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Abstract—In Cognitive Radio (CR) networks, secondary users
can be coordinated to perform spectrum sensing so as to detect
primary user activities more accurately. However, more sensing
cooperations for a channel may decrease the transmission time
of the secondary users, or lose opportunities for exploiting other
channels. In this paper, we study this tradeoff by using the theory
of Partially Observable Markov Decision Process (POMDP). This
formulation leads to an optimal sensing scheduling policy that
determines which secondary users sense which channels with
what miss detection probability and false alarm probability. A
myopic policy with lower complexity yet comparable performance
is also proposed. We further analytically study the properties and
the solution structure for the myopic and the optimal policies
under a simplified system model. Theoretical results reveal that
under certain conditions, some simple but robust structures of
the value function exist, which lead to an easy way to obtain the
solution of POMDP. Moreover, the cooperative sensing scheduling
problem embedded in our POMDP, which is generally a hard
combinatorial problem, can be analyzed in an efficient way.
Numerical and simulation results are provided to illustrate that
our design can utilize the spectrum more efficiently for cognitive
radio users.

Index Terms—cognitive radio, cooperative sensing scheduling,
partially observable Markov decision process

I. INTRODUCTION

Cognitive Radio (CR) with its intelligence in interaction
with the surrounding environment and flexibility in adapting
its transmission parameters (e.g. frequency agility and power
control etc.) has been considered as an important technique to
solve the spectrum scarcity problem [1].

Compared to the conventional systemes, the functionalities
of spectrum sensing and management are novel to CR, and
they determine how good Secondary Users (SUs)1 can identify
the spectrum-hole and under what level Primary Users (PUs)
are influenced.

In practice, the infrastructure-based CR system (e.g. 802.22
specification[3]) relies on Base Station (BS) to manage the cell
and all the associated SUs. Through the coordination of BS,
SUs can perform the so-called cooperative spectrum sensing
to improve the spectrum sensing accuracy significantly [4].

Excessive cooperative spectrum sensing, however, reduces
the transmission time of SUs and thus impairs the system
efficiency. The inefficiency may become severe if the number
of SUs is limited and only sequential (narrowband) sensing

1In CR terminology, Primary User (PU) refers to the user which has
an exclusive ownership of some frequency band authorized by regulatory.
Meanwhile, Secondary User (SU) refers to the user which, although has
no pre-authorized frequency, can opportunistically access the unused/under-
utilized frequency of PU without causing severe interference.

is allowed2. For example, SUs with limited sensing duration
may cooperatively sense some of the channels to obtain
higher sensing accuracy, but the downside is that they lose
opportunities for exploiting the other channels. Therefore, a
tradeoff exists between achieving better sensing accuracy on
one channel and exploring more transmission opportunities on
the other channels.

Meanwhile, in practice the idle spectrum available for SUs
to access is time-varying, and the information about the the
dynamics of idle spectrum can only be partially observed by
SUs (due to both the imperfect spectrum sensing and sensing
scheduling policy which will be described in detail in sections
II and IV).

Based on these considerations, in this paper we study
the dynamic scheduling for cooperative sensing under time-
varying spectrum environment. Specifically, we formulate our
dynamic sensing scheduling problem with the Partially Ob-
servable Markov Decision Process (POMDP) and derive an
optimal sensing scheduling policy (i.e. determining which SUs
to sense which set of channels with what sensing accuracy)
by solving the formulated problem. We also analytically study
the properties and the solution structure for the myopic and
the optimal policies under a simplified system model. The
theoretical results show some interesting properties of the
problem and lead to a simple structural policy.

In [6], the authors studied the optimal distributed MAC
protocols for opportunistic spectrum access in the POMDP
framework. The proposed protocols guaranteed the synchro-
nization between the secondary transmitters and receivers
without requiring a central controller. [12] studied the structure
of myopic policy in their POMDP problem and compared the
performance of the myopic policy with the optimal policy.
[13] considered a similar problem but took the imperfect
sensing performance into consideration. CR networks with
energy constraint were studied in [14]. Threshold structures
of the optimal sensing and access policies were found, which
reduced the complexity in searching for the optimal policies.
Dynamic spectrum management was also studied in [16]
[17]. The theory of cooperative sensing provides a method
for CR networks to improve sensing accuracy and better
exploit spectrum opportunities. [5] gave a survey on various
cooperative spectrum sensing schemes. Several robust cooper-
ative spectrum sensing techniques were established and their

2According to [9], the wideband spectrum sensing refers to that the sensing
device can sense multiple spectrum bands over a wide frequency range at a
time. Meanwhile, the sequential spectrum sensing refers to that the sensing
device can only sense one spectrum band at a time, and thus different spectrum
bands have to be sensed sequentially.
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performance were analyzed. [19] studied the impact of the
cooperative sensing overhead on the system throughput with
the consideration of the number of reporting packets. [20]
studied a similar problem, which aimed to find the optimal
sensing time and the optimal parameter for the result fusion in
order to maximize SUs’ throughput. [21] extended the analysis
to the case of multiple channels, and the soft decision rule
is applied in the energy sensing. However, [19]-[21] did not
consider a time-varying dynamic spectrum environment, and
they did not provide an analytical insight for the cooperative
sensing scheduling problem, i.e. how to assign SUs to sense
the channels.

The rest of the paper is organized as follows. We present
the network model and propose our protocol in section II. We
then formulate the problem of the tradeoff between cooperative
sensing time and transmission time as a POMDP in section
III. We derive the optimal policy and myopic policy for our
problem in section IV. We study the properties and solution
structures of the value functions in section V. Section VI
presents numerical and simulation results. Finally, we con-
clude this paper in section VII.

II. SYSTEM MODEL

A. Network Model

In this work, we consider a centralized CR network with a
base station, which manages the cooperative sensing schedul-
ing as well as data transmission. All SUs in a cell need to be
synchronized. In the following part, we further assume there
exists a set of SUs ℳ = {1, 2, ...,𝑀}, and a set of orthogonal
frequency channels 𝒩 = {1, 2, ..., 𝑁} with a BS in a cell.

Each SU is equipped with a single radio interface. In this
work, we assume all SUs use energy detection mechanism
for spectrum sensing and each SU can only carry out the
sequential spectrum sensing instead of the wideband spectrum
sensing due to some PHY layer limitations.

B. Opportunistic Channel Availability Model
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Fig. 1. DTMC model for PU channel n

In this paper, we assume primary system operates in a time
slotted manner with fixed slot length 𝐿. In the PU network,
each channel’s occupancy (from slot to slot) follows a two-
state Discrete Time Markov Chain (DTMC) as shown in
Figure 1. Let 𝑠𝑛(𝑡) denote the availability state of channel
𝑛 (𝑛 ∈ 𝒩 ) in time slot 𝑡. 𝑠𝑛(𝑡) = 0 denotes channel 𝑛
is idle in slot 𝑡, while 𝑠𝑛(𝑡) = 1 denotes channel 𝑛 is
busy in slot 𝑡. Furthermore, let the 1 × 𝑁 vector s(𝑡) =
(𝑠1(𝑡), ..., 𝑠𝑁 (𝑡)) denote the channel availability state vector
for all the PU channels in slot 𝑡, which has the state space
Ωs = {(𝜔1, 𝜔2, ..., 𝜔𝑁 )∣𝜔𝑛 = {0, 1},∀𝑛 ∈ 𝒩}. By assuming
independence across different channels, the dynamics of s(𝑡)

follow a DTMC with transition probability from state vector
𝜔 to state vector 𝜔′ given as:

𝑃𝜔𝜔′ = Pr(s(𝑡+ 1) = 𝜔′∣s(𝑡) = 𝜔) =
∏𝑁

𝑛=1
𝑃𝑛
𝜔𝑛𝜔′

𝑛
, (1)

∀𝜔, 𝜔′ ∈ Ω𝑠, where 𝜔𝑛, 𝜔′
𝑛 denote the 𝑛th element of

state vector 𝜔 and 𝜔′, respectively. 𝑃𝑛
𝜔𝑛𝜔′

𝑛
represents chan-

nel 𝑛’s state transition probability. We consider the DTMC
model as time homogeneous, i.e. 𝑃𝑛

01, 𝑃
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time independent. We assume the PU channels’ statistical
behavior 𝑃𝑛

01, 𝑃
𝑛
10,∀𝑛 ∈ 𝒩 , can be obtained from a long term

measurement by some channel parameter estimator [10], and
this information is provided to CR BS. Note that for each
channel 𝑛, the stationary probabilities of being idle and busy
𝜋𝑛
0 , 𝜋

𝑛
1 ,∀𝑛 ∈ 𝒩 can be calculated as 𝜋𝑛
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C. Spectrum Sensing Technique and Cooperative Detection

Several well-known spectrum sensing techniques have been
proposed including matched filter detection, energy detection,
cyclostationary feature detection and wavelet detection [1]
[5]. In this paper, we adopt the energy detection method
[11]. The spectrum sensor detects the presence of PU sig-
nals by performing the binary hypothesis test: Hypothesis
0 (𝐻0) corresponds to no signal transmitted, while hypothesis
1 (𝐻1) corresponds to signal transmitted. Then, in a non-
fading environment, the detection probability 𝑃𝐷 and false
alarm probability 𝑃𝐹𝐴 are given as 𝑃𝐷 = Pr(𝑌 > 𝜆∣𝐻1) =
𝑄𝑢(

√
2𝛾,

√
𝜆) and 𝑃𝐹𝐴 = Pr(𝑌 > 𝜆∣𝐻0) = Γ(𝑢, 𝜆

2 )/Γ(𝑢),
where 𝑌 is the test or decision statistic, 𝜆 is the decision
threshold, 𝑢 is the time bandwidth product, 𝛾 is the SNR,
𝑄𝑢(⋅, ⋅) is the generalized Marcum Q-function, Γ(⋅) and Γ(⋅, ⋅)
are the complete and incomplete gamma functions. Then, the
miss detection probability is 𝑃𝑀𝐷 = 1− 𝑃𝐷.

We adopt a simple cooperative sensing scheme called “OR”
rule [5], which works as follows: every SU sends its sensing
result (0 or 1) of a channel to the BS, and as long as one SU
senses the channel as busy, the BS will take this channel as
busy. Only if all SUs sense the channel as idle, BS will take the
channel as idle. Then, the miss detection and false alarm prob-
ability of channel 𝑛 are 𝑃𝑀𝐷(𝑛) =

∏
𝑚∈ℳ(𝑛)

𝑃𝑀𝐷(𝑚,𝑛) and

𝑃𝐹𝐴(𝑛) = 1 − ∏
𝑚∈ℳ(𝑛)

(1 − 𝑃𝐹𝐴(𝑚,𝑛)), where 𝑃𝑀𝐷(𝑚,𝑛)

and 𝑃𝐹𝐴(𝑚,𝑛) are SU 𝑚′s miss detection probability and
false alarm probability of channel 𝑛, and ℳ(𝑛) is the set of
SUs sensing this channel.

D. Proposed protocol

Figure 2 shows an example to illustrate the operation
process of our proposed protocol. At the beginning of each
slot, each channel will have a state transition according to
the DTMC model described in section II B. The BS decides
which SU senses which set of channels with what probabilities
of miss detection and false alarm based on the optimal policy
obtained. After receiving the decisions from the BS, the SUs
will sequentially sense the assigned channels, and the channel
sensing sequence can be arbitrarily determined. Since the
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Fig. 2. An example of the operation process of our proposed protocol

sensing duration for each channel is a fixed value Δ𝐿, and we
have limited number of SUs, if the BS decides some channels
are sensed by more SUs in order to increase these channels’
sensing accuracy, then each SU may need to sense more
channels accordingly, thus causing less time for transmission
(Notice that in Figure 2, the slot length is 𝐿. The time duration
for BS scheduling cooperative sensing is 𝜂1. The time duration
for SUs uploading their sensing results and BS allocating
channels to SUs is 𝜂2. All these three values are constant).

In our proposed protocol, data transmission works as fol-
lows: if the BS decides a channel as idle, then the BS will
allocate this channel to one of SUs. Our protocol requires
sensing synchronization for all SUs, i.e., each SU senses the
same number of channels.

At the end of a slot, the SU using the channel will send an
ACK or NAK to the BS. In this paper, we only consider the
case of downlink transmission, but our proposed protocol can
also be applied to the uplink transmission.

III. PROBLEM FORMULATION

At the beginning of each time slot, based on previous actions
and observations, the BS could have a belief state over every
channel, which is the probability of a PU channel being in that
state in the previous time slot. This is different from traditional
Markov decision process since the BS may not know the exact
state of a channel. For instance, if BS determines the channel
as busy, it can not be sure if it is busy due to the probability
of false alarm. Besides, if some channels are not sensed by
any SU, the exact state of these channels will not be known
either. Our problem thus fits into the POMDP framework.

A. Action

In our formulation, at the beginning of time slot 𝑡 there are
two actions, 𝑎𝐼 and 𝑎𝐼𝐼 . 𝑎𝐼 determines which SU senses which
channels. 𝑎𝐼𝐼 determines how to tune the sensor operating
point of each SU (i.e. miss detection probability and false
alarm probability) when sensing a channel.

𝑎𝐼(𝑡) =

⎡⎣ 𝑎111(𝑡) ... 𝑎11𝑁 (𝑡)
... ... ...

𝑎1𝑀1(𝑡) ... 𝑎1𝑀𝑁 (𝑡)

⎤⎦

where 𝑎1𝑚𝑛(𝑡) ∈ {0, 1}, 𝑎1𝑚𝑛(𝑡) = 1 denotes SU 𝑚 senses
channel 𝑛 in time slot 𝑡, and 𝑎1𝑚𝑛(𝑡) = 0 means the opposite.
We define the set of SUs that are scheduled to sense channel
𝑛 in slot 𝑡 as ℳ(𝑛, 𝑡) = {𝑚∣𝑎1𝑚𝑛(𝑡) = 1}. Similarly, we have
𝑎𝐼𝐼(𝑡), where each element 𝑎2𝑚𝑛(𝑡) = 𝑃𝑀𝐷(𝑚,𝑛, 𝑡) denotes
the specified miss detection probability for SU 𝑚 on channel 𝑛
in time slot 𝑡. Notice that by setting the value of miss detection
probability 𝑃𝑀𝐷(𝑚,𝑛, 𝑡), we actually determine the sensor
operating point for SU 𝑚 on channel 𝑛 in slot 𝑡, because both
the sensing decision threshold 𝜆 and the false alarm probability
𝑃𝐹𝐴(𝑚,𝑛, 𝑡) for SU 𝑚 on channel 𝑛 in slot 𝑡 can be calculated
from 𝑃𝑀𝐷(𝑚,𝑛, 𝑡). Specifically, in this work we choose the
value of miss detection probability 𝑃𝑀𝐷(𝑚,𝑛, 𝑡) from a set of
discrete values, which is practical for most spectrum sensing
modules’ operation because the sensing operation point cannot
be tuned continuously. We define a(𝑡)= [𝑎𝐼(𝑡), 𝑎𝐼𝐼(𝑡)].

B. Observation

Let 𝜃𝑛(𝑡) denote the observation result of channel 𝑛 in
time slot 𝑡. Then 𝜃𝑛(𝑡) could have the following 4 possible
observations,

∙ BS determines the channel as idle and receives ACK after
transmission; denote this as observation 0.

∙ BS determines the channel as idle and receives NAK
after transmission due to miss detection; denote this as
observation 1.

∙ BS determines the channel as busy, does not use the
channel, and thus the BS receives no ACK or NAK;
denote this as observation 2.

∙ BS decides not to sense the channel and thus observes
nothing; denote this as observation 3.

Further, let the 1 × 𝑁 vector 𝜃(𝑡) = (𝜃1(𝑡), ...𝜃𝑁 (𝑡)) denote
the channel observation vector for all the PU channels at
the end of slot 𝑡, which has the observation space Z𝜃 =
{(𝑧1, 𝑧2, ..., 𝑧𝑁 )∣𝑧𝑛 = {0, 1, 2, 3},∀𝑛 ∈ 𝒩}.

The individual channel observation probability
Pr(𝜃𝑛(𝑡)∣a(𝑡), 𝑠𝑛(𝑡)) is defined as the probability of the
observation given the action we take and the current state
of channel 𝑛. Let 𝑃𝑀𝐷(𝑛, 𝑡) denote the miss detection
probability and 𝑃𝐹𝐴(𝑛, 𝑡) denote the false alarm probability
of channel 𝑛 in time slot 𝑡, respectively. Because of the “OR”
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rule in cooperative sensing, we have

𝑃𝑀𝐷(𝑛, 𝑡) =
∏

𝑚∈ℳ(𝑛,𝑡)

𝑃𝑀𝐷(𝑚,𝑛, 𝑡),

𝑃𝐹𝐴(𝑛, 𝑡) = 1−
∏

𝑚∈ℳ(𝑛,𝑡)

(1− 𝑃𝐹𝐴(𝑚,𝑛, 𝑡))
(2)

Then the observation probability of the system is given by

Pr(𝜃(𝑡) = z∣a(𝑡), s(𝑡) = 𝜔)

=
𝑁∏

𝑛=1

Pr(𝜃𝑛(𝑡) = 𝑧𝑛∣a(𝑡), 𝑠𝑛(𝑡) = 𝜔𝑛)
(3)

where z ∈ Z𝜃 is the observation vector, and 𝑧𝑛 denotes the
𝑛th element of observation vector z.

For the sake of simplicity, we assume every SU being sched-
uled to sense channel 𝑛 should tune to the same sensor op-
erating point (i.e. 𝑃𝑀𝐷(𝑚,𝑛, 𝑡) = ∣ℳ(𝑛,𝑡)∣

√
𝑃𝑀𝐷(𝑛, 𝑡),∀𝑚 ∈

ℳ(𝑛, 𝑡)).

C. Belief vector

Because of the partial spectrum sensing decisions and the
presence of sensing errors, a BS may not observe the true
system state. However, the BS can infer the system state based
on all its past decisions and observations, and summarize this
information into a belief vector [6], b(𝑡) ≜ {𝑏𝜔(𝑡)}𝜔∈Ωs

3

where 𝑏𝜔(𝑡) ≜ Pr(s(𝑡) = 𝜔∣b(0), {a(𝜏), 𝜃(𝜏)}𝑡𝜏=1) ∈ [0, 1]
is the conditional probability (given all past decisions and
observations) that the system state is 𝜔 in the current time
slot 𝑡. 𝑏𝜔(𝑡) can only be computed at the end of the current
time slot 𝑡 when 𝜃(𝑡) is known (as shown in Figure 2). The
BS will make actions at slot 𝑡 + 1 based on its belief vector
of the system state b(𝑡). Note that b(0) and s(0) denote the
initial belief value and the initial system state at the beginning
of each decision circle, respectively.

We define the updated belief vector as follows:

b(𝑡) ≜ 𝒯 (b(𝑡− 1),a(𝑡), 𝜃(𝑡)) ≜ {𝑏𝜔′(𝑡)}𝜔′∈Ωs (4)

where 𝒯 (b(𝑡 − 1),a(𝑡), 𝜃(𝑡)) represents the updated knowl-
edge of the network state after incorporating the action and
observation obtained in slot t. Then, from Bayes rule, we have

𝑏𝜔′(𝑡) = Pr(s(𝑡) = 𝜔′∣b(𝑡− 1),a(𝑡), 𝜃(𝑡)) (5)

=

∑
𝜔∈Ωs

𝑏𝜔(𝑡− 1)𝑃𝜔𝜔′ Pr(𝜃(𝑡)∣a(𝑡), s(𝑡) = 𝜔′)∑
𝜔∈Ωs

∑
𝜔′′∈Ωs

𝑏𝜔(𝑡− 1)𝑃𝜔𝜔′′ Pr(𝜃(𝑡)∣a(𝑡), s(𝑡) = 𝜔′′)

From these equations, we know that we have regained the
Markov property for the belief state in that the next belief
state depends only on the previous belief state, the current
action and the current observation received.

D. Reward function

There will be a reward when the channel is sensed and
finally the BS receives an 𝐴𝐶𝐾, the immediate reward for

3Here we abuse the notation a little since we just want to list all the elements
in the set Ωs and assign them to the vector b(𝑡), and the element order is
not important.

channel 𝑛 (𝑛 ∈ 𝒩 ) is

𝑅𝑛(a(𝑡), 𝜃𝑛(𝑡))

=

{
𝐿−𝑘−𝜂

𝐿 , if
∑𝑀

𝑚=1 𝑎
1
𝑚𝑛(𝑡) > 0, 𝜃𝑛(𝑡) = 0

0, otherwise
(6)

where 𝑘 = Δ𝐿 ⋅ ∑𝑁
𝑛=1 𝑎

1
𝑚𝑛(𝑡), ∀𝑚 ∈ ℳ, is the sens-

ing duration (note that to keep synchronization, each SU
should sense same number of channels, then

∑𝑁
𝑛=1 𝑎

1
1𝑛(𝑡) =∑𝑁

𝑛=1 𝑎
1
2𝑛(𝑡) = ... =

∑𝑁
𝑛=1 𝑎

1
𝑀𝑛(𝑡)), Δ𝐿 is the sensing

duration for one channel, and 𝜂 = 𝜂1 + 𝜂2 is a constant time
used for BS decisions and getting sensing results from SUs.
The reward function represents the ratio between the actual
transmission time and the total slot length. Assume the number
of bits delivered is proportional to the transmission time, then
the physical meaning of the reward function is the normalized
throughput achieved when the transmission is successful. The
immediate reward for all the channels in time slot 𝑡 is

𝑅(a(𝑡), 𝜃(𝑡)) =
𝑁∑

𝑛=1

𝑅𝑛(a(𝑡), 𝜃𝑛(𝑡)) (7)

Finally, the expected reward for BS to make a decision at
the beginning of slot 𝑡 is

𝑅̃(a(𝑡), s(𝑡− 1) = 𝜔) =∑
𝜔′∈Ωs

∑
z∈Z𝜃

𝑃𝜔𝜔′ Pr(𝜃(𝑡) = z∣a(𝑡), s(𝑡) = 𝜔′)𝑅(a(𝑡), 𝜃(𝑡) = z)

E. Complete problem formulation

We aim to develop the optimal policy that can maximize
the expected total throughput of the SUs over a finite time
horizon 𝑇 , and at the same time it must satisfy the synchro-
nization constraint and primary user interference constraint.
The problem is formulated as follows:

max 𝐸{
𝑇∑

𝑡=1

𝑅(a(𝑡), 𝜃(𝑡))∣b(0) = b} (8)

subject to:
𝑁∑

𝑛=1

𝑎11𝑛(𝑡) =
𝑁∑

𝑛=1

𝑎12𝑛(𝑡) = ... =
𝑁∑

𝑛=1

𝑎1𝑀𝑛(𝑡) (9)

𝐿−Δ𝐿 ⋅
𝑁∑

𝑛=1

𝑎1𝑚𝑛(𝑡)− 𝜂 > 0, ∀𝑚 ∈ ℳ (10)

𝑃𝑐(𝑛, 𝑡) ≤ 𝜁, ∀𝑛 ∈ 𝒩 (11)

In the above formulation, b is the initial belief vector
which could be set according to the channels’ statistical
behavior. Constraint (9) is a synchronization constraint, which
guarantees that each SU senses the same number of channels.
Constraint (10) guarantees the transmission time is positive.
Constraint (11) is the interference constraint, which aims to
satisfy primary users’ interference tolerance. Here, 𝑃𝑐(𝑛, 𝑡) is
the collision probability of channel 𝑛 in slot 𝑡, if we want
to guarantee this value below the prescribed primary channel
collision probability 𝜁, it is equivalent to require the miss
detection probability of channel 𝑛 in slot 𝑡 below this threshold

𝑃𝑀𝐷(𝑛, 𝑡) ≤ 𝜁, ∀𝑛 ∈ 𝒩 . (12)
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Then the formulation with objective (8) constrained by (9),
(10), and (11) changes into the formulation with objective (8)
constrained by (9), (10), and (12).

IV. OPTIMAL POLICY AND MYOPIC POLICY

A. Optimal policy

In order to solve the objective function (8), we could solve
the following value function 𝑉𝑡(b(𝑡 − 1)) which denotes the
maximum expected remaining reward that can be obtained
from the beginning of slot 𝑡 when the current belief vector
is b(𝑡 − 1). We use backward induction method to calculate
the value function that consists of two parts. One part is the
expected immediate reward

∼
𝑅(a(𝑡), s(𝑡 − 1) = 𝜔) in the

current time slot, and the other part is the expected future
reward 𝑉𝑡+1(𝒯 (b(𝑡 − 1),a(𝑡), 𝜃(𝑡) = z)). An action taken
in a slot will influence these two parts of the total reward,
and the optimal policy finds a balance between obtaining the
immediate reward and obtaining the information for future use.
(i) When 𝑡 = 1, 2, ...𝑇 − 1,

𝑉𝑡(b(𝑡− 1))

= max
a(𝑡)

{
∑
𝜔∈Ωs

𝑏𝜔(𝑡− 1)[𝑅̃(a(𝑡), s(𝑡− 1) = 𝜔)+∑
𝜔′∈Ωs

𝑃𝜔𝜔′
∑
z∈Z𝜃

Pr(𝜃(𝑡) = z∣a(𝑡), s(𝑡) = 𝜔′)

× 𝑉𝑡+1(𝒯 (b(𝑡− 1),a(𝑡), 𝜃(𝑡) = z))]}

(13)

subject to: (9), (10), (12)
(ii) When 𝑡 = 𝑇,

𝑉𝑡(b(𝑡− 1)) = max
a(𝑡)

∑
𝜔∈Ωs

𝑏𝜔(𝑡− 1)
∼
𝑅(a(𝑡), s(𝑡− 1) = 𝜔)

subject to: (9), (10), (12) (14)

where
∼
𝑅(a(𝑡), s(𝑡 − 1) = 𝜔) is given by (8), 𝑃𝜔𝜔′ is given

by (1), Pr(𝜃(𝑡) = z∣a(𝑡), s(𝑡) = 𝜔′) is given by (3), and
𝒯 (b(𝑡− 1),a(𝑡), 𝜃(𝑡) = z) is given by (4) and (5).

The optimal policy could be obtained from the value func-
tion. We use the incremental pruning algorithm to solve the
value function. Detailed algorithm and its complexity analysis
could be referred to [8].

B. Myopic policy

Although the optimal scheduling policy for cooperative
spectrum sensing can be derived from the value function, the
required computation complexity grows tremendously with the
numbers of SUs and channels, even using the incremental
pruning algorithm. Moreover, the optimal scheduling policy
requires maintaining a table that specifies the optimal actions
in every time slot. Therefore, the table could become very
large as the time horizon increases. One solution for this
computational complexity problem is the divide and conquer
approach. For example, we separate all SUs into two smaller
SU groups and also separate all channels into two smaller
channel groups. Then, we can carry out two POMDP algo-
rithms each consisting of one group of SUs and one group of
channels.

To further address the computational complexity problem,
in this work we also consider a myopic scheduling policy
for cooperative spectrum sensing, which can be expressed as
follows:

a∗(𝑡) = argmax
a(𝑡)

∑
𝜔∈Ωs

𝑏𝜔(𝑡− 1)
∼
𝑅(a(𝑡), s(𝑡− 1) = 𝜔)

subject to: (9), (10), (12)

Essentially, in our myopic policy, BS aims to maximize its
immediate expected reward in each time slot 𝑡. (Notice that
BS also uses (4) and (5) to update its belief state 𝑏𝜔(𝑡)). Our
following simulation results show that the myopic scheduling
policy can achieve a comparable performance as that of the
optimal policy based on POMDP formulation.

V. POLICY STRUCTURES OF A SIMPLIFIED SYSTEM
MODEL

In the previous section we show the methods for obtaining
the optimal policy and the myopic policy. However, obtaining
the optimal policy requires a recursive computation of the
value function and the BS has to keep a table containing all
the action profile, which could be quite huge when the system
dimensionality increases. Furthermore, although the myopic
sensing reduces the computation complexity at the expense
of loosing optimality, the BS has to keep track of the belief
vector and update it at each time slot. In this section, we aim
to seek an efficient way to compute the optimal and myopic
decisions by exploiting the inherent properties of the problem
and the structure of the value function.

We focus on a simplified system model in this section. We
consider a network consists of two SUs (i.e. 𝑀 = 2) and two
channels (i.e. 𝑁 = 2) with a BS. The other system settings
are the same as mentioned in section II with the additional
assumptions as stated in 1) below.

1) Limited Action: Here we limit the choice of 𝑎𝐼 to obtain
some insights of the problem studied. We assume the sensing
duration 𝑘 = Δ𝐿 for all 𝑡, i.e. at each time slot 𝑡 the BS will
assign each SU to sense one channel. Under the assumptions
above, the actions can be redefined as 𝑎̃𝐼(𝑡):

𝑎̃𝐼(𝑡) =

[
𝑎111(𝑡) 𝑎112(𝑡)
𝑎121(𝑡) 𝑎122(𝑡)

]
(15)

where 𝑎1𝑚𝑛(𝑡) ∈ {0, 1}, ∀𝑚,𝑛, and
∑𝑁

𝑛=1 𝑎
1
𝑚𝑛(𝑡) = 1, ∀𝑚.

For presentation convenience, we define set 𝔸 ≜ {0, 1, 2, 3},
where 𝑎̃𝐼(𝑡) ∈ 𝔸 and

𝑎̃𝐼(𝑡) = 0 ≜ [𝑎111(𝑡) = 1 𝑎112(𝑡) = 0; 𝑎121(𝑡) = 1 𝑎122(𝑡) = 0]

𝑎̃𝐼(𝑡) = 1 ≜ [𝑎111(𝑡) = 0 𝑎112(𝑡) = 1; 𝑎121(𝑡) = 0 𝑎122(𝑡) = 1]

𝑎̃𝐼(𝑡) = 2 ≜ [𝑎111(𝑡) = 1 𝑎112(𝑡) = 0; 𝑎121(𝑡) = 0 𝑎122(𝑡) = 1]

𝑎̃𝐼(𝑡) = 3 ≜ [𝑎111(𝑡) = 0 𝑎112(𝑡) = 1; 𝑎121(𝑡) = 1 𝑎122(𝑡) = 0].

When 𝑎̃𝐼(𝑡) = 0, the BS assigns both SUs to cooperatively
sense channel 1; similarly both SUs sense channel 2 when
𝑎̃𝐼(𝑡) = 1. Since the two SUs are homogeneous, to the deci-
sion maker 𝑎̃𝐼(𝑡) = 2 and 𝑎̃𝐼(𝑡) = 3 have the same meaning
that both channel 1 and channel 2 are sensed individually by
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a SU. Therefore we can remove one of them and express the
actions as 𝑎̃𝐼(𝑡) ∈ 𝔸 ≜ {0, 1, 2}.

As mentioned in section III, we assume every SU being
scheduled to sense channel 𝑛 will tune to the same sensor
operating point. As a result the operating point selection
action 𝑎𝐼𝐼 can be removed from the problem formulation. We
denote the miss detection probability under the chosen sensor
operating point as 𝑃𝑀𝐷, and the false alarm probability for
channel 𝑛 when sensed by one SU as 𝑃 1

𝐹𝐴 and sensed by
two SUs cooperatively as 𝑃 2

𝐹𝐴. Then the action profile at
time slot 𝑡 is reduced from a vector a(𝑡) to a scalar 𝑎̃(𝑡) and
𝑎̃(𝑡) = 𝑎̃𝐼(𝑡).

2) Belief Vector Separation: The dimension of the belief
vector b(𝑡) grows exponentially with the number of channels,
which will introduce difficulties to calculation and analysis.
Since the channels are independent and the occupancy of
which evolve according to their own transition probabilities,
we can alternatively adopt the marginal distribution which also
serves as the sufficient statistic of the system state [6]. Denote
the marginal distribution as b̃(𝑡) ≜ {𝑏10(𝑡), ..., 𝑏𝑁0 (𝑡)}, where
𝑏𝑛0 (𝑡) denotes the conditional probability that channel 𝑛 is idle
in time slot 𝑡 given all past decisions and observations:

𝑏𝑛0 (𝑡) ≜ Pr(𝑠𝑛(𝑡) = 0∣b̃(0), {𝑎̃(𝜏), 𝜃(𝜏)}𝑡𝜏=1) ∈ [0, 1]. (16)

The belief update of each channel can be separated as well.
Similar to (4), the updated belief vector is:

b̃(𝑡) ≜ 𝒯 (b̃(𝑡− 1), 𝑎̃(𝑡), 𝜃(𝑡)). (17)

3) Fixed Reward Function: Since in the simplified system
model we adopt fixed sensing duration for all time slot 𝑡, the
variable 𝑘 disappears from the reward function and the reward
function can then be simplified as

𝑅𝑛(𝑎̃(𝑡), 𝜃𝑛(𝑡))

=

{
𝐿−Δ𝐿−𝜂

𝐿 , if
∑𝑀

𝑚=1 𝑎
1
𝑚𝑛(𝑡) > 0, 𝜃𝑛(𝑡) = 0

0, otherwise
(18)

We define 𝑅 = 𝐿−Δ𝐿−𝜂
𝐿 for easy presentation in the rest

of the paper.
4) Unconstrained POMDP: It has been proved in [6] that

by choosing the sensor operating point to be 𝑃𝑀𝐷 = 𝜁, the
optimal access policy is to transmit if the sensing outcome is
idle and not to transmit otherwise. In this case the constraint
(12) can be relaxed. To this end, all the constraints (9), (10) and
(12) can be relaxed from the original problem formulation and
value function. Then the problem becomes an unconstrained
POMDP.

A. The Structure of the Myopic Policy

In this section we aim to exploit the structure of the myopic
policy. The myopic policy loses optimality but can serve as a
suboptimal solution for the problem with lower computation
complexity. We first show that some of the actions will not
become an option in the myopic policy if certain condition is
satisfied. Then we will further show that the myopic policy
admits a simple structure similar to the one proposed in [13]
and [12]. Here the occupancies of the two channels evolve
according to two independent and identical Markov processes.

As a result the state transition probabilities of both channels
are the same, i.e. 𝑃𝑛

𝑖𝑗 = 𝑃𝑖𝑗 ∀𝑛.

Proposition 1: Consider two i.i.d channels. At any time slot
𝑡, the myopic action determined by the BS will not include
𝑎̃(𝑡) = 2, i.e. the myopic action can only be either 𝑎̃(𝑡) = 0
or 𝑎̃(𝑡) = 1, if the following condition (C0) holds:

(C0): 2𝑃 1
𝐹𝐴 − 1 > 𝑃 2

𝐹𝐴 (19)

Proof: See Appendix A.

Proposition 1 provides a condition for the BS to choose
either 𝑎̃(𝑡) = 0 or 𝑎̃(𝑡) = 1 as the myopic action at any time
slot 𝑡. The intuitive physical meaning of (C0) is that if the
false alarm probability obtained by cooperative sensing 𝑃 2

𝐹𝐴 is
small enough, i.e. lower than some threshold, then performing
cooperative sensing by two SUs on the same channel will be
more beneficial than other actions. In this case, at any time
slot 𝑡 only one channel will be sensed cooperatively by the two
SUs. The BS will not ask the SUs to sense both channels at
the same time since the expected immediate reward obtained
is smaller than the one obtained under cooperative sensing.
The dimensionality of the action space is further reduced by
this proposition.

Corollary 1: Assume condition (C0) holds. At any time slot
𝑡, the myopic action for the BS is to:

(i) assign both SUs to sense channel 𝑛∗ where 𝑛∗ =
argmax𝑛 𝑏

𝑛
0 (𝑡 − 1), when 𝑃00 > 𝑃10; (ii) assign both SUs

to sense channel 𝑛∗ where 𝑛∗ = argmin𝑛 𝑏
𝑛
0 (𝑡 − 1), when

𝑃00 < 𝑃10; (iii) assign both SUs to sense either one of the
channels, when 𝑃10 = 𝑃00.

Proof: See Appendix A.

This corollary provides a simple way to decide the myopic
policy for time slot 𝑡, if the BS keeps track of the belief vector
of both channels.

Proposition 2: Consider two i.i.d channels. Assume condi-
tion (C0) holds and the false alarm probability 𝑃 2

𝐹𝐴 given by
the sensor operating point satisfies

𝑃 2
𝐹𝐴 <

𝑃10𝑃01

𝑃00𝑃11
, if 𝑃00 > 𝑃10 (20)

and
𝑃 2
𝐹𝐴 <

𝑃00𝑃11

𝑃10𝑃01
, if 𝑃00 < 𝑃10, (21)

Then at any slot 𝑡, based on the action the BS took and the
observation obtained in the previous slot 𝑡 − 1, the myopic
action 𝑎̃∗(𝑡) for the BS at the current slot 𝑡 is given by:
(i) When 𝑃00 > 𝑃10, which means the occupancy of the
channel is positively correlated across time,

𝑎̃∗(𝑡) =
{

𝑎̃(𝑡− 1) if 𝜃𝑎̃(𝑡−1)+1 = 0
1− 𝑎̃(𝑡− 1) otherwise (22)

(ii) When 𝑃00 < 𝑃10, which means the occupancy of the
channel is negatively correlated across time,

𝑎̃∗(𝑡) =
{

1− 𝑎̃(𝑡− 1) if 𝜃𝑎̃(𝑡−1)+1 = 0
𝑎̃(𝑡− 1) otherwise (23)

which is independent of the belief vector and maximizes the
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expected immediate reward at time slot 𝑡.
Proof: See Appendix B.

Here we arrive at a similar result as mentioned in [13] [12]
and in addition prove the case of 𝑃00 > 𝑃10. Proposition 2
reveals that for i.i.d channels when the false alarm probability
satisfies (20) under the case of 𝑃00 > 𝑃10, the myopic policy
at time slot 𝑡 is to stay in the same channel 𝑎̃(𝑡 − 1) as in
time slot 𝑡 − 1 by receiving an ACK (i.e. 𝜃𝑎̃(𝑡−1)+1 = 0),
and switch to the other channel by receiving 𝜃𝑎̃(𝑡−1)+1 = 1
and 𝜃𝑎̃(𝑡−1)+1 = 2. This proposition can further reduce the
computation complexity of the myopic policy since it does not
require the BS to keep track of and update the belief vector. A
general assumption on the initial information of the system is
that only the stationary distribution of the underlying Markov
chain is available [6] [12]. Since the two Markov chains of
the two channels have the same parameters, the BS should
randomly choose a channel to sense in the first time slot.

B. The Structure of the Optimal Policy

The analysis of the myopic policy has provided us some
insights about the property and the structure of the value
function. We are interested to see whether such properties
and structure results can be extended to the optimal policy.
Obtaining the optimal policy requires the usage of backward
induction to solve the value function, which is much more
complicated than obtaining the myopic policy. We show next
some properties of the optimal policy which can help better
understand the problem studied and reduce the complexity.
The assumptions and the system parameters mentioned at the
beginning of section V are also applied here.

Proposition 3: Consider two i.i.d channels and the system
states of which evolve independently. If 𝑃00 > 𝑃10, then the
value function given in (13)(14) is monotonically increasing
with the belief vector b̃(𝑡 − 1) = {𝑏10(𝑡 − 1), 𝑏20(𝑡 − 1)}, i.e.
𝑉𝑡(b̃(𝑡 − 1)) ≥ 𝑉𝑡(c̃(𝑡 − 1)) for b̃(𝑡 − 1) ≥ c̃(𝑡 − 1), where
c̃(𝑡−1) ≜ {𝑐10(𝑡−1), 𝑐20(𝑡−1)} denotes another belief vector.

Proof: See Appendix C.

The condition 𝑃00 > 𝑃10 provides a sufficient condition
for the value function to be monotonically increasing with the
belief vector. Similar to [14], the rationale behind Proposition
3 is that a larger current belief vector implies a higher
probability the channel will be idle in future slots and hence
higher rewards can be received due to the occupancy of the
channel is positively correlated across time. Next we will show
another monotonic property of the value function.

Proposition 4: Consider two i.i.d channels and the system
states of which evolve independently. If 𝑃00 > 𝑃10 and
channel 𝑛 is sensed at time slot 𝑡, then the value function given
in (13)(14) is monotonically decreasing with the false alarm
probability 𝑃𝐹𝐴(𝑛, 𝑡), i.e. 𝑉𝑡(b̃(𝑡 − 1), 𝑃𝐹𝐴(𝑛, 𝑡) = 𝑃𝑎) ≥
𝑉𝑡(b̃(𝑡− 1), 𝑃𝐹𝐴(𝑛, 𝑡) = 𝑃𝑏) for 𝑃𝑎 ≤ 𝑃𝑏.

Proof: See Appendix D.

Proposition 4 reveals that if we want to obtain higher
immediate and future rewards, we should improve our sensing
performance to reduce the false alarm probability. Intuitively,

smaller false alarm probability means the BS may miss fewer
spectrum chances and hence receive higher rewards. In our
system model, smaller false alarm probability can be obtained
by assigning the SUs to sense the same channel cooperatively.
In other words, the BS has a temptation to require the SUs to
perform cooperative sensing instead of sense different channel
individually. We show next the sufficient condition for the
BS to always assign the SUs to cooperatively sense the same
channel.

Theorem 1: Assume 𝑃00 > 𝑃10 and condition (C0) holds.
Then for the system analyzed in this section, the optimal policy
𝑎̃∗(𝑡) for the BS at any time slot 𝑡 satisfies:

𝑎̃∗(𝑡) = 0 or 𝑎̃∗(𝑡) = 1, ∀𝑡 (24)

In other words, action 𝑎̃(𝑡) = 2 will never be chosen in the
optimal policy.

Proof: See Appendix E.

Theorem 1 extends Proposition 1 in the myopic case. It re-
veals that when the channel occupancy is positively correlated
across the time and condition (C0) holds, the BS will always
require the SUs to sense the same channel cooperatively. In
this case, the advantage of cooperative sensing is obvious.

It is natural to ask whether the simple solution structure of
the myopic policy shown in Proposition 2 can be applied to
the optimal policy. It has been shown to be true [12] and we
have the following conclusion.

Theorem 2: The myopic policy is optimal for the problem
we study in this section, i.e. for two i.i.d channels, if the
following conditions hold

(i) 𝑃00 > 𝑃10; (ii) condition (C0); (iii) 𝑃 2
𝐹𝐴 < 𝑃10𝑃01

𝑃00𝑃11
,

then the optimal policy is given by

𝑎̃∗(𝑡) =
{

𝑎̃(𝑡− 1) if 𝜃𝑎̃(𝑡−1)+1 = 0
1− 𝑎̃(𝑡− 1) otherwise (25)

Proof: The proof is similar to the proof of Proposition 2
and [12], and hence it is omitted here for brevity. Readers are
referred to [12] for details.

Theorem 2 shows the simple structure of the myopic policy
is also optimal in this case. The computation complexity of the
optimal policy can hence be much reduced since the simple
structure does not require the recursive computation of the
value function and updating the belief vector.

Based on the structure of the problem and numerical results,
we conjecture that all the propositions, corollary and theorems
for the myopic and optimal policies will hold for 𝑀 > 2 and
𝑁 > 2, under certain conditions with similar form as (C0).
We will show the condition for the situation that 𝑀 = 3 and
𝑁 = 3 in the next subsection.

C. Analysis for the System with Multiple SUs and Multiple
Channels

In this subsection, we study the solution structure for a more
complicated system, which has multiple SUs and multiple
channels. Specifically, we assume 𝑀 = 3 and 𝑁 = 3 in this
system. Similar to the situation that 𝑀 = 2 and 𝑁 = 2, we
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first investigate the condition that the BS assigns all the SUs
to sense one channel cooperatively.

Proposition 5: Consider three i.i.d channels. At any time
slot 𝑡, the myopic action determined by the BS is to assign all
the SUs to sense only one of the channels, if condition (C0)
and the following condition (C1) hold:

(C1): 𝑃 1
𝐹𝐴 + 𝑃 2

𝐹𝐴 − 1 > 𝑃 3
𝐹𝐴, (26)

where 𝑃 3
𝐹𝐴 denotes the false alarm probability achieved by

three SUs sensing cooperatively.
Proof: See Appendix F.

Similar to Proposition 1, Proposition 5 shows that if the false
alarm probability 𝑃 3

𝐹𝐴 is small enough, i.e. lower than some
threshold, then performing cooperative sensing by all the three
SUs on the same channel will be more beneficial than other
actions. When (C1) holds, all the corollaries, propositions we
established in section V subsection A can be easily extended
to the current system with 𝑀 = 3 and 𝑁 = 3, following
the same argument of proof. Specifically, for the case that
𝑃00 > 𝑃10, the propositions and theorems established in the
previous section also hold, which can be easily proved by
incorporating our argument of proof and the results in [18].
In other words, the optimality of the myopic policy also holds
for the system with 𝑀 = 3 and 𝑁 = 3.

Another interesting property related to the cooperative sens-
ing scheduling problem is given in the following corollary:

Corollary 2: Let 𝑃𝑚
𝐹𝐴 denote the false alarm probability

achieved by 𝑚 SUs sensing cooperatively. Assume 𝑚 ∈
[1,+∞) is a continuous variable and 𝑃𝑚

𝐹𝐴 is convex and
nonincreasing on 𝑚, then (C1) will not hold and the BS will
never assign all the SUs to sense one channel cooperatively if
(C0) does not hold.

Proof: See Appendix F.

Note that the assumption that 𝑃𝑚
𝐹𝐴 is convex and nonin-

creasing on 𝑚 holds for most of the cases one may encounter
[5] and hence is reasonable. The physical meaning of Corollary
2 is obvious from the proof: as long as assigning all the 𝑚
SUs to sense one channel cooperatively is not that beneficial
in terms of the value function, then the BS has no reason
to assign more SUs, i.e. larger than 𝑚, to sense one channel
cooperatively. On the contrary, the BS should spread out the
SUs to sense more channels in order to gain the largest
value function. Generally, when 𝑚 is large, the problem of
finding the best action for this sensing scheduling problem will
become a difficult combinatorial problem. However the proof
of Corollary 2 reveals that by making use of the property of
𝑃𝑚
𝐹𝐴, we can find the best action with low complexity even

when 𝑚 is large and 𝑃𝑚
𝐹𝐴 is not always convex on the domain

of 𝑚. The results of 𝑀 = 3 and 𝑁 = 3 provide us insight for
extending the results in section V. Extensions to the general
𝑀 and 𝑁 will be left for our future work.

VI. NUMERICAL AND SIMULATION RESULTS

We set the CR network with a set of SUs ℳ = {1, 2},
and a set of orthogonal frequency channels 𝒩 = {1, 2}.
Both of the channels have the same unit bandwidth. We set
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Δ𝐿 = 0.2𝐿 as the sensing duration for each channel. We
also set 𝜂 = 0.1𝐿 as the duration for BS’s sensing decision,
receiving sensing results from SUs, and channel allocation
decision. We assume Rayleigh fading channels with the same
average receiver SNR=10dB [5] [11] and we use the same time
bandwidth product 𝑢 = 5. In Figure 3, the time horizon is 15
slots, and in the other simulations the time horizon is 10 slots.
In these simulations we set every channel as homogeneous
for different SUs. In this case there may exist several optimal
policies, the BS will just pick one of them randomly.

To compare with the optimal and myopic policies, we
consider a simple random policy which randomly picks an
action while it satisfies all the constraints (9), (10), (12).

Figure 3 shows the throughput comparison of the theo-
retical results of optimal policy, the simulation results of
myopic policy and random policy. We set the scenario that
both channels have the same statistical behavior (i.e. 𝑃𝑛

00 =
0.8, 𝑃𝑛

10 = 0.2, 𝑛 = 1, 2), and the same prescribed collision
probability 𝜁 = 0.1. This figure shows the advantages of the
optimal policy and myopic policy over the random one with
time horizon increasing. It also shows the optimal policy and
myopic policy have very similar throughput performance in
this scenario.

In Figure 4, we also set the scenario that both channels have
the same statistical behavior (i.e. 𝑃𝑛

00 = 0.8, 𝑃𝑛
10 = 0.2, 𝑛 =

1, 2), and the same prescribed collision probability 𝜁 from
0.05 to 0.3. This figure shows that with the increase of the
prescribed collision probability 𝜁, SUs’ throughput becomes
larger because of PUs’ more collision tolerance. Nevertheless,
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Fig. 5. SUs throughput performance comparison with 𝜋1
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Fig. 6. SUs throughput performance comparison with 𝜋1
0 = 𝜋2

0 = 0.5, and
the same 𝜁 = 0.1, and 𝜇1 + 𝜇2 = 1.2

when the prescribed collision probability reaches some level,
SUs’ throughput will stop increasing, this is because it has
already arrived at the maximum point of the primary channels’
unutilized opportunity.

In Figure 5, we study the SUs’ throughput performance
under different memories of PU channel transition process.
According to [7], the memory of channel 𝑛’s transition process
is defined as 𝜇𝑛 = 1 − 𝑃𝑛

01 − 𝑃𝑛
10, 𝑛 ∈ 𝒩 , which is the

probability of remaining in the same channel state. In this
paper, we set 𝜇𝑛 > 0, 𝑛 ∈ 𝒩 , which means all the channels
have positive transition process memories. The larger the
memory, the higher tendency a channel will remain in the same
state. We also consider the case of both channels having the
same statistical behavior, the same stationary idle probability
(i.e. 𝜋𝑛

0 = 0.5, 𝑛 = 1, 2), and the same prescribed collision
probability 𝜁 = 0.1. Figure 5 shows that when the channels’
transition process memories grow larger, the throughput per-
formance of optimal policy and myopic policy grow much
better than the random policy. This indicates that if all the
channels have positive transition process memories, then the
larger the memories, the better throughput performance we can
get by using our optimal and myopic policies.

In Figure 6, we study the SUs’ throughput performance
when the two channels’ statistical behaviors become different.
Here, we set the prescribed collision probability 𝜁 as 0.1
for each channel, and we set the sum of the two channels’
transition process memories as a constant (𝑖.𝑒. 𝜇1 + 𝜇2 =
1.2). Besides, their stationary idle probabilities are the same
(𝑖.𝑒. 𝜋1

0 = 𝜋2
0 = 0.5). This figure shows that although

their stationary idle probabilities are the same and the sum
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Fig. 7. SUs throughput performance comparison with the same 𝜁 = 0.1,
and 𝜇1 = 𝜇2 = 0.6
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Fig. 8. Performance comparison of the optimal policy and the myopic policy
(in the upper figure, the network has two SUs; in the lower figure, the network
has three SUs).

of the two channels’ transition process memories does not
change, using the optimal policy can obtain a better throughput
performance than the myopic policy when the diversity of
the two channels’ transition process memories (i.e. ∣𝜇1 −𝜇2∣)
grows larger. This is because that when the two channels’
statistical behaviors are similar, the myopic policy will be
similar to the optimal policy. However, when the two channels’
statistical behaviors become more different, the myopic policy
will get different decisions.

Figure 7 shows the SUs’ throughput performance under
different stationary idle probability of PU channels. Here we
set the two PU channels with the same statistical behavior and
the same prescribed collision probability 𝜁 = 0.1, and then we
change their stationary idle probability while maintaining their
channel transition process memories (𝑖.𝑒. 𝜇1 = 𝜇2 = 0.6). It is
shown from the figure that when PU channels’ stationary idle
probability increases, SUs’ throughput increases accordingly.
This is because SUs will get more opportunities as the PU
channels’ idle probability increases.

In Figure 8, we compare the performance of the optimal
policy and the myopic policy under the simplified system
model in section V. We first consider the network with 2 SUs
and 2 channels, as studied in the theoretical analysis. From
the upper figure one can notice that under two i.i.d channels
and the same prescribed collision probability 𝜁 = 0.1, the
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throughput obtained by the myopic policy agrees with the one
obtained by the optimal policy. Our theoretical analysis is thus
supported by the numerical results. In the lower figure, we
consider a more general situation. We still utilize the same
simplified model used in the upper figure, but we add one
more SU to the network, i.e. 3 SUs present in the network.
We also assume each SU will spend Δ𝐿 in each slot as the
sensing duration, and the BS may assign each of the SUs
to sense one of the two channels in each slot. As proved in
section V subsection C, using the same parameters setting for
the simulation described in the beginning of this section, we
find this new network has a similar behavior as the previous
network with 2 SUs, i.e. in each slot the BS will simply assign
all the 3 SUs to sense either of the two channels cooperatively
and no other actions will be chosen. As a result the simple
solution structure obtained for the network with 2 SUs are
actually proved to be applicable to the network with 3 SUs, and
the lower figure shows the performance of the myopic policy
matches the performance of the optimal policy for the network
with 3 SUs. Figure 8 implies that although the analysis in
section V is based on a simplified model, it can be further
extended to the more general case.

VII. CONCLUSION

In this paper, we study the cooperative sensing scheduling
problem in cognitive radio networks. We first formulate this
problem as a POMDP which aims to maximize the total
CR system throughput with the guarantee of primary users’
prescribed collision probability. Then, we derive the optimal
policy and a myopic policy that determines which SUs sense
which channels with what miss detection probability and false
alarm probability. We further analytically study the solution
structure and properties of the value function. We have shown
that under the simplified system model, several interesting
properties hold for the value function and some simple but
robust methods exist for finding the optimal action. A gener-
ally hard combinatorial problem is analytically studied, and the
solution of the POMDP can be obtained by the simple method
with low-complexity. Although the system model for analysis
is simple, it provides us with many useful insights. Finally,
numerical and simulation results are provided to illustrate the
throughput performance of our optimal and myopic scheduling
policies for cooperative spectrum sensing.

The direction for the future work is to extend the analysis
of the simplified model to the general case, where more than
three SUs and channels are present in the network and more
actions can be chosen from for the BS.

APPENDIX A
PROOF OF PROPOSITION 1 AND COROLLARY 1

Proof of Proposition 1: We prove by induction. The myopic
policy only maximizes the expected immediate reward while
ignoring the future reward. Note that only when 𝑠𝑛(𝑡) = 0
and 𝜃𝑛(𝑡) = 0 would the BS receive nonzero reward. Let
𝑉

(𝑎̃(𝑡))
𝑡 (b̃(𝑡 − 1)) denote the maximum expected immediate

reward received at time slot 𝑡 given the belief vector b̃(𝑡− 1)
and action 𝑎̃(𝑡), then from (14) we have equation (27).

For the three different actions of 𝑎̃(𝑡), we have the following
equations after some manipulations:

𝑉
𝑎̃(𝑡)=0
𝑡 (b̃(𝑡− 1)) =

∑1

𝑖=0
𝑏1𝑖 (𝑡− 1)𝑃𝑖0(1− 𝑃 2

𝐹𝐴)𝑅 (29)

𝑉
𝑎̃(𝑡)=1
𝑡 (b̃(𝑡− 1)) =

∑1

𝑖=0
𝑏2𝑖 (𝑡− 1)𝑃𝑖0(1− 𝑃 2

𝐹𝐴)𝑅 (30)

𝑉
𝑎̃(𝑡)=2
𝑡 (b̃(𝑡− 1)) =

2∑
𝑛=1

1∑
𝑖=0

𝑏𝑛𝑖 (𝑡− 1)𝑃𝑖0(1− 𝑃 1
𝐹𝐴)𝑅. (31)

Assume max{𝑉 𝑎̃(𝑡)=0
𝑡 (b̃(𝑡 − 1)), 𝑉

𝑎̃(𝑡)=1
𝑡 (b̃(𝑡 − 1))} =

𝑉
𝑎̃(𝑡)=0
𝑡 (b̃(𝑡−1)). It implies

∑1
𝑖=0 𝑏

1
𝑖 (𝑡−1)𝑃𝑖0 >

∑1
𝑖=0 𝑏

2
𝑖 (𝑡−

1)𝑃𝑖0. By comparing the difference between 𝑉
𝑎̃(𝑡)=0
𝑡 (b̃(𝑡−1))

and 𝑉
𝑎̃(𝑡)=2
𝑡 (b̃(𝑡 − 1)), we have equation (28). From (28),

we can arrive at 𝑉 𝑎̃(𝑡)=0
𝑡 (b̃(𝑡− 1))− 𝑉

𝑎̃(𝑡)=2
𝑡 (b̃(𝑡− 1)) ≥ 0

when condition (C0) mentioned in Proposition 1 holds. For
the case that max{𝑉 𝑎̃(𝑡)=0

𝑡 (b̃(𝑡 − 1)), 𝑉
𝑎̃(𝑡)=1
𝑡 (b̃(𝑡 − 1))} =

𝑉
𝑎̃(𝑡)=1
𝑡 (b̃(𝑡− 1)), the same conclusion can be obtained in a

similar way. This completes the proof.
Proof of Corollary 1: Let 𝑏̂𝑛0 (𝑡) denote the idle probability

of channel 𝑛 at slot 𝑡 after the state transition period, i.e.

𝑏̂𝑛0 (𝑡) =
1∑

𝑖=0

𝑏𝑛𝑖 (𝑡−1)𝑃𝑖0 = 𝑃10+𝑏𝑛0 (𝑡−1)(𝑃00−𝑃10). (32)

Applying (4)(5), we can derive the upper bound and lower
bound of 𝑏̂𝑛0 (𝑡) as follows:

𝑃10 ≤ 𝑏̂𝑛0 (𝑡) ≤ 𝑃00, if 𝑃10 < 𝑃00

𝑃00 ≤ 𝑏̂𝑛0 (𝑡) ≤ 𝑃10, if 𝑃00 < 𝑃10. (33)

From Proposition 1 we know that only action 𝑎̃(𝑡) = 0
and action 𝑎̃(𝑡) = 1 are possible for the BS to choose. For
𝑃00 > 𝑃10, 𝑏̂𝑛0 (𝑡) increases with 𝑏10(𝑡 − 1). From (29) and
(30) one can notice that a larger 𝑏10(𝑡 − 1) will result in a
higher immediate reward. For 𝑃10 > 𝑃00, 𝑏̂𝑛0 (𝑡) decreases
with 𝑏10(𝑡−1), which means a smaller 𝑏10(𝑡−1) will result in a
higher immediate reward. For 𝑃10 = 𝑃00, 𝑏̂𝑛0 (𝑡) = 𝑃10 = 𝑃00

and the immediate reward is independent of the belief vector
and hence the same for 𝑎̃(𝑡) = 0 and 𝑎̃(𝑡) = 1.

APPENDIX B
PROOF OF PROPOSITION 2

We first consider the case that 𝑃00 > 𝑃10. Without loss of
generality we assume 𝑎̃(𝑡− 1) = 0. The key of the proof here
is to show that different observation received in slot 𝑡−1 will
result in different ordering of the immediate reward obtained
by the actions in slot 𝑡. Consider first 𝜃1(𝑡) = 0, we know that
channel 1 is idle at time 𝑡− 1 and 𝑏10(𝑡) = 1 in this case. The
immediate reward of staying in channel 1 is 𝑃00𝑅, and the
immediate reward of switching to channel 2 is (𝑃10 + 𝑏20(𝑡−
1)(𝑃00 − 𝑃10))𝑅 with the inequality

(𝑃10 + 𝑏20(𝑡− 1)(𝑃00 − 𝑃10))𝑅 ≤ 𝑃00𝑅 (34)

where 𝑏20(𝑡) ∈ [0, 1] and the inequality follows from 𝑃00 >
𝑃10. As a result the BS should stay in channel 1 to get the
maximum immediate reward.
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𝑉
𝑎̃(𝑡)
𝑡 (b̃(𝑡− 1)) =

2∑
𝑛=1

1∑
𝑖=0

𝑏𝑛𝑖 (𝑡− 1)𝑃𝑖0 Pr(𝜃𝑛(𝑡) = 0∣𝑎̃(𝑡), 𝑠𝑛(𝑡) = 0)𝑅𝑛(𝑎̃(𝑡), 𝜃𝑛(𝑡) = 0) (27)

𝑉
𝑎̃(𝑡)=0
𝑡 (b̃(𝑡− 1))− 𝑉

𝑎̃(𝑡)=2
𝑡 (b̃(𝑡− 1)) =

1∑
𝑖=0

𝑏1𝑖 (𝑡− 1)𝑃𝑖0(𝑃
1
𝐹𝐴 − 𝑃 2

𝐹𝐴)−
1∑

𝑖=0

𝑏2𝑖 (𝑡− 1)𝑃𝑖0(1− 𝑃 1
𝐹𝐴)

≥
1∑

𝑖=0

𝑏1𝑖 (𝑡− 1)𝑃𝑖0(𝑃
1
𝐹𝐴 − 𝑃 2

𝐹𝐴)−
1∑

𝑖=0

𝑏1𝑖 (𝑡− 1)𝑃𝑖0(1− 𝑃 1
𝐹𝐴) =

1∑
𝑖=0

𝑏1𝑖 (𝑡− 1)𝑃𝑖0(2𝑃
1
𝐹𝐴 − 𝑃 2

𝐹𝐴 − 1) (28)

Consider then 𝜃1(𝑡) = 1 and 𝜃1(𝑡) = 2. Careful inspection
of these two observations reveals that these two observations
actually refer to the same situation that “no ACK is received
after sensing the channel 1”. Hence we make some manipu-
lation of the observation probability and obtain

Pr(𝜃𝑛(𝑡)∣𝑎̃(𝑡), 𝑠𝑛(𝑡))

=

⎧⎨⎩

1, if
∑2

𝑚=1 𝑎
1
𝑚𝑛(𝑡) = 0, 𝜃𝑛(𝑡) = 2

1− 𝑃𝐹𝐴(𝑛, 𝑡),

if
∑2

𝑚=1 𝑎
1
𝑚𝑛(𝑡) = 1, 𝑠𝑛(𝑡) = 0, 𝜃𝑛(𝑡) = 0

𝑃𝐹𝐴(𝑛, 𝑡),

if
∑2

𝑚=1 𝑎
1
𝑚𝑛(𝑡) = 1, 𝑠𝑛(𝑡) = 0, 𝜃𝑛(𝑡) = 1

1,

if
∑2

𝑚=1 𝑎
1
𝑚𝑛(𝑡) = 1, 𝑠𝑛(𝑡) = 1, 𝜃𝑛(𝑡) = 1

(35)

where the new observation and its probability can provide the
same information as the original one. 𝜃𝑛(𝑡) is the modified
observations, where 𝜃𝑛(𝑡) = 0 denotes ACK is received,
𝜃𝑛(𝑡) = 1 denotes no ACK is received after sensing channel 𝑛,
and 𝜃𝑛(𝑡) = 2 denotes the BS decides not to sense the channel
and observes nothing. The modification has not changed the
system model but will allow us to express the update of the
belief vector in a simpler form for the rest of the paper.

At the beginning of time slot 𝑡 − 1, the belief vector is
b̃(𝑡 − 2) = {𝑏10(𝑡 − 2), 𝑏20(𝑡 − 2)}. From (32) and (35), the
belief vector at time slot 𝑡 can be expressed as

𝑏10(𝑡− 1) =
𝑏̂10(𝑡− 1)𝑃 2

𝐹𝐴

𝑏̂10(𝑡− 1)𝑃 2
𝐹𝐴 + (1− 𝑏̂10(𝑡− 1))

(36)

𝑏20(𝑡− 1) = 𝑏̂20(𝑡− 1). (37)

Then considering 𝑃00 > 𝑃10 and the condition (20), we can
obtain the inequality that 𝑏20(𝑡 − 1) ≥ 𝑏10(𝑡 − 1) by applying
(33). Again from 𝑃00 > 𝑃10 we arrive at 𝑏̂20(𝑡)𝑅 ≥ 𝑏̂10(𝑡)𝑅,
which means the maximum immediate reward at time slot 𝑡
is obtained by switching to channel 2 when 𝜃1(𝑡) = 1 and
𝜃1(𝑡) = 2 is observed. The structure for the case that 𝑃00 <
𝑃10 can be similarly obtained.

APPENDIX C
PROOF OF PROPOSITION 3

We prove by induction. Suppose the proposition holds for
all slots 𝑡+1 ≤ 𝑇 , i.e. 𝑉𝑡+1(b̃(𝑡)) ≥ 𝑉𝑡+1(c̃(𝑡)) where b̃(𝑡) ≥
c̃(𝑡). We show next the proposition holds for slot 𝑡. As seen
from (17), b̃(𝑡−1) ≥ c̃(𝑡−1) implies 𝒯 (b̃(𝑡−1), 𝑎̃(𝑡), 𝜃(𝑡)) ≥

𝒯 (c̃(𝑡−1), 𝑎̃(𝑡), 𝜃(𝑡)), ∀𝑎̃(𝑡), 𝜃(𝑡) due to 𝑃00 > 𝑃10. Applying
this argument, we then have

𝑉𝑡(b̃(𝑡− 1))

≥ max
𝑎̃(𝑡)

{
2∑

𝑛=1

1∑
𝑖=0

𝑏𝑛𝑖 (𝑡− 1)𝑃𝑖0 Pr(𝜃𝑛(𝑡) = 0∣𝑎̃(𝑡), 𝑠𝑛(𝑡) = 0)

×𝑅𝑛(𝑎̃(𝑡), 𝜃𝑛(𝑡) = 0)

+
2∑

𝑛=1

1∑
𝑖=0

𝑏𝑛𝑖 (𝑡− 1)
1∑

𝑗=0

𝑃𝑖𝑗

2∑
𝑘=0

Pr(𝜃(𝑡) = 𝑘∣𝑎̃(𝑡), 𝑠𝑛(𝑡) = 𝑗)

× 𝑉𝑡+1(𝒯 (c̃(𝑡− 1), 𝑎̃(𝑡), 𝜃(𝑡)))}

≥ max
𝑎̃(𝑡)

{
2∑

𝑛=1

1∑
𝑖=0

𝑐𝑛𝑖 (𝑡− 1)𝑃𝑖0 Pr(𝜃𝑛(𝑡) = 0∣𝑎̃(𝑡), 𝑠𝑛(𝑡) = 0)

×𝑅𝑛(𝑎̃(𝑡), 𝜃𝑛(𝑡) = 0)

+
2∑

𝑛=1

1∑
𝑖=0

𝑏𝑛𝑖 (𝑡− 1)
1∑

𝑗=0

𝑃𝑖𝑗

2∑
𝑘=0

Pr(𝜃(𝑡) = 𝑘∣𝑎̃(𝑡), 𝑠𝑛(𝑡) = 𝑗)

× 𝑉𝑡+1(𝒯 (c̃(𝑡− 1), 𝑎̃(𝑡), 𝜃(𝑡)))} = 𝑉𝑡(c̃(𝑡− 1))

where 𝑉𝑡+1(𝒯 (b̃(𝑡 − 1), 𝑎̃(𝑡), 𝜃(𝑡))) = 𝑉𝑡+1(b̃(𝑡)),
𝑉𝑡+1(𝒯 (c̃(𝑡 − 1), 𝑎̃(𝑡), 𝜃(𝑡))) = 𝑉𝑡+1(c̃(𝑡)). The second
inequality follows from (29)(30)(31) and the condition
𝑃00 > 𝑃10. Proposition 3 thus follows.

APPENDIX D
PROOF OF PROPOSITION 4

We first introduce the following Lemmas.
Lemma 1: The value function given in (13)(14) is convex

in the belief vector. Specifically, for the set of value functions
{𝑉𝑡(b̃1(𝑡−1)), ..., 𝑉𝑡(b̃𝐼(𝑡−1))} with their corresponding be-
lief vectors {b̃1(𝑡−1), ..., b̃𝐼(𝑡−1)}, the following inequality

𝐼∑
𝑖=1

𝜏𝑖𝑉𝑡(b̃𝑖(𝑡− 1)) ≥ 𝑉𝑡(
𝐼∑

𝑖=1

𝜏𝑖b̃𝑖(𝑡− 1)), (40)

∀ 𝜏𝑖 ∈ [0, 1],
∑𝐼

𝑖=1 𝜏𝑖 = 1 is satisfied, where the set of belief
vectors labeled as {b̃1(𝑡− 1), ..., b̃𝐼(𝑡− 1)} is defined for the
convenience of showing the convexity.

Proof: Smallwood and Sondik have demonstrated in [15]
that the value function 𝑉𝑡(b̃𝑖(𝑡− 1)) is piece-wise linear and
convex (PWLC) with respect to the belief vector b̃𝑖(𝑡 − 1).
Since the value function given in (13)(14) is a standard value
function, then Lemma 1 follows.
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𝜏1𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 0)) + 𝜏2𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 1, 𝑃𝐹𝐴(𝑡) = 𝑃 2
𝐹𝐴))

≥ 𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 1, 𝑃𝐹𝐴(𝑡) = 𝑃 1
𝐹𝐴))

(38)

𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡), 𝑃𝐹𝐴(𝑡) = 𝑃 2
𝐹𝐴))− 𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡), 𝑃𝐹𝐴(𝑡) = 𝑃 1

𝐹𝐴))

= 𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 2, 𝑃𝐹𝐴(𝑡) = 𝑃 2
𝐹𝐴))− 𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 2, 𝑃𝐹𝐴(𝑡) = 𝑃 1

𝐹𝐴)) ≥ 0
(39)

Lemma 2: Consider the system with only one channel, i.e.
𝑁 = 1 (channel 1 only). The action becomes whether to
sense channel 1 at slot 𝑡. Since the observation can fully
distinguish the two different actions, we omit the action
term in the belief update equation. In any time slot 𝑡, the
future rewards 𝑉𝑡+1(𝒯 (b̃(𝑡 − 1), 𝜃(𝑡), 𝑃𝐹𝐴(𝑡) = 𝑃 1

𝐹𝐴)) and
𝑉𝑡+1(𝒯 (b̃(𝑡−1), 𝜃(𝑡), 𝑃𝐹𝐴(𝑡) = 𝑃 2

𝐹𝐴)) satisfy the inequality
(38), where 𝜏2 = 1− 𝜏1 and 𝜏1 is given by

𝜏1 =

∑1
𝑖=0 𝑏

1
𝑖 (𝑡− 1)𝑃𝑖0(𝑃

1
𝐹𝐴 − 𝑃 2

𝐹𝐴)∑1
𝑖=0 𝑏

1
𝑖 (𝑡− 1)(𝑃𝑖0𝑃 1

𝐹𝐴 + 𝑃𝑖1)
. (41)

Proof: Applying (35), we can obtain the following equality
after some algebraic manipulations

𝜏1𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 0)

+ 𝜏2𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 1, 𝑃𝐹𝐴(𝑡) = 𝑃 2
𝐹𝐴)

= 𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 1, 𝑃𝐹𝐴(𝑡) = 𝑃 1
𝐹𝐴)

(42)

where 𝜏1 is given by (41). Then Lemma 2 follows from the
conclusion of Lemma 1.

The proof of Proposition 4 is based on the two Lemmas
above. Consider the case that 𝜃(𝑡) = 2. Note that from (17),
𝑃 2
𝐹𝐴 < 𝑃 1

𝐹𝐴 implies that 𝒯 (b̃(𝑡 − 1), 𝜃(𝑡) = 2, 𝑃𝐹𝐴(𝑡) =

𝑃 2
𝐹𝐴) ≥ 𝒯 (b̃(𝑡 − 1), 𝜃(𝑡) = 2, 𝑃𝐹𝐴(𝑡) = 𝑃 1

𝐹𝐴). By applying
Proposition 3, we have 𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 2, 𝑃𝐹𝐴(𝑡) =
𝑃 2
𝐹𝐴)) ≥ 𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 2, 𝑃𝐹𝐴(𝑡) = 𝑃 1

𝐹𝐴)).
We now compare the value function of different false alarm

probability at time slot 𝑡. Consider first the action in slot 𝑡
is not to sense the channel, we have equation (39) where
the inequality follows the result in the previous paragraph.
Consider then the action is to sense the channel, we have

𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡), 𝑃𝐹𝐴(𝑡) = 𝑃 2
𝐹𝐴))

− 𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡), 𝑃𝐹𝐴(𝑡) = 𝑃 1
𝐹𝐴))

= {
1∑

𝑖=0

𝑃𝑖0(1− 𝑃 2
𝐹𝐴)𝑅−

1∑
𝑖=0

𝑃𝑖0(1− 𝑃 1
𝐹𝐴)𝑅}

+ {
1∑

𝑖=0

𝑏1𝑖 (𝑡− 1)
1∑

𝑗=0

𝑃𝑖𝑗

1∑
𝑘=0

Pr(𝜃(𝑡) = 𝑘∣𝑠𝑛(𝑡) = 𝑗,

𝑃𝐹𝐴(𝑡) = 𝑃 2
𝐹𝐴)𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 𝑘, 𝑃𝐹𝐴(𝑡) = 𝑃 2

𝐹𝐴))

−
1∑

𝑖=0

𝑏1𝑖 (𝑡− 1)
1∑

𝑗=0

𝑃𝑖𝑗

1∑
𝑘=0

Pr(𝜃(𝑡) = 𝑘∣𝑠𝑛(𝑡) = 𝑗,

𝑃𝐹𝐴(𝑡) = 𝑃 1
𝐹𝐴)𝑉𝑡+1(𝒯 (b̃(𝑡− 1), 𝜃(𝑡) = 𝑘, 𝑃𝐹𝐴(𝑡) = 𝑃 1

𝐹𝐴))}
≥ 0.

For the immediate reward part, it is straightforward that

∑1
𝑖=0 𝑃𝑖0(1 − 𝑃 2

𝐹𝐴)𝑅 − ∑1
𝑖=0 𝑃𝑖0(1 − 𝑃 1

𝐹𝐴)𝑅 ≥ 0. Then
applying Lemma 2 to the future reward part, we arrive at the
inequality above. To this end we prove the monotonic property
for one channel. By using the similar method used for proving
Proposition 3, we can easily extend the result for one channel
to two channels in order to complete the proof of Proposition
4. For brevity we omit the procedure here.

APPENDIX E
PROOF OF THEOREM 1

We first establish the following lemma.
Lemma 3: Consider the actions 𝑎̃(𝑡) = 0 and 𝑎̃(𝑡) = 1. To

obtain max{𝑉 𝑎̃(𝑡)=0
𝑡 (b̃(𝑡− 1)), 𝑉

𝑎̃(𝑡)=1
𝑡 (b̃(𝑡− 1))}, 𝑎̃(𝑡), the

channel to be chosen, should be given by argmax𝑛 𝑏
𝑛
0 (𝑡−1).

Proof: First note that Proposition 3 can be applied to the
case of single channel. Without loss of generality we assume
𝑏10(𝑡− 1) > 𝑏20(𝑡− 1). Since only one channel will be sensed
at any slot 𝑡 here, the two value functions which have the
same action set: to sense the corresponding channel or not,
can be separated. Proposition 3 shows the value function with
higher channel idle probability has larger value. As a result
𝑉

𝑎̃(𝑡)=0
𝑡 (b̃(𝑡−1)) ≥ 𝑉

𝑎̃(𝑡)=1
𝑡 (b̃(𝑡−1)) and Lemma 3 follows.

Lemma 3 shows that the monotonic property not only holds
between different belief vectors b̃(𝑡 − 1) and c̃(𝑡 − 1), but
also holds between different components of the belief vector
b̃(𝑡− 1). We are now ready to prove Theorem 1.

At the last time slot 𝑡 = 𝑇 , the optimal action is actually
the myopic action. As mentioned in Proposition 1, only action
0 and action 1 may be chosen from if condition (C0) holds.
Suppose all the optimal actions 𝑎̃∗(𝑡+ 1) for 𝑡+ 1 < 𝑇 only
contain action 0 and 1. Without loss of generality we assume
𝑏10(𝑡−1) > 𝑏20(𝑡−1), hence 𝑉 𝑎̃(𝑡)=0

𝑡 (b̃(𝑡−1)) ≥ 𝑉
𝑎̃(𝑡)=1
𝑡 (b̃(𝑡−

1)). For 𝑎̃(𝑡) = 2, we know from Lemma 3 that although
both channels are sensed, the value of 𝑉

𝑎̃(𝑡)=2
𝑡 (b̃(𝑡 − 1)) is

determined by the reward obtained in channel 1, since 𝑏10(𝑡−
1) ≥ 𝑏20(𝑡 − 1). Furthermore, the false alarm probability on
channel 1 of action 𝑎̃(𝑡) = 0 is smaller than that of action
𝑎̃(𝑡) = 2, by applying Proposition 4 we have 𝑉

𝑎̃(𝑡)=0
𝑡 (b̃(𝑡 −

1)) > 𝑉
𝑎̃(𝑡)=2
𝑡 (b̃(𝑡 − 1)), which means 𝑎̃∗(𝑡) = 0. Similarly,

we have 𝑎̃∗(𝑡) = 1 when 𝑏10(𝑡 − 1) < 𝑏20(𝑡 − 1). The BS can
choose either 0 or 1 when the idle probabilities of the two
channels are equal. To this end we show at slot 𝑡 the optimal
action is also either 0 or 1, hence completes the proof.

APPENDIX F
PROOF OF PROPOSITION 5 AND COROLLARY 2

Proof of Proposition 5: We first consider the situation that
𝑃00 > 𝑃10. We order the three channels according to 𝑏𝑛0 (𝑡)
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in a descending way. It can be seen from Corollary 1 that if
we have two group of users 𝐺1 and 𝐺2, where ∣𝐺1∣ > ∣𝐺2∣
and ∣𝐺∣ denotes the size of group ∣𝐺∣, then we should assign
𝐺1 to sense the first channel (the one having the largest belief
value) and 𝐺2 to sense the second channel. As a result, denote
the three possible sensing scheduling actions of the BS as
𝑎̂(𝑡). Specifically, 𝑎̂(𝑡) = 0 represents all the three SUs sense
the first channel, 𝑎̂(𝑡) = 1 represents two SUs sense the first
channel and the remaining one senses the second channel, and
𝑎̂(𝑡) = 2 represents each SU senses one channel. Note that
the action that two SUs sense the second channel and the
remaining one senses the first channel will never be selected
due to the reason mentioned above.

We follow the similar argument of the proof of Proposition
1. First, it is easy to derive 𝑉

𝑎̂(𝑡)=1
𝑡 (b̃(𝑡−1)) ≥ 𝑉

𝑎̂(𝑡)=2
𝑡 (b̃(𝑡−

1)) since condition (C0) holds. Then similar to (28), we have
𝑉

𝑎̂(𝑡)=0
𝑡 (b̃(𝑡 − 1)) − 𝑉

𝑎̂(𝑡)=1
𝑡 (b̃(𝑡 − 1)) ≥ 0 when condition

(C1) mentioned in Proposition 5 holds. Note that if 𝑁 = 2,
this result also holds. This completes the proof.

Proof of Corollary 2: The proof is by contradiction.
Since we assume condition (C0) does not hold, we have
𝑉

𝑎̂(𝑡)=1
𝑡 (b̃(𝑡−1)) ≤ 𝑉

𝑎̂(𝑡)=2
𝑡 (b̃(𝑡−1)) and hence 2𝑃 1

𝐹𝐴−1 <
𝑃 2
𝐹𝐴. In order for the action 𝑎̂(𝑡) = 0 to be the best action, we

should have 𝑉
𝑎̂(𝑡)=0
𝑡 (b̃(𝑡−1))−𝑉

𝑎̂(𝑡)=2
𝑡 (b̃(𝑡−1)) ≥ 0, which

implies 3𝑃 1
𝐹𝐴 − 2 > 𝑃 3

𝐹𝐴. If this is true, then by comparing
with 2𝑃 1

𝐹𝐴−1 < 𝑃 2
𝐹𝐴, we arrive at 2𝑃 2

𝐹𝐴 > 𝑃 1
𝐹𝐴+𝑃 3

𝐹𝐴 after
some manipulations. However from the convexity of 𝑃𝑚

𝐹𝐴, one
should have 2𝑃 2

𝐹𝐴 ≤ 𝑃 1
𝐹𝐴+𝑃 3

𝐹𝐴 and contradiction is shown,
which means the BS will never assign all the SUs to sense
one channel cooperatively. The conclusion that (C1) also will
not hold can be proved in the same way.
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