibility
is for the algorithm to start a new contract for problem p
at time t: this is a situation in which the algorithm ignores
the schedule altogether and dedicates its resources to a new
contract which may run for a total duration of εt.

Note that the requirements of the problem allow the algo-
rithm to work for as much time as it deems necessary within
the interval [t, (1+ ε)t]. This means the algorithm may stop,
and return a solution, at any time in [t, (1+ε)t]. With this re-
quirement in mind, we propose the following definition for
the acceleration ratio:

β(X) = max
t,p

min
{

1 +
1
ε
, r(p, t)

}
, (1)

where r(p, t) is equal to t/`p,t, if no contract for p termi-
nates within (t, (1 + ε)t], and equal to GCp,(1+ε)t/`p,(1+ε)t,
otherwise.

In words, if at time t an interruption occurs concerning
problem p, then the interruptible algorithm has two options
(and will choose the best). The first option is to start a
new contract for p at time t and of total duration t(1 + ε),
in which case its acceleration ratio should be defined as
(t(1 + ε))/(εt) = 1 + 1/ε. The second option is to consider
whether some contract for p is bound to terminate within the
additional window of time: if this is the case, the algorithm
will wait until the longest contract for p finishes, at which
point it returns the solution, otherwise it will not take any
further action and terminate at time t. The function r(p, t)
is meant to reflect the ratio of the total elapsed time over the
progress made by the algorithm on problem p (largest con-
tract finished), in a manner similar to the definition of the
acceleration ratio for hard interruptions. Note that we as-
sume, without loss of generality, that the schedule does not
start a contract that is smaller than the one that is already
completed, for any given problem.

In accordance with the notation for the hard deadline
problem, we will denote by β∗ the optimum acceleration ra-
tio for the soft deadline problem, namely β∗ = minX β(X).
We will also be using β instead of β(X) when X is implied
from context.

It should be mentioned that there is a second natural way
of defining the acceleration ratio for soft contracts, namely
one which involves restricting the algorithm to wait until the
end of the window to return the result. This gives rise to the
following measure.

γ := max
t,p

min
{
t(1 + ε)
`p,t(1+ε)

,
(1 + ε)t
εt

}
.

It is straightforward to show that γ = min
{
α, 1 + 1

ε

}
(es-

sentially, it suffices to substitute t(1 + ε) with a new vari-
able t′) and thus an optimal algorithm for this measure is the
(known) optimal schedule with respect to measure α (with
the possibility of starting a new contract at the time of the
interruption).

Note, however, that the definition of γ reflects that the
algorithm will be using the entire additional window, even
though it may have completed the longest contract for the
queried problem long before the window elapses. Instead,
one should expect that the algorithm anticipates this situa-
tion and promptly returns after the contract in question ter-
minates, thus saving time. This situation is captured only by
β, and hence from this point on we focus on β as the perfor-
mance measure of the interruptible algorithm. For instance,
going back to the example of the diagnostic system, a sys-
tem that notifies the expert right after the best diagnosis is
derived will have the same performance w.r.t. γ as a sys-
tem that waits until the whole window expires. This is not
desirable of course, since the former system should be far
superior than the latter, and β is a measure which can make
this distinction.

Lemma 2 For every X , β(X) ≥ min{α(X)
1+ε , 1 +

1
ε } hence β∗ ≥ min{ α

∗

1+ε , 1 + 1
ε }.

The exponential schedule
In this section we propose an exponential schedule of length
base b, for some appropriate value of b. In the subsequent
section we will prove that this schedule is optimal. Recall
that we denote by Lk and Gk the length and finish times
of the k-th contract in round-robin order, respectively. By
definition, Lk = bk. It is known (see (Bernstein, Finkelstein,
and Zilberstein 2003)) that

Gk =
bk+m − b(k+m) mod m

bm−1
.

Given interruption 〈ti, pi〉, denote by ci the first contract
for pi in the schedule which is completed after time t. Let
also Gi denote the finish time of contract ci. We consider
two cases concerning the nature of interruption:

• ti(1 + ε) < Gi, namely no contract for problem pi can
finish within the additional time window.

• ti(1+ ε) ≥ Gi, namely the schedule is such that the inter-
ruptible algorithm can complete a contract for pi within
the additional window of time.

We can thus partition I into disjoint sets A or B, depend-
ing on which of the above cases applies. More formally,

870

A = {〈ti, pi〉 | ti(1 + ε) < Gi} and B = {〈ti, pi〉 |ti(1 +
ε) ≥ Gi}.

Given an interruption i = 〈ti, pi〉 ∈ A define βAi = ti
`pi,ti

,

whereas if i ∈ B define βBi =
GCpi,(1+ε)ti
`pi,(1+ε)t

. In addition,
define βA = maxi∈A βi and βB = maxi∈B βi. The follow-
ing lemma dictates that βA, βB (and of course ε) suffice to
bound the acceleration ratio of the schedule.

Lemma 3 β ≤ min{max{βA, βB}, 1 + 1/ε}.

Here is the intuition behind our approach: An efficient
schedule must guarantee that both βA and βB attain small
values, as suggested by Lemma 3. We will argue that βA
is bounded by α/(1 + ε), and thus minimized for b chosen
as in the classical case (hard deadlines). On the other hand,
one can think of βB as the acceleration ratio (again for hard
deadlines) assuming interruptions only right after a contract
has finished (c.f. Lemma 4): the resulting expression is a
decreasing function of b. Hence the two measures are in
a trade-off relation, but still we can choose an appropriate
value of b that minimizes the maximum of βA and βB (c.f.
Corollary 2).

We aim then to provide expressions for βA and βB . Con-
sider first an interruption i ∈ A. By definition of ci,
`pi,ti = `pi,Gi . Hence

βA=max
i∈A

βi= max
〈ti,pi〉∈A

ti
`pi,ti

=
1

1 + ε
max
i∈A

Gi
`pi,Gi

, (2)

where the last equality follows from the fact that the value
of ti which maximizes the ratio is ti = Gi/(1 + ε) − δ, for
arbitrarily small δ.

Note also that that the above equality implies

βA ≤
1

1 + ε
max
i

Gi
`pi,Gi

=
α

1 + ε
. (3)

The following lemma and corollary provide an expression
for βB .

Lemma 4 βB = maxk≥1
Gn+k
Ln+k

.

Corollary 1 βB = α
bn = bm

bm−1 .

We are now ready to determine the appropriate base of
the exponential schedule. Our strategy is to perform a case–
by–case analysis: for each case we find the corresponding
best value of b. The value chosen by the algorithm is is then
the one that guarantees the best acceleration ratio, among
all cases. Observe that combining Lemma 3, Corollary 1
and (3) we have that

β ≤ min
{

max
{

bn+m

(1 + ε)(bm − 1)
,

bm

bm − 1

}
, 1 +

1
ε

}
(4)

More specifically, we consider the following cases:

Case 1: bn > 1+ε. Then (4) gives β ≤ min
{

α
1+ε , 1 + 1

ε

}
.

Since the interruptible algorithm can always guarantee a ra-
tio of 1 + 1/ε (by starting a new contract at interruption

time), we seek the value of b which minimizes α, subject
to bn > 1 + ε. To this end, we use the fact that α(b) is
minimized at b∗ = (1 + m

n)
1
m (Bernstein, Finkelstein, and

Zilberstein 2003). In addition, since b∗ is the unique lo-
cal minimum of α(b), α(b) is a decreasing function of b for
b < b∗, and an increasing function of b for b > b∗. Consider
the subcases:

Subcase 1a) b∗ > (1+ ε)
1
n , then we choose b = b∗ in which

case β ≤ min{α∗/(1 + ε), 1 + 1/ε}, and the algorithm is
optimal from Lemma 2.

Subcase 1b) b∗ ≤ (1 + ε)
1
n , then we need to choose the

smallest value of b given the constraints, namely we will
choose b infinitesimally larger than (1 + ε)

1
n .

Case 2: bn ≤ 1 + ε. In this case, (4) becomes β ≤
min

{
bm

bm−1 , 1 + 1
ε

}
. It follows that we need to minimize

bm

bm−1 subject to b < (1 + ε)
1
n . The optimal choice of b is

then b = (1 + ε)
1
n .

Corollary 2 The strategy defined above chooses a value b
such that the right-hand side of (4) is minimized.

Optimality of the exponential schedule
Let X be a given schedule of contracts. We will follow the
convention of denoting by lower case d and upper case D
the lengths of a pair of consecutively completed contracts of
a given problem p, respectively. More precisely, if (pi, di)
denotes a contract of length di for problem pi, then the ear-
liest contract in X for pi which is completed after (pi, di)
finishes is denoted by (pi, Di).

Definition 2 For a contract c of length Dc and start time Tc
define αX(c) = (Tc + D−c)/dc, λX(c) = (Tc + Dc)/Dc

and λ(X) = supc∈X λX(c).

Lemma 5 For every schedule X ,

β(X) ≥ min
{

max
{
α(X)
1 + ε

, λ(X)
}
, 1 +

1
ε

}
. (5)

The intuition behind our approach is as follows:
α(X)/(1 + ε) and λ(X) are related to βA and βB , as de-
fined in the analysis of the exponential schedule, and are in
the same trade-off relation. We need to quantify this tradeoff
by first providing appropriate lower bounds for α and λ (c.f.
Theorem 1 and Theorem 2), and then arguing that their con-
tribution is minimized whenX is an appropriate exponential
schedule (c.f. the details in the proof of Theorem 4).

In (Lopez-Ortiz, Angelopoulos, and Hamel 2006) it is
shown that for every schedule X there exists another sched-
ule X ′ such that α(X ′) ≤ α(X); moreover X ′ satisfies a
set of properties (which at an intuitive level introduce some
structure into the schedule). Such a schedule is called nor-
malized, and to stress that the normalization pertains to the
measure α we will call it α-normalized. The specific prop-
erties are not important for the purpose of our analysis; how-
ever, it is important to observe that a normalized scheduleX ′

871

is derived from X by swapping the problem tags of appro-
priate pairs of contracts in X . Such swappings do not affect
the λ value of the schedule, or more formally, it is also the
case that λ(X ′) = λ(X). This implies that for every opti-
mal schedule w.r.t. β, there exists an optimal α-normalized
schedule of the same λ-value.

Theorem 1 (Lopez-Ortiz et al. 2006) For any α-normalized
schedule X = ((c0,m0, x0), (c1,m1, x1), . . .) for n prob-
lems with m processors

α(X) ≥ sup
k≥0

{
k+n∑
i=0

xsi

/ k∑
i=k−m+1

xsi

}
, (6)

where Xs = (xs0, x
s
1, . . .) is the sequence of the sorted x

values of X and xsi := 0 if i < 0.

We now introduce an additional normalization criterion,
this time with respect to measure λ.

Lemma 6 For any schedule X one of the following hold: i)
For any two contracts (pi, Di), (pj , Dj) scheduled to start
at times Ti and Tj , respectively, if Ti + Di > Tj + Dj

then Di > Dj , or ii) we can define a schedule X ′ such that
λ(X ′) ≤ λ(X) and, additionally, X ′ observes property (i).

We call a schedule that obeys property (i) of Lemma 6
λ-normalized. The following is a basic theorem concerning
λ-normalized schedules.

Theorem 2 For any λ-normalized schedule X =
((c0,m0, x0), (c1,m1, x1), . . .) for n problems with m
processors

λ(X) ≥ sup
k≥0

{
k+m∑
i=0

xsi

/ k+m∑
i=k+1

xsi

}
(7)

where Xs = (xs0, x
s
1, . . .) is the sequence of the sorted x

values of X and xsi := 0 if i < 0.

Proof sketch. Suppose that at time T0 processor M0 is
about to start a new contract C0 for problem P0; let D0 de-
note its length. Denote by Cj , for all 0 < j ≤ m − 1,
the latest contract which is scheduled in Mj and which is
completed by time T0 + D0 (and by Dj its corresponding
length).

Consider now the sequence of contract lengths for pro-
cessor Mj completed up to T0 + D0 inclusively. These
time spans are elements in the sequence Xs; let Rj be the
set of indices in Xs of these scheduled time spans for pro-
cessor Mj . The λ-value for contract Cj is then given by

λX(Cj) =
P
i∈Rj

xsi

Dj
.

Note that Dj = xslj for some lj ≥ 0. Hence

λ(X) ≥ max
0≤j≤m−1

{∑
i∈Rj x

s
i

Dj

}
≥
∑m−1
j=0

∑
i∈Rj x

s
i∑m−1

j=0 xslj
.

(8)
Let N denote the set of contracts completed by T0 +D0,

excluding contracts C0, . . . Cm−1, and C ′ denote the con-
tract of largest length in N , then the length of C ′ is equal

to xsk0 , for some k0. The proof is completed by show-
ing that

∑m−1
j=0

∑
i∈Ij x

s
i ≥

∑k0+m
i=0 xsi , and

∑m−1
j=0 Dj ≤∑k0+m

i=k0+1 x
s
i . 2

In order to prove a lower bound on the right hand side of
inequality (5) we make use of the results by Gal (Gal 1980)
and Schuierer (Schuierer 2001) which, for completeness, we
state here without proof and in a simplified form. Define
Ga = (1, a, a2, . . .) to be the geometric sequence in a and
X+i = (xi, xi+1, . . .) the suffix of sequence X starting at
xi.
Theorem 3 ((Schuierer 2001)) Let X = (x0, x1, . . .) be
a sequence of positive numbers, r an integer, and a =
limn→∞(xn)1/n, for a ∈ R ∪ {+∞}. If Fk, k ≥ 0, is a
sequence of functionals which satisfy

1. Fk(X) only depends on x0, x1, . . . , xk+r,
2. Fk(X) is continuous, for all xi > 0, with 0 ≤ i ≤ k + r,
3. Fk(αX) = Fk(X), for all α > 0,
4. Fk(X + Y) ≤ max(Fk(X), Fk(Y)), and
5. Fk+i(X) ≥ Fk(X+i), for all i ≥ 1,
then

sup
0≤k<∞

Fk(X) ≥ sup
0≤k<∞

Fk(Ga).

Theorem 4 The exponential schedule which observes
Corollary 2 is optimal.

Proof. Let X = ((c0,m0, x0), (c1,m1, x1), . . .) denote an
optimal α-normalized schedule (w.r.t. the acceleration ratio
β), and Xs the sequence of the sorted X values (as argued
earlier, such an optimal schedule exists). In (Lopez-Ortiz,
Angelopoulos, and Hamel 2006), Theorem 1 can be used to
show

α(X) ≥ an+m

am − 1
, (9)

where a = limn→∞(xn)1/n.
Let Y = ((c0,m0, y0), (c1,m1, y1), . . .) denote the λ-

normalized schedule derived from X by applying (if nec-
essary) the process described in Lemma 6. Then, from
the details of the proof of Lemma 6, the sequence Y s of
the sorted Y values is such that ysi ≤ xsi . Thus, if ã =
limn→∞(yn)1/n, we have that ã ≤ a.

Define Fk :=
k+m∑
i=0

ysi

/
k+m∑
i=k+1

ysi . It is easy to see that Fk

satisfies all the conditions of Theorem 3. Hence

sup
0≤k<∞

Fk(Y s) ≥ sup
0≤k≤∞

{
k+m∑
i=0

ãi
/ k+m∑
i=k+1

ãi

}
. (10)

Note that if ã ≤ 1, then the ratio in (10) tends to infinity
as k →∞, then (5) and Theorem 2 imply β(X) ≥ 1 + 1/ε,
which is trivially matched by any schedule. Hence, we can
assume that ã > 1 and obtain

sup
0≤k<∞

Fk(Y s) ≥ sup
0≤k≤∞

{
k+m∑
i=0

ãi
/ k+m∑
i=k+1

ãi

}

= sup
0≤k<∞

{
ãm − ã−k+1

ãm − 1

}

872

(ã>1)
=

ãm

ãm − 1
≥ am

am − 1
, (11)

where the last inequality follows from the fact that the
function f(x) = xm/(xm − 1) is decreasing in x, and ã ≤
a. Combining (9), (11), with Lemma 5, Theorem 2 and the
definition of λ(X) it follows that

β(X)≥min
{
max

{
an+m

(1 + ε)(am− 1)
,
am

am− 1

}
,
1 + ε

ε

}
.

The theorem follows then from Corollary 2. 2

Conclusions and future work
In this paper we formulated and addressed the problem of
designing interruptible algorithms in a setting in which the
interruption is not a hard deadline, but rather an additional
time window is available to the algorithm to complete its
execution. We presented an exponential schedule of optimal
acceleration ratio in this setting.

Several other formulations of a soft deadline are possible
(e.g., by defining a penalty proportional to the amount of
time between the actual interruption and the time that a so-
lution is returned). It would be interesting to address such
alternative formulations and compare them in the context of
a real-time application. Another topic of future work in-
cludes average-case analysis of schedules, namely the case
in which the interruption and/or the window are drawn from
a known distribution. Last, the problems of scheduling con-
tract algorithms and parallel ray-searching are surprisingly
interrelated, as shown in (Bernstein, Finkelstein, and Zilber-
stein 2003). Do similar connections arise when dealing with
soft, as opposed to hard, deadlines?

References
Bernstein, D.; Perkins, T. J.; Zilberstein, S.; and Finkel-
stein, L. 2002. Scheduling contract algorithms on multiple
processors. In Proceedings of the 18th National Confer-
ence on Artificial Intelligence, 702–706.
Bernstein, D. S.; Finkelstein, L.; and Zilberstein, S. 2003.
Contract algorithms and robots on rays: Unifying two
scheduling problems. In Proceedings of the 18th Inter-
national Joint Conference in Artificial Intelligence, 1211–
1217.
Dean, T., and Boddy, M. S. 1998. An analysis of time-
dependent planning. In Proceedings of the 15th National
Conference on Artificial Intelligence, 49–54.
Gal, S. 1980. Search Games. Academic Press.
Horvitz, E. 1987. Reasoning about beliefs and actions
under computational resource constraints. In Proceedings
of the 3rd Annual Conference on Uncertainty in Artificial
Intelligence, 301–324.
Horvitz, E. 1998. Reasoning under varying and uncertain
resource constraints. In Proceedings of the 15th National
Conference on Artificial Intelligence, 111–116.
Lopez-Ortiz, A.; Angelopoulos, S.; and Hamel, A. 2006.
Optimal scheduling of contract algorithms for anytime
problems. In Proceedings of the 21st National Conference
on Artificial Intelligence.

Manolache, S.; Eles, P.; and Peng, Z. 2004. Optimiza-
tion of soft real-time systems with deadline miss ratio con-
straints. In Proc. 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’04), 562.
Russell, S. J., and Zilberstein, S. 1991. Composing real-
time systems. In Proceedings of the 12th International
Joint Conference in Artificial Intelligence, 212–217.
Schuierer, S. 2001. Lower bounds in online geometric
searching. Computational Geometry: Theory and Applica-
tions 18(1):37–53.
Zilberstein, S.; Charpillet, F.; and Chassaing, P. 1999.
Real-time problem-solving with contract algorithms. In
Proceedings of the 16th International Joint Conference in
Artificial Intelligence, 1008–1015.
Zilberstein, S.; Charpillet, F.; and Chassaing, P. 2003. Op-
timal sequencing of contract algorithms. Ann. Math. Artif.
Intell. 39(1-2):1–18.

873

