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Abstract

Recently, the proliferation of distributed generation (DG) has been intensively

increased in distribution systems worldwide. In distributed systems, DGs and

utility‐owned electric vehicle (EV) to grid aggregators have to be efficiently

scaled for cost‐effective network operation. Accordingly, with the penetration

of power systems, demand response (DR) is considered an advanced step

towards a smart grid. To cope with these advancements, this study aims to

develop an innovative solution for the day‐ahead sizing approach of energy

storage systems of EVs parking lots and DGs in smart distribution systems

complying with DR and minimizing the pertinent costs. The unique feature of

the proposed approach is to allow interactive customers to participate

effectively in power systems. To accurately solve this optimization model,

two probabilistic self‐adjusted modified particle swarm optimization (SAPSO)

algorithms are developed and compared for minimizing the total operational

costs addressing all constraints of the distribution system, DG units, and

energy storage systems of EV parking lots. The K‐means clustering and the

Naive Bayes approach are utilized to determine the EVs that are ready to

participate efficiently in the DR program. The obtained results on the IEEE‐24
reliability test system are compared to the genetic algorithm and the

conventional PSO to verify the effectiveness of the developed algorithms.

The results show that the first SAPSO algorithm outperforms the algorithms in

terms of minimizing the total running costs. The finding demonstrates that the

proposed near‐optimal day‐ahead scheduling approach of DG units and EV

energy storage systems in a simultaneous manner can effectively minimize the

total operational costs subjected to generation constraints complying with DR.
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1 | INTRODUCTION

Recently, the use of resilient distributed generations
(DG) aggregators in distribution systems has been rapidly
increasing. With the penetration of vehicle to utility‐
owned grid (V2G) aggregators to the grid, demand
response (DR) has a significant role in effectively
utilizing the demand side resources due to the con-
straints related to conventional distributed generators.1

Besides this, the significant improvements in smart grid
communication enable system designers and developers
to develop DR with the optimal format. By definition, DR
response is related significantly to the final customer
electric consumption changes in comparison to the
ordinary usage patterns.2 For this definition, electric
vehicle (EV) owners and DR primary agents are
considered customers. For these customers, an efficient
impact on the power system is expected. They can
improve the day‐ahead system reliability and decrease
total operational costs by voluntary management of load
demands and DR.2,3 On the other hand, there are a
number of aspects of the contemporary power systems
that make the V2G optimization inadequate for the
charging/discharging of EVs. These characteristics
include (i) The widespread utilization of renewable
energy sources, which are uncertain and intermittent.
(ii) Typically, conventional optimization techniques are
nonlinear, thus discovering a global minimum in a multi‐
energy resources system might not be assured. (iii) At the
parking lot, V2Gs establish random day‐ahead schedul-
ing with different time energy costs, charger capacities,
and charging/discharging regulations, (iv) future propos-
als and potential validations for future smart grids are
required due to the energy demand's rising complexity,
which is worsened by the advent of particular load
fluctuations such V2G and DR impacts. Consequently,
the authors of this study are motivated to develop a novel
modified effective day‐ahead scheduling technique to
handle all such issues for the purpose of minimizing
overall expenses while maintaining a degree of customer
satisfaction that is acceptable.

DR can be modeled using the elasticity matrix of the
electricity prices of the load demands.4,5 Using a constant
elasticity matrix over a pre‐determined period of time, it
was concluded by various studies6–11 that DR has a
significant positive impact on the electricity market
prices, reliability, and spinning reserves issues. However,
this assumption of fixed elasticity of specific over specific
time results in the incredibility of EVs of the proposed
methods.1 With the modern penetration of EVs into the
grid, the scheduling of DR has become more complicated
due to a lack of information on the demand character-
istics patterns. For this reason, DR program operators

inquire information from the final consumer for better
credibility.12 Demand resources require initial informa-
tion from the customer to participate effectively in the
DR program. In the study by Asadinejad et al.,13 the
evaluation of DR is evaluated using the elasticity and
fabrication matrices. The regression modes for DR were
introduced by Srivastava et al.14 An optimal scheduling
approach for DR within smart grids was introduced by
Nan and Zhou.15 In the study by Viana et al.,16 DR with
renewable photovoltaic generation was discussed. Simi-
lar work with energy hub optimization was presented by
Huo et al.17

Several metaheuristic algorithms were used to solve the
economic dispatch with DR aspects.18 Yet, particle swarm
optimization (PSO) has been reported to have a remarkable
exploitation feature.19 Elnozahy et al.19 utilized this feature
to enhance other metaheuristic algorithms. In the study by
Goudarzi et al.,20 it was combined with an artificial bee
colony for vertical handover in wireless networks. It was
combined with a genetic algorithm (GA) to optimize total
costs for a hybrid wind‐PV battery system in the study by
Ghorbani et al.21 It was developed by Sharaf et al. to
improve wind energy conversion dynamics, permanent
magnet synchronous motor performance, and other power
system issues.22–24 PSO was employed successfully for
solving DR issues in various studies.25,26 PSO exploration
ratio, on the other hand, does not have the same repute as
the exploitation feature. This motivates the authors of this
study to develop two probabilistic self‐adjusting metaheur-
istic algorithms based on PSO optimizer to solve the
generation and DR with V2G impact. In this manner, the
exploration feature would benefit from the self‐adjustment
and converge fast towards the near‐optimal solution.

Over time, EV penetration into the utility grid acquires
more intention. In the study by Gough et al.,27 an economic
feasibility study was done. The authors concluded that V2G
could provide a significant income if V2G was coordinated
properly. A study done28 was achieved by using V2G
impact to minimize total emissions with microgrid energy
scheduling. Optimal scheduling of EVs was carried out in
the study by Mortaz and Valenzuela29 at the microgrid
level, where various control strategies for enhancing the
operation of microgrids connected to energy storage
systems were introduced in various studies.30–34 The
optimal charging management was investigated by Mkahl
et al.35 Similar work was achieved by Bin‐Humayd and
Bhattacharya.36 The parking coordination of EVs was
investigated in the study by Faddel et al.37 The investigation
of the above research2–13,15–17 reveals that a constant
elasticity matrix for a specific interval of time was used,
which results in some incredibility. In the study by
Srivastava et al.,14 regression methods generally need
training, and the accuracy of the regression models depends
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on the number of available data. Furthermore, the impact
of V2G was not addressed.1,17 The investigation of various
studies27–37 show that they did not include DR in V2G
research studies. This encourages the authors of the current
study to develop optimal day‐ahead scheduling of utility‐
owned V2G combined with DR, which is rare in the
literature.

To cover the above‐mentioned research gaps, the goal
of this study is to provide an optimal simultaneous
hourly scheduling strategy for energy storage systems of
EV parking lots and distributed generators in smart
distribution networks that conform with DR. The
suggested solution is unique in that it allows interactive
consumers to engage successfully in power systems. Two
self‐adjusted particle swarm optimization (SAPSO)
methods are devised and compared to minimize overall
operational costs while addressing all restrictions of the
distribution system, DG units, and energy storage
systems of EV parking lots. In particular, this study
contributes to the literature as follows: (i) two modified
probabilistic metaheuristic algorithms integrated with
the K‐means clustering approach based on conventional
PSO are developed so that both the exploration and
exploitation features of the conventional PSO are
enhanced. In both optimizers, the Naive Bayes classifier
is employed to investigate the day‐ahead EVs to
participate efficiently in the DR program. Furthermore,
the DR and V2G demand is converted into a virtual
generation whose marginal cost function is that of the
load reduction. The K‐means clustering, which is an
unsupervised machine learning approach, is used to find
the EVs that are ready to engage in the DR program
effectively. (ii) Optimal scheduling subjected to con-
straints of generation DR with V2G is developed by
minimizing system total operational costs. In turn, the
validation of the developed optimizers is demonstrated
through an impartial comparison with the conventional
PSO and GA optimizers. The SAPSO optimization
techniques created to solve the model's nonlinearity
and non‐convexity are based on dynamic error adjust-
ments of the weightings, speed deviations, and position
equations. In contrast to the traditional PSO, corrective
action is developed in terms of errors and rate of change.
To validate the efficacy of the created algorithms, the
acquired results on the IEEE‐24 reliability test. Accord-
ing to the results, the first SAPSO algorithm beats the
other algorithms in terms of lowering total running
expenses. It is revealed that the suggested optimum
scheduling methodology for DG units and EV energy
storage systems may successfully decrease total operating
costs while complying with DR generation limits.

The remaining of this manuscript is organized as
follows. Problem description and formulation are

introduced in Sections 2 and 3, respectively. The
simulated results are given in Section 4. Finally, the
discussions and conclusions are presented in Sections 5
and 6, respectively.

2 | PROBLEM DESCRIPTION

Figure 1 shows the structure of modern distribution
systems in which various distributed energy sources and
EVs are distributed along with smart meters that are
utilized for DR. Accordingly, this study concerns the DGs
and DR with V2G optimal scheduling. The current
electric microgrids are undergoing a change as distrib-
uted energy resources, including infrequent renewable
production resources on the distribution side, become
more and more integrative. Therefore, if effective day‐
ahead scheduling of DGs is adequately coordinated, there
would be real benefits for both utilities and their
consumers.

2.1 | System description

The study brings together the formulation of optimal
scheduling of generation and DR. The considered
IEEE 24‐bus system includes DGs, DR with V2G
to minimize total operational costs. DR is transformed
into virtual generation units. The modeling of
the costs of the individual components is presented
in the following sections. The objective function is to
reduce DG, DR, and V2G costs. In the subsections that
follow, each of these costs is mathematically
expressed.

2.1.1 | Cost modeling of distributed
generating units

Considering the DG unit status, the total costs of a
generating unit are given in (1) in terms of its output
power.2,38–40 Table A1 gives the parameters at the
corresponding buses for estimating the total operational
costs.1,41

∈ ∈ 

( ) ( ) ( )C P t α P t β P t γ s t

STC b t t T i G

( ) = ( ) + ( ) + ( )

+ ( ) and ,

g
i

g
i i

g
i i

g
i i i

i i

2

(1)

where T presents the set of day‐ahead hourly periods, G
is the set of generating units, Cg

i is the operational cost of

a generating unit, Pg
i is the output power of a generating
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unit, si is unit commitment flag {0,1}, STCi is the
startup cost of unit i, and bi is starting flag of a unit.

2.1.2 | Cost modeling of DR units

Customers were asked to supply basic information to
participate successfully in the DR program. Besides, the
DR program collects the required historical data based on
the responsive nature of a customer. However, there is
some information necessary to express the DR costs. The
first is the maximum reduction power Mj in megawatts
that a customer j can bear. The second is the duration at
which a customer j is available. The third is the number
of yearly participation or frequency of a customer.
With the above information and the relevant parameters
in Appendix section, the DR costs of a customer j
are expressed as in (2).1,2,42 The parameters α j and β j

depend on the DR marginal cost as will be explained in
the problem formulation section. The key finding is to
find the virtual resource DR(t) so that an objective
function is satisfied.

∈ ∈ 

C DR t α DR t β DR t

t T j DRG

( ( )) = ( ( )) + ( ( ))

and ,

DR
j j j j j j2

(2)

where CDR
j presents the operational cost of a generating

unit, DRj represents the output power of a demand
resource unit, and DRG is the set of demand resource units.

2.1.3 | Cost modeling of V2G units

V2G energy storage batteries are probabilistic in nature.
It depends on the state of charge (SOC) for an EV to be a
load or demand resource. The DR cost of a V2G is
basically related to the on‐gird battery operational costs
and expressed as follows43:

∈

∈





C V2G t β V2G t t T

k V2GR

( ( )) = ( ( )) and

,

V2G
k k k k

(3)

where CV2G
k describes the operational cost of a V2G unit

in $/kWh, V2Gk describes the output power of a V2G

FIGURE 1 Modern distribution system. DG, distributed generation; EV, electric vehicle.
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demand resource unit, and V2GR describes the set of
demand resource units.

2.2 | Overview self‐adjusting PSO

Conventional PSO utilizes stochastic solutions, which
makes the derivative information for conversions long.
SAPSO utilizes different approaches to speed up the
conversion process. In the following, a brief overview of
the conventional PSO is presented. Then, the required
improvements for the developed SAPSO are investigated.

Conventional PSO requires a few numbers of
parameters to be adjusted.44 It was inspired to imitate
animals' and birds' movement behavior.19,20,45 The
particles are distributed randomly. The particle positions
contain the decision variables. Besides, each particle
represents a possible solution. The particle decision
variables and the corresponding fitness value is defined
by a position and a fitness function. The particles proceed
in a recursive issue to calculate the optimal decision
variables according to the fitness function.

The position of a particle (Pk) is modeled by a location
in the XY plane as shown in Figure 2. The particle
velocity is represented by Vx and Vy in the x‐axis and
y‐axis, respectively. The particle collection in the XY
plane is explored by a pest value (Pbest). Among the group
of Pbest values, a global best (gbest) is required. The
particle's position is updated according to (4).46

WV c r GB CP c r PB CP+ ( − ) + ( − ),new 1 1 2 2 (4)

where Vnew is the new velocity of the particle's position
change, W is the Inertia weight, GB is the global best, PB is
the personal best, CP is the current position, r1 and r2
represent the two random variables, c1 is the global
learning coefficient, c2 is the personal learning coefficient.
Hence, the procedures for PSO are as follows:

1‐ The system is started by defining a population of
random solutions. The optimization problem is

formulated by random velocity. Each potential
solution with a velocity is recognized as a particle.

2‐ Within the population, the fitness function is evaluated.
3‐ For every iteration, Pbest is recorded.
4‐ The particle's best solution (Pbest) within the popula-

tion is compared with other populations and swarm
global best (gbest)is determined.

5‐ The velocity of a particle is updated.
6‐ The steps from 2–5 are repeated till a maximum

number of iterations (Nmax) is reached.

The developed SAPSO algorithms suggest a modifica-
tion for the inertia weight given in (1). The value of the
inertia weight is adjusted based on the error estimation in
each iteration. Two algorithms are developed in this study.

2.2.1 | SAPSO#1

In this algorithm, the inertia weight is calculated using
the following equations from (5) to (7). The error
estimation in (5) represents the gbest improvement. Using
the normalized error (ξk ) given in (6), the inertia weight
(Wk ) is updated according to (7).

∆e GB GB= − ,k k k−1 −2 (5)

∆
ξ

e

GB
=
max( )

,k
k

k
(6)

W W ξ k d= × (1 + ) × ( − 1)/ .k k0 (7)

With k being the iteration number index, the particle
position (Xnew) is updated through the following
equations. In (9), d0 is a design parameter between 10
and 100. The variable (Dk ) is used to obtain the new
position of particles in terms of their velocity as in (10).

η
GB

GB
=
max( )

,k
k

k

−1
(8)

D d η= × (1 + ),k k0 (9)

X X D V= × + .knew old old (10)

2.2.2 | SAPSO#2

In this algorithm, two parameters are introduced (αk and
βk ) according to (11) and (12). The inertia weight factor
in this algorithm is evaluated according to (13) based on
αk and βk in terms of the global best during each
iteration.

α GB GB= − ,k k k−1 (11)
FIGURE 2 Particle position concept by particle swarm
optimization.
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β α α= − ,k k k−1 (12)

W
W α β

GB
=

(1 + + )

max( )
.k

o k k

k
(13)

2.3 | K‐means clustering

K‐means clustering is an unsupervised machine learning
approach that tries to group comparable observations into
clusters to aid in determining if V2G status is a load or a
power resource. It attempts to divide the data into groups
with several centroids by minimizing the Euclidean
distance to the centroids.47 The algorithm starts by defining
the number of clusters (k), which is hyperparameters as
demonstrated in Figure 3. The placement of the centroids is
initiated at random, and the approach proceeds to divide
the data (i.e., observations) based on the shortest distance to
the centroids. New locations of other centroids are then
inferred based on the average data values within each
group. Ultimately, the algorithm runs until there are no
changes at the clustering.

2.4 | Probabilistic Naive Bayes
algorithm

For multi‐classification tasks, the Naive Bayes tech-
nique is a well‐known supervised machine learning

algorithm.48 As a result of the clustering using
K‐means, it is utilized in this study to investigate
whether to charge or discharge an EV inside a cluster.
In particular, it determines the likelihood of EV to
charge and stay linked to the utility grid based on
studying the historical data of the whole vehicles
inside the cluster.49 The generic form Naive Bayes
algorithm is given in Equation (14).

P C x
P x C P C

P x
( | ) =

( | ) × ( )

( )
,k

k k
(14)

where Ck is the output of class‐k, xk is the dataset
attributes (x x x, , …, n1 2 ), P x C( | )k is called the likelihood

to charge the vehicle, P C( )k is the prior, P x( ) is the

evidence, and P C x( | )k is posterior. The posterior is the

target to estimate and fortunately its value is binary,
which is relevant to EVs battery status.

3 | PROBLEM FORMULATION

The DR with V2G issues comprises an objective function
subject to constraints. It is assumed that the V2Gs in DR
operate at a unity power factor and whatever output kWh
available from them in kWh is directly supplied/absorbed
from the grid.

3.1 | Objective function

The proposed optimal scheduling is to minimize the
fitness function J, which minimizes the sum of genera-
tion, DR, and V2G total operational costs.

 











( )J C P t C DR t

C V2G t

= min ( ) + ( ( ))

+ ( ( )) ,

i

N

g
i

g
i

j

N

DR
j j

k

N

V2G
k k

=1 =1

=1

g d

v
(15)

where Ng, Nd, and Nv are the total number of DGs, DR
virtual resources, and V2G units.

3.2 | DR as virtual generating units

In this study, DR is transformed into a virtual generating
unit, in which each demand reduction is handled as an
equivalent generating resource. The DR price is treated
in terms of its marginal cost (mc) as in (16).1,2FIGURE 3 K‐means clustering concepts.
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mc
P P

DR t
s t dr t P s t

α t dr t β t

=
−

2 ( )
( ) ( ) + ( )

= ( ) ( ) + ( ),

j H L

j
j j

L
j

j j
j

(16)

where PH and PL are the high and low electricity prices
when customer j shares in the DR program. dr t( )j

represents the hourly DR contribution by customer j.
DR t( )j is the average DR of customer j during its
contribution in DR. One can refer to Kwang and
colleagues1,2 for the exact determination of the DR
parameters. The DR resources commands are given in
Figure 4. The power demand peaks from 8 a.m. to
21 p.m., implying that the costs are passed on to the end‐
user. The DR pattern is established in such a way that,
during the peak hours, the developed optimizers specify
the optimal virtual generation or the demand reduction
thereby reducing the total costs.

3.3 | On‐grid energy storage EVs
batteries

V2G energy storage batteries are represented by a
parking lot at the relevant bus. When connected to the
utility grid, plugin electric vehicles (PEVs) could be a
load demand or a resource. Based on the SOC, the
parking lot is a large battery, whose capacity is defined by
the size of the individual parking vehicle batteries' that
are shared in the DR program. This big battery is highly
stochastic in terms of the EV number and SOC.50–53

Furthermore, the number itself depends on the incoming
and exiting cars. For this reason, the parking lot battery is
simplified by a probability density function (PDF) as will
be demonstrated in the next section. The main target is to
find the optimal sharing capacity according to the PDF so
that the total operational costs are minimized. Accord-
ingly, a near‐optimal portion from the big battery at the
parking lot is treated as virtual inertia DR.

3.4 | K‐means optimal number of
clusters

The K‐means algorithm is utilized to reduce the
distances between points in a cluster. It, on the other
hand, aims to maximize the distances between clusters.
The goal of the current research is to establish whether
the parking lot battery is a load demand or a distributed
energy resource. As a result, clusters of centroids with
SOC of greater than 50% are considered resources and
are likely to be part of the DR program, while the
remainder is considered load demands. However, deter-
mining the optimal number of clusters is a challenge.
The Euclidean distance within cluster is based on the
sum of squares, sometimes called inertia. As a result,
inertia could be a useful way to choose a cluster number
that is close to optimum. Furthermore, the Silhouette
score (Si) concept might be utilized to measure the
quality of K‐means clustering fit.47 The Si score is
calculated for each data point in each cluster based on
the following data observation distances:

1‐ The average distance (a) between a single observation
(i.e., data point) and all other data points in a cluster.

2‐ The average distance (b) between the observation and
the next closest cluster's other data points. In turn,
the Silhouette score is estimated as:

Si
b a

a b
=

−

max( , )
, (17)

where max refers to selecting the maximum value
between a and b. The cluster is adequately split if S is
closer to unity. A score approaching zero would indicate
overlapping clusters with samples extremely close to the
surrounding clusters' border. A negative score of −1 to 0
demonstrates that the data was incorrectly allocated to
the clusters.

3.5 | Implementation of Naive Bayes
probabilistic

The K‐means clustering divides the EVs into clusters
according to their SOC. Determining the status of the
incoming cars sophisticated task. Since Naive Bayes is a
trained‐based approach based on the EVs historical data,
therefore, it is expected to provide a robust decision of
EVs that are likely to be part of the DR program or
considered load demands provided that the centroids
have the same SOC. The Factors that impact the EVs
drivers were investigated before in the literature,49,54 on
the basis of which an excel sheet was established as inFIGURE 4 Demand response (DR) command pattern.
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Appendix section. The “OneHotEncoder” technique is
employed to convert the Table A2 information into
binary data. The accuracy of the naive is estimated
according to (18), in which ŷ is the predicted value of y
and nEV is the net EVs within a cluster.

y y
n

if y yaccuracy ( , ˆ ) =
1

1 : ˆ = .
EV i

n

=0

−1EV

(18)

3.6 | Constraints

The power balance constraints are given in (19) to ensure
the electrical load/generation balance at a time interval t,
in which Nc represents the total number of customers'
loads. The DG, DR resources, and V2G limitation
constraints are given in Table A1.

∈

   P t DR t V2G t P t

t T

( )+ ( ) + ( ) = ( )

.

i

N

g
i

j

N
j

k

N
k

j

N

l
j

=1 =1 =1 =1

g d v c

(19)

For a group of transmission branches (Nbr), the power
losses are estimated as (20), in which Rbr is the branch
resistance and Ibr is the corresponding current.

P T I R( ) = .
i

N

br brLOSS

=1

2
br

(20)

For N buses, the voltage and current constraints are
given as in (21) and (22), respectively.

∈  V V V i Nimin max (21)

∈ I I i N .i brmax (22)

For S is the subset of transmission lines branches,
which connect bus i and bus k, the next equations are
used to estimate the active and reactive powers as:

∈

P g V V V g θ θ

b θ θ i k S

= − ( cos( − )

+ sin( − )) , ,

j ik i i k ik i k

ik i k

2

(23)

∈

Q b V V V g θ θ

b θ θ i k S

= − ( cos( − )

+ sin( − )) , ,

j ik i i k ik i k

ik i k

2

(24)

where j iteration is the iteration number, gik is the
branch conductance, and bik is the branch substance. For
DGs, the power generation constraints are specified as
(25), in which G is the total number of DGs.

∈  P P P i G.g
i

g
i

g
i

,min ,max (25)

For customer j, the DR constraints are assumed in
(26), in which Mj is the maximum allowable reduction in
the DR program. Furthermore, the DR prices limits are
given in (27), in which P t( )d is the energy price at hour t.

 DR M0 ,j j (26)

 P P t P( ) .H d L (27)

For a parking lot facility, the DR participation is
governed in (26), in which V2GR is the DR participation.

 V2GR PDF t V2G0 ( ) × max (28)

3.7 | Degree of satisfaction

In this study, an index is defined in (29), which is
considered as a measure for the degree of satisfaction of a
customer in the DR program. The higher η is the higher
the customer's degree of satisfaction.

η
P P

P
= 1 −

−
,a b

b
(29)

where Pa is the total electricity costs after considering
DR, and Pb is the total electricity costs before consider-
ing DR.

3.8 | DR participation ratio

The customer participation rate represents a customer
contribution in the DR program as given in (30), in
which M represents the maximum DR magnitude a
customer j can allow. It depends on the customer
performance.

∈PR t
DR t

M t
t T( ) =

( )

( )
.j

j

j (30)

3.9 | Implementation of
self‐adjusted PSO

Optimal operation of generation and DR resources with
V2G offers a way to decrease total operational costs.
Figure 5A shows a flow chart of the developed
probabilistic SAPSO algorithms. Herein, the developed
SAPSO algorithms are developed to manage the optimal
day‐ahead scheduling of generation, demand resources,
and the V2G PDF operation. To verify the economical
viewpoint, it is required to run load flow analysis.

The algorithms start by defining the hyperparameters
and then generate a PDF for the V2G possible scenarios.
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FIGURE 5 Mathematical formulation description.
(A) Probabilistic modified particle swarm optimization‐based day‐
ahead optimization; and (B) overview of the mathematical
formulation. DR, demand response; V2G, vehicle to grid.

Provided that each cluster has the same SOC centroid, the
Naive Bayes classifier is trained. The training factors
include battery SOC, driver yearly income, education level,
wind speed, and the main goal is to determine the driver's
proclivity to charge the battery. To cover the EVs' is trained

for each cluster, uncertainty, the K‐means clustering
demonstrated in Figure 3 is checked to identify the electric
cars that would engage in the DR program. In each cluster,
the Naive Bayes classifier is used to predict whether the
EVs will charge or discharge. The algorithms then proceed
to find a global best solution that reduces overall costs while
meeting the objective function adequately. Eventually, the
optimal solution is identified throughout the predetermined
number of iterations. The problem formulation is to put
forward the near‐optimal solution for the distributed
system in terms of the economic issues as demonstrated
in Figure 5B. The fundamental concept is to transform such
a stochastic problem into a deterministic concept. To
forecast EV charge/discharge status, the Naïve Bayes
algorithm is employed. The SOC is thus produced at
random. To find the essential clusters, K‐means clustering
is used. To meet the objective function, deterministic
optimizers search for the best or nearly best decision
variables involoved in (15). The remaining issues are
related to the DGs; however, they are deterministic in their
nature. Following the activation of the hyper‐parameters,
each of the deterministic optimizers seeks to minimize the
objective function provided in (15), which contains the
decision variables. The decision variables comprise the size
of the DGs and DR participation as well as the parking lot
battery. In turn, both the day‐ahead total expenses, the
load, and the resources are scheduled in a manner to
increase the customer's degree of satisfaction.

4 | SIMULATED RESULTS

For optimal network functioning in distributed systems,
DGs and utility‐owned V2G aggregators have to be
efficiently rescaled. To develop the day‐ahead sizing
strategy of energy storage systems of EVs parking lots
and DGs in smart distribution systems, compliant DR,
which is regarded as an advanced step towards a smart
grid, is used as a result of their penetration into the
power systems. Applying the developed problem formu-
lation algorithm in the previous section to the modified
IEEE 24 RTS bus network will help find the near‐optimal
times to schedule DG generating units, DR, and V2G
resources in accordance with the objective function in
(15). Metaheuristics are useful methods for finding the
near‐optimal size within the scheduling problem, which
would both assist to lower total expenses and provide an
acceptable degree of satisfaction. Thus, the obtained
results are compared with two algorithms, namely the
mature GA and the traditional exploitive PSO, to
demonstrate the efficacy of the two developed SAPSO
optimizers and address the aforementioned constraints.
In the day‐ahead scheduling, the EVs' states at the
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parking lots are adjusted in the DR program utilizing
both the developed K‐means clustering and the Naïve
Bayes probabilistic techniques. The GA, PSO, SAPSO#1,
and SAPSO#2 models are constructed using Matlab
2017a with a 1‐h time step. Python is used to investigate
the Naïve Bayes classifier and K‐means clustering. The
Appendix section includes the developed SAPSO#1 and
SAPSO#2's parameters.

The following investigation scenarios attempt to
reduce total operating expenses by including day‐ahead
scheduling with an acceptable level of satisfaction.
Initially, the case study is presented followed by
investigation of the effectiveness of the developed
optimizers. Overall, the decision variables are the
DGs, DR resources, and parking lots sizing in kW.
Applying the four optimizers results in a reduction of
overall costs with an acceptable degree of satisfaction,
scheduling both DGs and V2G cars, and comparing the
execution times of the individual optimizers. The single
optimizers' hourly energy production shares are dem-
onstrated to provide a fair comparison. Pseudocode 1
illustrates the general approach to determine the DGs,
DR, and V2G status depending on the load profile and
energy costs. However, the charging or discharging
mode of the EVs is determined by K‐means clustering
and the Naive Bayes techniques. In addition, determi-
nistic optimizers are used to estimate the objective
function. In turn, they are then given the results of the
charging and discharging modes, and they go on to
obtain the sizing decision of the variables in accordance
with the varied profitability prices.

4.1 | Case study

Figure 6 shows a modified one‐line diagram of the IEEE
24 reliability test system. It consists of 11 generation units
at Buses 2, 1, 7, 13, 14, 15, 16, 18, 21, 22, 23. Bus#13 is
considered the slack bus. The DR buses are located at 3,
4, 5, 8, 9, 10, 19, and 20. Among the DR buses, V2G
charging stations are assumed at Buses 3 and 19 as
shown in Figure 6 with red circles. The developed DR
scheduling has been applied to the IEEE 24‐bus RTS bus
network. The electrical demand for a day‐ahead is given
in Figure 7 where the maximum loading is 2650.5MW
and peaks at Hour 18. The locations of the DGs, DR
resources, and V2G resources are given in Figure 6.

4.2 | Effectiveness of the developed
algorithms

Figure 8 demonstrates a convergence behavior test of the
objective function for the developed optimizers. GA
illustrates a longer time to relax. Meanwhile, other
developed algorithms show satisfactory performance.
Yet, it is obvious that the developed SAPSO#1 is a strong
competitor to the other algorithms. It converges fast
towards the near‐optimal point.

Each optimizer tries to identify the best amount of DR
at a specific time in response to DR command signals. The
size of the demand profile before and after the DR program
remains unchanged, but the DR reaction adjusts the flexible
load timespan, resulting in a more cost‐effective solution.
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The load profile before and after the DR program via
SAPSO#1 is demonstrated in Figure 9, in which the
algorithm moves the load during peak hours into low
demand requirements times. Furthermore, the total costs of
the developed algorithms are shown in Figure 10.

The developed optimizers are based on the PSO, which
has a robust exploitation feature. Besides, the major target of
this section is to verify the effectiveness of the developed
optimizers compared to the GA and the exploitive PSO.
Accordingly, the developed PSO‐based optimizers are
expected to demonstrate a satisfactory exploitation feature
to meet the objective function, which is verified in Figure 8

FIGURE 6 Modified IEEE 24 reliability test
system.

FIGURE 7 Typical system hourly demand profile.

FIGURE 8 Objective function variation. GA, genetic
algorithm; PSO, particle swarm optimization.

FIGURE 9 Demand profile before and after demand response
(DR) program via SAPSO#1.
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and Table 1, respectively. Nonetheless, both the total cost
reduction and the execution time are considered in the
current study to judge which optimizer is more effective. The
comparison cost reduction results are given in Table 1.
SAPSO#1 shows a reduction of $7.8k (i.e., 506.3–498.5),
which represents a reduction of 1.65% with respect to the
“After the DR” case. Meanwhile, SAPSO#2 shows a cost
decrease of $13.6k (2.7%), which represents 29.8% when
compared to the GA considering the “before the DR”
example. Consequently, the lowest day‐ahead costs are
provided by SAPSO#1, which represents 24% compared to
the GA considering the “before the DR” case. In addition, it
offers the greatest degree of satisfaction. However, the
shortest time of the simulation is provided by SAPSO#2. It
records 85s with a PC having an Intel Core i5‐7200U CPU
2.5GHz.

4.3 | Optimal PEV charging with DR

The main target of optimally scheduling the PEVs to the
utility grid is to determine the optimal charging profile
and the corresponding daily benefit cost, which comes
back to the customer through the participation in the DR
issue according to Section 3 and the constraints in
Table A1. With the assumption that the parking lot is a

large battery, a PDF with a bell‐shaped curve for V2G is
assumed for the battery SOC as in Figure 11.

The scheduling method in the current study is utilized in
the distributed systems primarily to focus on the electric
automobile operations in which the EVs battery status is the
point of interest. The main purpose is to minimize the total
energy costs. On the other hand, the PSO‐based techniques
in the current study are dependent on training to identify the
V2G state, which is based on the charging and discharging
rates of the EVs that fluctuate arbitrarily over time. For this
reason, Naive Bayes is trained randomly as in Table A2

FIGURE 10 Total costs before and after
considering the demand response (DR)
program.

TABLE 1 Comparison results of the
individual optimizers.

Algorithm
Maximum
voltage (pu)

Minimum
voltage (pu)

Degree of
satisfaction

Time of
simulation
(s)

No. of
iterations

GA 1.0000 0.9336 0.7021 92 100

PSO 1.0000 0.9337 0.9211 86 100

SAPSO#1 1.0000 0.9335 1.0157 89 100

SAPSO#2 1.0000 0.9336 0.9731 85 100

Abbreviations: GA, genetic algorithm; PSO, particle swarm optimization.

FIGURE 11 Parking lot battery state of charge (SOC).
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shown in the Appendix section. Thus, to consider the
uncertainty within the parking lot battery hourly status,
a ±20% variability around each SOC observation of the PDF
is assumed as shown in Figure 12A. The parking lot battery
is assumed to be a big virtual battery. Since it is virtual, the
parking lot battery is therefore made simpler by a PDF. The
number of vehicles entering and exiting the parking lots,
which essentially meets the V2G typical operating SOC
requirements, influences this virtual battery capacity.
Ultimately, the individual automobiles operate realistically
(between 20% and 95%), but the virtual battery capacity is
dependent on the incoming and departing vehicles. Herein,

the goal is to determine whether the parking lot is a load
demand or is considered a distributed energy resource. The
investigation of the Silhouette score and the inertia in
Figure 12B,C, respectively, illustrate that the Silhouette score
decreases fairly from 0.54 to approximately 0.4 at 9 clusters.
Since the inertia curve has an elbow shape, it might help
figure out how many clusters are satisfactory. Fortunately,
the investigation reveals that 10 clusters slightly alter the
inertia curve compared to 9 clusters; therefore, 9 clusters are
chosen in this study.

Figure 13 depicts the near‐optimal clusters, with each
centroid represented by the symbol ×. The Naive Bayes
classifier is used to predict the status of an EV battery either
to charge or discharge according to pretrained historical data
as in Appendix section. In their participation in the DR
program, the drivers with “YES” admit selling energy to the
utility grid, and the others are considered as hourly loads.
The battery SOC range is divided into three main statuses:
low, medium, and high. Such statuses are converted to zeros
and ones using the “OneHotEncoder” technique accessible
in Python packages. Likewise, additional factors that
influence the battery charging are transformed into binary
statuses. With the Gaussian fitting option, Naive Bayes
prediction achieves an accuracy of 80%. Assuming the EVs'
battery capacity is in the range of 50 kWh and assuming
1000 total number of EVs at the relevant buses, the
aggregation of the predicted only cars might sell energy to
the utility grid according to the PDF perspective. Other cars
are considered as load demands. Based on the SOC,
Figure 14 shows the optimal charging profile of V2G at
Bus#3. The hourly benefit‐cost for Buses#3 and #19 are
given in Figures 15 and 16, respectively. Based on the
training data in Table A2, the near‐optimal V2G charging is
demonstrated in Figure 14 at Bus#3 wherein a parking lot
exists. The act of charging indicates that the owners of EVs
pay money to acquire electricity from the grid. However,
Figures 15 and 16 show how the V2G may contribute to the
DR program at different times, which lowers the total

(A)

(B)

(C)

FIGURE 12 K‐means indices; (A) parking lot variability,
(B) Silhouette score, and (C) inertia. FIGURE 13 Near‐optimal vehicle to grid clustering.
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expenses by the amounts therein shown. Summing such
day‐ahead benefit costs is shown in Table 2, which are
saved from the customers' side. The findings show that
SAPSO#1 and SAPSO#2 both save around $117.7
(e.g., $61.05 + $56.62) and $112, respectively. In turn,
SAPSO#1 exhibits revenue improvement compared to
SAPSO#2 by 5%, referred to the latter results. It is
clear that SAPSO#1 certainly strengthens the customer
benefit cost over SAPSO#2.

4.4 | Impact of scheduling DR and V2G
resources upon running cost

Figures 17–19 show the system performances involving
DR and V2G resources via SAPSO#1 from 8 to 21 h.
Once, the DR signal is received, the algorithm seeks the
optimal DR value to minimize the total costs. It can be
observed that the demand resources decrease the overall
running costs. The optimal scheduling enables demand

FIGURE 14 Optimal vehicle to grid
charging at Bus#3.

FIGURE 15 Benefit‐cost of vehicle to grid
charging at Bus#3 (blue: SAPSO#1, red:
SAPSO#2).

FIGURE 16 Benefit‐cost of vehicle to grid
charging at Bus#19 (blue: SAPSO#1, red:
SAPSO#2).
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resources to become competitive to the DGs with the
highest costs. Thus, the effectiveness of the developed
SAPSO is verified.

4.5 | Impact of DR participation ratio

The customer participation rate represents a customer
contribution to the DR program as given in Equation (30).
Figure 20 shows the echelon of the daily running costs
versus a customer participation rate via SAPSO#1 at Hour
18, which meets the maximum loading conditions. Below
(PR= 0.5), DR has a slight impact on the running costs. It
could be concluded that the above PR equals 0.5, and the
DR scheduling could improve the net hourly cost.

5 | DISCUSSION

Table 3 compares the outcomes obtained by a few
schedulers that produced adequate performance in the
literature. In each study, a fundamental situation is
taken into account, from which the data in the second
column was derived. Despite the fact that the figures in
Table 3 vary based on the current energy prices, the
characteristics of the distributed systems under con-
sideration, or at the level of microgrids, RESs, and
DGs, it is clear that the developed optimizer performs
satisfactorily. Yet, the findings in Table 3 show that to
achieve greater cost savings, a more sophisticated
stochastic approach, such as reinforcement learning,
is required. From the above case studies, the following
notices can be drawn:

1‐ Both of the developed controllers show better perform-
ance compared with GA and the conventional PSO.

2‐ SAPSO#2 outperforms the other algorithms in terms of
the time consumed for optimal scheduling processing.

TABLE 2 Net daily benefit‐cost of V2G.

Algorithms

Daily benefit‐cost ($)
Bus#3 Bus#19

SAPSO#1 61.05189 56.62496

SAPSO#2 58.18773 53.84188

FIGURE 17 Demand response (DR) resources scheduling with
SAPSO#1.

FIGURE 18 Vehicle to grid resources scheduling with
SAPSO#1. EV, electric vehicle.

FIGURE 19 Running cost with demand response (DR).

FIGURE 20 Running cost versus participation rate at Hour 18.
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3‐ SAPSO#1 has the highest degree in terms of
convergence processing.

4‐ Optimal scheduling of DR and PEV resources enables
them to be competitors to DGs with the operational
highest costs.

6 | CONCLUSION

The day‐ahead sizing of the flexible distributed generators
and resilient EV aggregators in distributed networks is
investigated in this study. Besides, two modified probabilis-
tic SAPSO algorithms integrated K‐means clustering, and
Naive Bayes classifiers were utilized to evaluate the optimal
day‐ahead scheduling of generation and remand response
with V2G participation. The optimal scheduling was
conducted to minimize the total operational costs of
generations, DR, and V2G resources. The results show that
the running costs decrease as the customer participation
rate increases. The K‐means clustering technique was
utilized to divide the EVs into clusters according to their
batteries' state of arrival. The Naive Bayes classifier was
employed to predict the EVs which participate in the day‐
ahead scheduling. From the above development and
discussions, the next conclusions could be drawn: (1) the
developed algorithms allow the optimal scheduling of
generation and remand response with V2G participation in
an economic manner. (2) The effectiveness of the developed
SAPSO#1 to minimize the total running costs was achieved
and compared with other algorithms. (3) The algorithm is
effective and can be cooperated with optimal scheduling
issues with different operating conditions to minimize total
operating costs and maximize net savings.

For the purpose of future work, this study could be
extended within resilient interconnected microgrids with
more advanced machine learning techniques such as
reinforced machine learning‐based algorithms. A future
study might also look at the impact of façade thermal

photovoltaic systems for storing green hydrogen and the
versatile V2G energy storage batteries.
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APPENDIX A

1‐ The relevant parameters for generating, DR, and V2G
aggregation units are given in Table A1.1,2

2‐ SAPSO#1 parameters: inertia weight (W0) = 0.2,
population = 100, c1 = 7.5, c2 = 7.5, d0 = 0.7, inertia
weight damping ratio = 1, and no. of iterations
(Nmax) = 100.

3‐ SAPSO#2 parameters: inertia weight (W0) = 0.4,
population = 100, c1 = 1.5, c2 = 1.5, inertia weight
damping ratio = 0.99, and no. of iterations
(Nmax) = 100.

4‐ The bell‐shaped probability density function, which is
a Matlab‐based function, and the following parame-
ters are used: a= 7, b= 5, c= 14.

5‐ The following Table A2 gives the historical data of
EVs within clusters. It should be noted that this table
is created randomly.

TABLE A1 Generating, DR, V2G units characteristics.

Unit
type

Bus
no. αi βi γ i STCi

Pmin

(MW)
Pmax

(MW)

DG 1 0.008 18.325 30 40 0 50

DG 2 0.0085 25.324 20 20 0 20

V2G 3 0 0.117 0 0 0 50

DR 4 0.02 15.12 0 0 0.5 10

DR 5 0.034 15.12 0 0 0.5 8

DG 7 0.077 30.12 0 0 75 350

DR 8 0.114 17.1 0 0 0.5 2.3

DR 9 0.034 35.2 0 0 0.5 9

DR 10 0.034 18.2 0 0 0.5 9

DG 13 0.075 10.546 30 80 200 590

DG 14 0.0075 8.02 50 150 13 60

DG 15 0.008 6.34 50 140 54 155

DG 16 0.005 4.123 100 300 54 155

DG 18 0.001 1.213 400 800 100 400

V2G 19 0 0.117 0 0 0 50

DR 20 0.074 20.1 0 0 0.5 12

DG 21 0.002 2.678 180 400 100 400

DG 22 0.002 3.231 150 400 200 300

DG 23 0.005 3.451 100 300 108 310

Abbreviations: DG, distributed generation; DR, demand response;
V2G, vehicle to grid.
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TABLE A2 Status of EVs based on historical data.

No. SOC Income
Education
level Wind

Car
discharging

1 Medium High High Weak No

2 Medium High High Strong No

3 Medium High High Strong No

4 High High High Weak Yes

5 Low Mild High Weak Yes

6 Low Low Normal Weak Yes

7 Low Low Normal Strong No

8 High Low Normal Strong Yes

9 Medium Mild High Weak No

10 Medium Low Normal Weak Yes

11 Low Mild Normal Weak Yes

12 Medium Mild Normal Strong Yes

13 High Mild High Strong Yes

14 High High Normal Weak Yes

15 Rain Mild High Strong No

16 High High Normal Weak Yes

17 High High Normal Weak Yes

18 High Low Normal Strong Yes

19 High Low Normal Strong Yes

20 Low Mild High Weak Yes

21 High High Normal Weak Yes

22 High High Normal Weak Yes

23 High High Normal Weak Yes

24 Low Mild High Weak Yes

Abbreviations: EV, electric vehicle; SOC, state of charge.
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