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Abstract—The community integrated energy system (CIES) is

an essential energy internet carrier that has recently been the focus
of much attention. A scheduling model based on chance-
constrained programming is proposed for integrated demand
response (IDR)-enabled CIES in uncertain environments to
minimize the system operating costs, where an IDR program is
used to explore the potential interaction ability of electricity-gas-
heat flexible loads and electric vehicles. Moreover, power to gas
(P2G) and micro-gas turbine (MT), as links of multi-energy
carriers, are adopted to strengthen the coupling of different energy
subsystems. Sequence operation theory (SOT) and linearization
methods are employed to transform the original model into a
solvable mixed-integer linear programming model. Simulation
results on a practical CIES in North China demonstrate an
improvement in the CIES operational economy via the
coordination of IDR and renewable uncertainties, with P2G and
MT enhancing the system operational flexibility and user
comprehensive satisfaction. The CIES operation is able to achieve
a trade-off between economy and system reliability by setting a
suitable confidence level for the spinning reserve constraints.
Besides, the proposed solution method outperforms the Hybrid
Intelligent Algorithm in terms of both optimization results and
calculation efficiency.

Index Terms—Community integrated energy system, power to
gas (P2G), flexible load, integrated demand response, electric
vehicles, chance-constrained programming.

NOMENCLATURE

Acronyms
RG Renewable generation
P2G Power to gas
MT Micro-gas turbine
PV Photovoltaic
WT Wind turbine
CIES Community integrated energy system
HSD Heat storage device
ESD Electricity storage device
EB Electric boiler
EV Electric vehicle
IDR Integrated demand response
CCP Chance-constrained Programming
SOT Sequence operation theory
MILP Mixed-integer linear programming
PDF Probability density function
TSE Time-shiftable electric load
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IE Interruptible electric load
TSQ Time-shiftable gas load
IQ Interruptible gas load
CH Cuttable heat load
Variables

WTP / PVP WT/ PV output power (kW)

,load tP Actual electric load in period t (kW)

,load tQ Actual gas load in period t (m3)

,load tH Actual heat load in period t (kW)

TSE
tP / IE

tP Time-shiftable/ interruptible electric load in period t
(kW)

TSQ
tQ / IQ

tQ Time-shiftable/ interruptible gas load in period t (m3)

CH
tH Cuttable heat load in period t (kW)

EB
tP Absorbed electric power of EB in period t (kW)

EB
tH Heat output of EB in period t (kW)

,
EL

g tP / ,
EL

RG tP Electricity purchased by electric load from grid/ RGs in
period t (kW)

,
HL

g tP / ,
HL

RG tP Electricity purchased by heat load from grid/ RGs in
period t (kW)

2
,

P G
g tP / 2

,
P G

RG tP Electricity purchased by P2G from grid/ RGs in period
t (kW)

tC Capacities of energy storage devices in period t (kWh)

,ch tP / ,dc tP Charging/ discharging power of energy storage devices
in period t (kW)

2P G
tQ Natural gas produced by P2G in period t (m3)

MT
tQ Gas consumption volume of the MT in period t (m3)

MT
tP / MT

tH Output power/ heat of the MT in period t (kW)

,
MT
g tQ / 2 ,

MT
p g tQ MT consumes natural gas volume from gas grid/ P2G in

period t (m3)

,
GL
g tQ Gas volume purchased from gas grid in period t (m3)

grid
tR / ESD

tR Spinning reserves of the power grid/ ESD in period t
(kW)

EV
tP Charging power of EVs in period t (kW)

s
tP Power of renewable curtailment in period t (kW)

( )RG
tE P The expectation of joint outputs of RGs in period t (kW)

( ) / ( )PV WT
t tE P E P The expectation of output of PV/ WT in period t (kW)

t P2G operation state

nT Charging time of EV n

,
EV
n tC Stored energy of the EV n in period t (kWh)

Parameters
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 Confidence level (%)
q Discrete step size (kW)

0
,load tP Initial electric load in period t (kW)

0
,load tQ Initial gas load in period t (m3)

0
,load tH Initial heat load in period t (kW)

TSE / IE Ratios of TSE/ IE to total electric load in period t (%)

TSQ / IQ Ratios of TSQ/ IQ to total gas load in period t (%)

M Human energy metabolism rate (W/m2)

clI The thermal resistance of clothing (m2·℃/W)

sT The average temperature of the human skin in a
comfortable state (℃)

,in tT / ,out tT Indoor/ outdoor temperature (℃)
K Comprehensive heat transfer factor (W/m2)

F Building surface area (m2)

V Building volume (m3)

airc Heat capacity of indoor air (kJ·kg-1·℃-1)

air The density of indoor air (kg·m-3)
EB / 2P G The conversion efficiency of EB/ P2G

ch / dc Charging/ discharging efficiencies of energy stored
devices

lossk Loss rate factor of energy stored devices
HHV The calorific value of natural gas (kW/m3)

MT
e / MT

h
Electricity power/ heat generation efficiency
coefficients of MT

MT
loss Heat loss coefficient of MT

,
P
g t / ,

Q
g t TOU power price/ natural gas price ( )￥

grid
t / ESD Spinning reserve cost of the power grid/ ESD ( /kWh)￥

l Maintenance cost of device l ( /kW)￥

,
P
g j / ,

Q
g j

Emission coefficient of pollutant j from the electricity/
natural gas purchased

2P G Coefficient of CO2 absorption of the P2G

j Penalty price of the pollutant j ( )￥

/ / /IE TSE CH  

/IQ TSQ 
Unit compensation cost for IE/ TSE/ CH/ IQ/ TSQ
( /kWh)￥

,maxchP / ,maxdcP Maximum charging/ discharging power of energy
storage devices (kW)

maxC / minC Maximum/ minimum capacity of energy storage
devices (kWh)

0C /
endTC Starting/ ending capacity in one scheduling cycle (kWh)

max
EBH Maximum heat power output of the EB (kW)

2
max
P GP / 2

min
P GP Maximum/ minimum input power of P2G (kW)

min
MTQ∆ / max

MTQ∆ Lower/ upper limits of the climbing ability of MT (m3)

max
gridP Maximum power provided by the grid for CIES (kW)

,
EV
e nS Expected SOC of EV n (%)

, ,
EV
real t nS Real state SOC at the start of charging of EV n (%)

max,
EV

nC / min,
EV

nC Maximum/ minimum battery capacity of EV n (kWh)

100W Power consumption of 100 kilometers (kWh)

,
EV

ch nP / EV
ch Rated charging power/ efficiency of EV n (kW)

,max
EV

chP Upper bound of the charging power of all EVs (kW)

N Total number of EVs

I. INTRODUCTION

ITH environmental pollution and the exhaustion of
traditional fossil energy have become increasingly

pressing. The vigorous development of renewable generation
(RG) and improvements in energy efficiency are commonly
applied by the international community in an attempt to
overcome such problems [1], [2]. The coupling degree between
electrical and natural gas systems increases with the
development of technologies and scales of power to gas (P2G)
and micro-gas turbine (MT). Moreover, integrated energy
systems (IESs) are able to achieve multi-energy
complementation and collaboration via the coupling of
independent energy systems, which consequently reduces
operating costs and improves integrated energy efficiency [3],
[4]. The modeling and optimization of a community integrated
energy system (CIES), coupled with the energy carriers power,
heat, and natural gas, provides a more economical and efficient
option. Thus, an effective optimal scheduling strategy is in
urgent demand.

At present, some studies have been performed focusing on
the scheduling of IESs. Ref. [5] reveals a reduction in the wind
power curtailment following the introduction of a heat storage
device (HSD) and electric boiler (EB) to supply the heat-
electric system. Ref. [6] proposes a scheduling strategy to
integrate the random outputs of RG via the application of the
charging flexibility of electric vehicles (EVs). Ref. [7] proposes
a low-carbon scheduling model, in which the P2G device was
employed to reduce CO2 emission. However, the
aforementioned studies failed to fully exploit the interaction
ability of demand-side resources. Demand response in IESs has
been considered a key measure to stimulate the interaction
between demand-side resources and renewable energy [8]. The
authors of [9] establish an integrated demand response (IDR)
program considering the composition of electrical and heat
loads. Ref. [10] models the interruptible, adjustable, and
shiftable loads in a smart residential community. An IDR-based
energy hub program is proposed in Ref. [11], whereby the
electricity is switched to natural gas during peak hours. The
increase in penetration of RGs (e.g., photovoltaic (PV) and
wind turbine (WT)) results in further uncertainties, thereby
posing new challenges for IES optimal scheduling.

Numerous approaches have been proposed to deal with the
uncertainties associated with IES scheduling [12], including
robust optimization [13-15], scenario-based method [16], [17]
and chance-constrained programming (CCP) [18], [19]. The
authors of [13] adopt robust optimization to deal with the
uncertainty of electricity price considering IDR and EVs. In
[14], the operating costs of multi-energy micro-grids are
minimized under uncertainties via a two-stage robust
optimization model. Ref. [15] developed a robust IES capacity
model that considers both the demand response and thermal
comfort. Robust optimization has proven to be highly
promising in the analysis of the worst-case uncertainty scenario,
however the solution is often conservative as it is a hedge
against the worst-case realization [20].

A scenario-based method is another effective mathematical
tool to handle uncertainties. In [16], a two-stage scenario-based
stochastic programming is used for modeling the energy
management problem of virtual power plants. Ref. [17]
developed an optimization framework based on a hybridW



scenario-based/interval/information gap decision theory
method for energy hubs under uncertainties of load, energy
prices, and renewable sources. However, the optimization
results of such kind of scenario-based methods are heavily
dependent on the quality of scenario generation and scenarios
reduction method.

CCP has recently gained a great deal of attention in
addressing uncertainties. Ref. [18] proposed a CCP-based
hierarchical stochastic energy management strategy for
interconnected microgrids with consideration of the
uncertainties. In [19], a CCP-based optimization model is
developed for the optimal operation of a hydro-PV system.
Such CCP-based approaches can achieve a trade-off between
system reliability and economy by setting a proper confidence
level of chance constraints.

Table I compares our proposed approach with the methods in
the current literature, highlighting the unique features of our
method. Despite the pioneering research performed by the
aforementioned studies, there are still the following open
problems. (1) IDR enabled CIES is insufficiently considered. In
particular, the demand response potential of natural gas and
heat loads remain to be fully explored. (2) The majority of
previous studies fail to consider the spinning reserve induced
by the prediction errors between the RG predictions and the
actual outputs. (3) How to deal with multiple renewable
uncertainties efficiently is still a challenging problem in
scheduling. (4) Research on the optimal scheduling of CIES
that simultaneously considers IDR, spinning reserves, EVs, and
multiple RG uncertainties is limited.

TABLE I
COMPARISON OF THE PROPOSED APPROACH WITH RELATED STUDIES

Ref
Renewable

Uncertainties
IDR

EV
Spinning
reserves

WT PV Electricity Heat Gas
[13] × × √ √ × √ ×
[14] × √ × × × × ×
[15] √ × √ √ × × ×
[16] √ √ × × × × ×
[17] √ √ √ × × × ×
[18] √ √ × × × × ×
[19] × √ × × × × ×

Proposed √ √ √ √ √ √ √
To address these issues, this study proposes an optimal

scheduling approach for integrated demand response-enabled
CIES with uncertain renewable generations. The key
contributions of our work are summarized as follows:

(1) Aiming to seek the minimum operating costs, we propose
a scheduling strategy based on chance-constrained
programming (CCP) for integrated demand response-enabled
CIES in uncertain environments. Here, an IDR program is
employed to fully explore the potential of electricity-gas-heat
flexible loads and electric vehicles. Due to the multiple
renewable uncertainties, the spinning reserves provided by an
electricity storage device (ESD) and a power grid are
constructed in the form of chance constraints. Moreover, P2G
and MT, as links of multi-energy carriers, are depicted to
participate in the CIES scheduling.

(2) Sequence operation theory (SOT) is adopted to convert
the chance constraints into their deterministic equivalent form.

A solvable mixed-integer linear programming (MILP) model is
then determined via the linearization methods, proving to be
efficient in solving the CCP model.

(3) Numerical simulation results on the CIES in North China
demonstrate the ability of the proposed method to reduce CIES
operating costs by coordinating IDR and renewable
uncertainties. In addition, the CIES operation can achieve a
balance between economy and system reliability by setting a
proper confidence level of spinning reserve constraints. The
P2G and MT are able to enhance the system operational
flexibility and the user comprehensive satisfaction.

II. STRUCTURE MODELING OF CIES

To clearly demonstrate the CIES' physical model, Fig. 1
presents a schematic diagram of the CIES. The main
components of the CIES include PV and WT units, an EB, EV
charging station, P2G, an MT unit, energy storage devices, and
loads. Note that hydrogen is an intermediate product in the P2G
process in this study. Hydrogen can also be used as a source for
hydrogen fuel cell vehicles in real applications.

Fig. 1. Schematic diagram of the CIES.

A. Probabilistic Wind Turbine Model

Studies have shown that WT output power WTP depends on
wind speed and WT rated output [21]. Moreover, the wind
speed obeys the Weibull distribution. Thus, the probability
density function (PDF) of WTP can be formulated as:

{ }
1

( / ) ((1 / ) ) /

exp ((1 / ) ) / ,( )

          [0, ]

0,

kWT
in r r in

kWT
WT r in

w

WT
r

khv P hP P v

hP P vf P

P P

otherwise

 



−  + × 
  − + = 
 ∈


(1)

where  and k are the scale factor and the shape factor;
rp is the

rated WT output; ( / ) 1r inh v v= − ;
inv and

rv are the cut-in

and rated wind speeds, respectively. More details of the
probabilistic WT model can be found in [22].

B. Probabilistic Photovoltaic Model

Existing researches suggest that the solar irradiance



approximately obeys the Beta distribution, while the PV power

output PVP has a linear relationship with solar irradiance [23],

[24]. Thus, the PDF of PVP is
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where
max
PVP is the maximum value of PVP ;

1 and
2 are the

shape factors; Γ represents a Gramma function;  and
max are

the actual and maximum solar irradiance, respectively.

C. Electric Vehicle Model

In order to simplify the analysis procedure, we assume that
the charging commences when the EV final return ends. The
PDFs of the final return time and daily mileage can be described
as (3) and (4), respectively [25], [26]:
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where
s and

s are the mean and standard deviation of the

time for EV to arrive at the charging station, respectively;
d

and
d are the mean and standard deviation of the daily mileage.

Based on the daily mileage of EV n, the SOC at the start of
charging can be calculated by

100
, , ,

max,

( ) 100%
100

EV EV n
real t n e n EV

n

W x
S S

C
= − × (5)

The charging time of EV n is calculated as:

max,
, , ,

,

( )
EV

nEV EV
n e n real t n EV EV

ch n ch

C
T S S

P 
= − (6)

The EV daily driving distance and starting charging time are
independent. We employ the Monte Carlo method to derive the
charging load of each EV by simulating the corresponding
driving distance and starting charging time. This allows us to
obtain the total charging load by superimposing the load of each
EV. Fig. 2 depicts the EV daily load under disorderly charging.

Fig.2 Daily load of EVs under disorderly charging

D. Modeling of Load

1) Electric Load Model
We divide the electric load into fixed and flexible loads based

on the nature of the demand-side loads. Flexible loads include
time-shiftable electric load (TSE) and interruptible electric load
(IE) [23]. Since the load shift and interruption inevitably affect
user experience, a certain subsidy will generally be provided to

users [27]. The aggregated electric load participates in CIES
scheduling and is described as:

0
, ,

TSE IE
load t load t t tP P P P t= + − ∀ (7)

0 0
, ,

TSE
TSE load t t TSE load tP P P t − ≤ ≤ ∀ (8)

1

0
T

TSE
t

t

P
=

=∑ (9)

0
,

IE
t IE load tP P t≤ ∀ (10)

2) Gas Load Model
Similar to the electric load model, the natural gas DR load

can be modeled according to (11)-(14).
0

, ,
TSQ IQ

load t load t t tQ Q Q Q t= + − ∀ (11)
0 0
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TSQ

TSQ load t t TSQ load tQ Q Q t − ≤ ≤ ∀ (12)
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TSQ
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Q
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0
,

IQ
t IQ load tQ Q t≤ ∀ (14)

3) Heat Load Model
This work considers the building thermal inertia in heat load

models. Since the user's perception of temperature comfort has
a certain flexibility, the heat load can be reduced within an
acceptable thermal comfort range for users. Thus, we can define
the actual heat load ,load tH as:

0
, ,

CH
load t load t tH H H= − (15)

To quantify the acceptable thermal comfort range of users,
the Predictive Mean Vote (PMV) index is introduced [28]:
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According to ISO 7730 standard, we set the PMV limits as
follows:
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Moreover, based on our previous work [29], the heating
power stored in a building is calculated by
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To comprehensively measure the impact of IDR on user
experience, a user comprehensive satisfaction is designed as
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E. Electric Boiler Model

As a kind of electro-thermal coupling unit, EBs yield no
pollutant emissions. The output model of EBs is

, ,( )EB EB EB EB HL HL
t t g t RG tH P P P t = = + ∀ (20)
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F. Energy Storage Device Model

The energy storage devices described in this study can be
grouped into two types, namely, ESD and HSD. The energy
storage device model is formulated as:

1 , ,(1 ) ( / )t loss t ch ch t dc t dcC k C P P t t + = − + − ∆ ∀ (21)

G. Power to Gas Model

P2G technology includes two chemical processes. First, an

electrolyzer is used to electrolyze 2H O into 2H and 2O , and

then 2H and 2CO are synthesized into 4CH through the Sabatier

reaction.

2 2 2

2 2 4 2

2H O 2H O

CO 4H CH 2H O

→ +
 + → +

(22)

The relationship between natural gas produced by P2G and
electricity consumption is given by

2 2 22 2
, ,2 ( )P G P G P GP G P G

g t RG tP G t
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P PP
Q t

HHV HHV

 +
= = ∀ (23)

H. Micro-Gas Turbine Model

The relationship between input power and output power of
the MT can be described as:

MT MT MT
t e tP Q HHV t= ∀ (24)

(1 )MT MT MT MT
t e loss tH Q HHV t = − − ∀ (25)

, 2 ,
MT MT MT
t g t p g tQ Q Q t= + ∀ (26)

III. OPTIMAL SCHEDULING MODEL OF CIES

The proposed scheduling approach of CIES, which aims to
seek the minimum operating costs. In the following, we
describe each of its components.

A. Objective Function

The objective function pursues the minimization of the total
operating cost, which is formulated as:
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where
1C is the energy transaction cost;

2C is the spinning

reserve cost;
3C is the maintenance cost;

4C is the

environmental cost;
5C is the IDR compensation cost.

B. Constraint Conditions

1) Energy Balance Constraints
To avoid the imbalance between the supply and demand

caused by the excessive RGs outputs, CIES must equip load

shedding s
tP . Therefore, the energy balance constraints are

, , , , , , ,
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N
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2
, ,

GL P G MT
g t t t load tQ Q Q Q t+ − = ∀ (30)

2) Renewable Consumption Constraint
The expected value of the RGs joint outputs should meet

the following power balance constraint:
2

, , ,( )RG EL P G HL s
t RG t RG t RG t tE P P P P P t= + + + ∀ (31)

3) Energy Storage Device Constraints
The charging and discharging power are constrained as:
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(32)

Furthermore, to ensure the same initial conditions in each
scheduling cycle, the starting capacity should be equal to the
ending capacity:

min max

0 min end

t
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C C C
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C C C

≤ ≤ ∀ = =
(33)

4) Electric Boiler Constraint
The safe operation of the EB requires that its output power

satisfies the following condition:

max0 EB EB
tH H t≤ ≤ ∀ (34)

5) P2G Operating Constraints
The input power and ramp rate of the P2G are constrained by

(35) and (36), respectively,
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6) MT Operating Constraints
The input of MT obeys the following inequalities:

min max

1  ;   0

MT MT MT
t t t

t t

Q Q Q
t

on off

 
 

 ≤ ≤ ∀ = =
(37)

min 1 max
MT MT MT MT

t t t tQ Q Q Q t −∆ ≤ − ≤ ∆ ∀ (38)

7) EVs Constraints
The EV charging station power should not exceed the

maximum allowable power of the CIES,

, , ,max
1

0
N

EV EV
ch n t ch

n

P P
=

≤ ≤∑ (39)

The EV capacity when charging must satisfy the following:

, , 1 ,
EV EV EV EV
n t n t ch n chC C P t−= + ∆ (40)

min, , max,
EV EV EV

n n t nC C C≤ ≤ (41)

8) Spinning Reserve Constraints
This study considers the ability of the ESD and grid to

participate in the provision of reserve services. Considering



extreme situations where RGs outputs may be zero, the
spinning reserve constraint is modeled in a chance constraint
form [22]:

, , max( )EL HL grid grid
g t g t tP P R P t+ + ≤ ∀ (42)

min

,max ,

( ) /ESD ESD ESD
t dc t

ESD ESD ESD
t dc dc t

R C C t
t

R P P

 ≤ − ∆ ∀
≤ −

(43)

{ }( )ESD RG WT PV
rob t t t

d
t

gri
tP R E P P P tR + ≥ − − ≥ ∀ (44)

IV. MODEL CONVERSION AND SOLUTION

In this section, the chance constraint in the proposed
scheduling model is converted into its deterministic equivalent
form via the SOT. Then the equivalent model is transformed
into a solvable MILP model by using linearization methods.
Finally, solved by the CPLEX solver.

A. Probabilistic Sequence of RG Outputs

The PV and WT outputs, with PDFs described in (1) and (2)
respectively, are random variables in period t, and thus can be

discretized to obtain probability sequences ( )ata i and ( )btb i .

Taking PV output PVP as an example, the probabilistic

sequence length atN of PVP is described as [29]:

max,[ / ]PV
at tN P q= (45)

where [ ]⋅ is the ceiling function; max,
PV

tP is the maximum possible

output value of the PV in period t; q is the discrete step size;

After discretization, there are a total of 1atN + states, in which

the output of the state au is (0 )a a atu q u N≤ ≤ , and the

corresponding probability is ( )aa u . The PV output and its

probabilistic sequence are shown in Table Ⅱ.
TABLE Ⅱ

PV OUTPUT AND ITS CORRESPONDING PROBABILISTIC SEQUENCE

Power/kW 0 q 2q … au q aN q

Probability (0)a ( )a q (2 )a q … ( )aa u ( )aa N

The probabilistic sequence ( )ata i of the PV output is

calculated by using ( )PV
pf P as follows:

( )

( )
( )
( )

/ 2

0

/2

/2

/2

, 0

,   0,

,

at

at

at

at

q PV PV
p at

i q q PV PV
at p at at ati q q

i q PV PV
p at ati q q

f P dP i

a i f P dP i i N

f P dP i N

+

−

−

 =
= > ≠

 =

∫
∫
∫

(46)

The probabilistic sequence ( )btb i of the WT output can be

obtained via the same discretization method. Through the

probability series of WT and PV in each period, ( )RG
tE P is

determined as:

( ) ( )
0 0

( ) ( ) ( )
at bt

at bt

RG PV WT
t t t

N N

at at bt bt
u u

E P E P E P

u qa u u qb u
= =

= +

= +∑ ∑
(47)

B. Deterministic Conversion of Chance Constraints

There are two random variables with different distributions
in (44). The prerequisite for the conversion from the chance
constraint in (44) into its deterministic equivalence class is that

the distribution of random variable WT PV
t tZ P P= + must be

available. The distribution of variable Z is as follows:

( ) ( ) ( )d dz
z

Z w pF z f z y f y y
∞

−∞ −∞
 = −  ∫ ∫ (48)

However, the determination of the inverse transform 1( )ZF z− is

a critical challenge due to the complex form of the PDFs listed
above. Besides, there may exist multiple solutions during the
transformation process [30], [31]. Through utilizing the SOT to
handle the probability distribution of the variable Z , the
transformation from chance constraint to its deterministic class
can be successfully achieved.

The probabilistic sequence of the joint outputs ( )ctc i is

( ) ( ) ( ) , 0,1, ,
at bt ct

ct at bt ct at bt
i i i

c i a i b i i N N
+ =

= = … +∑ (49)

The probability sequence ( )ctc i of ( )RG
tE P with the step size

q and the length ( )ct ct at btN N N N= + is shown in Table Ⅲ.
TABLE Ⅲ

PROBABILISTIC SEQUENCE OF RG JOINT OUTPUTS

Power/kW 0 q 2q … ( 1)N qct − N qct
Probability (0)c ( )c q (2 )c q … ( 1)c Nct − ( )c Nct

In order to solve (44), we define a new class of Boolean
variables

ctuZ :

u

1, ( )  ( 0 ),1, ,

0, otherwisect

grid ESD RG
t t t ct ct ctZ

qR R E P u u N + ≥ − = …
= 


(50)

Based on Table Ⅲ, (44) can be simplified as:

( )
0

,
at bt

ct

c

N N

ct
m

u c tZ u 
+

=

≥ ∀∑ (51)

Thus, we can convert (44) into a deterministic equivalent
form.

C. Linearization Methods

1) Piecewise Function Linearization

ctuZ cannot be directly solved by using MILP, hence we

transform (50) as follows:

,

[ ( )]

[ ( )]
                                   1+

,  0,1, ,

ct

grid ESD RG
t t ct t

u

grid ESD RG
t t ct t

c t at bt

R R u q E P
Z

R R u q E P

t u N N





+ + −
≤ ≤

+ + −

∀ = … +

(52)

where  is a large positive number.

When ( )grid ESD RG
t t t ctR R E P u q+ ≥ − , (52) is equivalent to

1
ctuZ ≤ ≤ + ( is a very small positive number). Since

ctuZ

is a 0-1 variable, it can only be equal to 1; otherwise, it is equal
to 0. This implies that (52) has exactly the same meaning as
(50).



2) Elimination of Minimum Operators
Auxiliary variables are introduced to eliminate the minimum

operators in the term C5 of (27). Taking min{ ,0}TSE
tP as an

example, we assume that ( ) min{ ,0}TSE TSE
t tg P P= . According

to (8), ( )TSE
tg P can be described as:

0
,

0
,

,     0
( )

0,              0

TSE TSE
t TSE load t tTSE

t TSE
t TSE load t

P P P
g P

P P





 − ≤ ≤= 
< ≤

(53)

We then employ continuous auxiliary variables w1, w2, w3

and 0-1 auxiliary variables z1, z2, z3 to convert (53) into the
following linear form:

0 0
1, , 2, 3, ,

0
1, ,

0 0
1, , 3, ,

1, 2, 3, 1, 2, 3,

1, 2, 3,

( ) ( ) (0) ( )

( ) ( )

1            , , {0,1}

1

TSE
t t TSE load t t t TSE load t

t TSE load t

TSE
t t TSE load t t TSE load t

t t t t t t

t t t

g P w g P w g w g P

w P

P w P w P

z z z z z z

w w w

 



 

= − + +

= −

= − +
+ + = ∈
+ + =

1, 1, 2, 1, 2, 3, 2, 3,;  ;t t t t t t t t

t

w z w z z w z z





 ∀



 ≤ ≤ + ≤ +

(54)

The same method is employed to convert min{ ,0}TSQ
tQ into

its linear form and thus, the deterministic equivalent form is
reformulated as a solvable MILP equation.

D. Solution Process

The specific solution processes are as follows:
Step 1: Establish the model of each device in the CIES.
Step 2: IDR mechanism considering electricity-gas-heat

flexible loads and electric vehicle is designed.
Step 3:A CCP-based CIES scheduling model is established.
Step 4: The PDFs of the RG outputs and discrete step q are

inputted.
Step 5: The PDFs of the RG outputs are discretized and their

probabilistic sequences are generated.
Step 6: The SOT is adopted to obtain the expected value of

the RG joint outputs and their corresponding probability
sequence.

Step 7: The chance constraint is converted into the
deterministic form.

Step 8: The deterministic equivalent model is converted into
the MILP form via the linearization methods.

Step 9: The system parameters are input into the framework.
Step 10: The reserve capacity confidence level is set.
Step 11: The CPLEX solver is employed to solve the model.
Step 12: If the stop criterion is satisfied, the process is

terminated; otherwise, the confidence level is modified and step
11 is repeated.

Step 13: The scheduling strategy is obtained.

V. CASE STUDY

In order to verify the effectiveness of our approach, we
implement a CIES in North China as the testing system. All
simulations are performed on a PC platform equipped with 2
Intel Core dual-core CPUs (2.8 GHz) and 16 GB RAM.

A. Description of Testing System

As shown in Fig. 1, the key components of the CIES include
renewable power generations, an EB, a P2G device, an MT unit,
storage devices, and an EV charging station. Table IV provides
the main parameters of the system [23], [28-33]. Other
parameters are described in the following. WT parameters:

1.8 = , 10k = , 3m/sinv = , 15m/srv = , r 600kWP = ; PV

parameters 1 3 = , 2 5 = , max 360kWPVP = ; and essential EVs

parameters 60N = , 100 15 kWh/100kmW = , max 30kWhEVC = ,

, 15kWEV
ch nP = , ,max 225kWEV

chP = , 17.6s = , 3.4s = ,

3.2d = , 0.88d = .

TABLE Ⅳ
MAIN PARAMETERS OF THE CIES

Parameter Value Parameter Value

max(kW)EBH 300
min (kWh)HSDC 0

EB 0.99
max (kWh)HSDC 160

2
min (kW)P GP 100

,max ,max,  (kW)HSD HSD
ch dcP P 60

2
max (kW)P GP 500 ,HSD HSD

ch ch  1

2
min (kW)P GP∆ -200 HSD

lossk 0.01

2
max (kW)P GP∆ 200 3

min (m )MTQ 10
2P G 0.6 3

max (m )MTQ 40

max (kW)gridP 1000 3
min (m )MTQ∆ -10

3
max (m )gridQ 80 3

max(m )MTQ∆ 10

min (kWh)ESDC 40 MT
e 0.4

max (kWh)ESDC 200 MT
h 0.5

,max ,max,  (kW)ESD ESD
ch dcP P 60 MT

loss 0.1

,ESD ESD
ch ch  0.9 -2(W m )K ⋅ 0.5

ESD
lossk 0.001 2(m )F 2400

( /kWh)ESD ￥ 0.14 3(m )V 36000

( /kWh)PV ￥ 0.025 -1 -1(kJ kg )airc ⋅⋅ ℃ 1.007

( /kWh)WT ￥ 0.025 -3(kg m )air ⋅ 1.2

( /kWh)EB ￥ 0.032 ( /kWh)MT ￥ 0.012

( /kWh)ESD ￥ 0.002 ( /kWh)IE ￥ 0.5

( /kWh)HSD ￥ 0.005 ( /kWh)TSE ￥ 0.3

2 ( /kWh)P G ￥ 0.007 ( /kWh)CH ￥ 0.4
3( /m )TSQ ￥ 0.7 3( /m )IQ ￥ 3.5

Fig. 3 presents the daily temperature curve and energy price,
while Fig. 4 depicts the expected outputs of WT and PV and the
predicted load values. The parameters related to pollution
emissions can be found in [3] and [32]. In order to simplify

analysis, the ratios of flexible loads TSE , IE , TSQ and IQ
are considered to be fixed at 10% [33].

Fig. 3. Daily temperature curve and energy price.



Fig. 4. WT and PV expected outputs and daily load variations.

B. Results and Analysis

We analyze the scheduling results of three operation
scenarios to evaluate the performance of the proposed method.
The three scenarios are defined as:

Scenario 1: Without IDR, P2G and MT participation.
Scenario 2: With IDR and without P2G and MT participation.
Scenario 3: With IDR, P2G and MT participation (used

in the proposed method).
1) Analysis of Confidence Levels
To select a proper confidence level of spinning reserve, we

analyze the reserve capacities in the CIES under five confidence
levels in scenario 3. The results are shown in Fig. 5.

Fig. 5.  Reserve capacities under different confidence levels.

Fig. 5 shows that as the confidence level increases, the
required reserve capacity gradually increases, which improves
the reliability of system operation. However, this will increase
the operating costs of CIES. As a result, it is critical to choose
a proper confidence level for balancing the reliability and
economy of the system operation. According to our previous
work [29], the confidence level is selected as 90% = .

2) Impact of IDR on Scheduling
The energy supplies of each energy subsystem in scenarios 1

and 2 are compared, and the results are shown in Fig. 6.
Fig. 6 illustrates that there are significant differences in the
energy dispatching scheme in scenarios 1 and 2. Specifically,
regarding the electrical supply subsystems, a large amount of
electricity will be purchased with a higher price during 9:00-
10:00 and 15:00-20:00 while charging behaviors of EVs are at
random in scenario 1, as shown in Fig. 6(a). Fig. 6(d) shows
that the TSE plays a time-shifting role to shift 188.76kWh loads;
the IE achieves the peak cutting effect and curtails 621.87kWh
loads, and the EV charging plan is concentrated in the valley
period. For the gas supply subsystem, the demand response of
the flexible gas load implements the peak shaving and valley
filling effects, and reduces the cost of purchasing gas in
scenario 2, as shown in Fig. 6(e). For the heating subsystem,
due to the influence of TOU energy prices and compensation
mechanism, the heating power will be reduced during 8:00-
23:00 in scenario 2, as shown in Fig. 6(f). The above analysis

suggests the IDR can improve energy utilization efficiency and
achieve the peak shaving and valley filling effects.

Fig. 6. Energy dispatching scheme in scenarios 1 [(a)-(c)] and 2 [(d)-(f)].

3) Impact of P2G and MT on Scheduling
In order to analyze the impact of P2G and MT on the

schedule, we compare the scheduling schemes in scenarios 2
and 3. Fig. 7 depicts the scheduling results under scenario 3.

Fig.7. Energy dispatching scheme in scenario 3 for the (a) electrical, (b) gas
supply, and (c) heating subsystems.

Fig. 7(a) suggests that the power purchased for the electrical
supply subsystem in scenario 3 is concentrated during 0:00-
7:00. It can be illustrated from Fig. 7(b) that P2G absorbs
electric energy for energy conversion during 1:00-7:00, while
MT participates in the system operation during 1:00-20:00. This



shows that P2G and MT can improve the system operation
flexibility by coupling different subsystems.

For the heating subsystem, by comparing Fig. 6(f) and Fig. 7
(c), one can see that the power of the EB in scenario 3 is
obviously lower than that in scenario 2 in most periods, and the
electricity purchasing is mainly concentrated in period 2:00-
5:00. This fact suggests that the MT actively participates in the
subsystem operation due to the integrated demand response
program, which provides additional flexibility for the system.

4) Economic Analysis
We perform a comparative analysis of the three scenarios to

evaluate the economic costs and renewable consumption of the
proposed method. The test results are listed in Table Ⅴ.

TABLE Ⅴ
ECONOMIC ANALYSIS RESULTS UNDER DIFFERENT SCENARIOS

Item Scenario 1 Scenario 2 Scenario 3
Energy purchase cost (￥) 5320.56 3746.97 3765.86
Spinning reserve cost (￥) 1937.95 1933.69 1918.84

Maintenance cost (￥) 416.91 413.49 419.69
Environmental cost (￥) 305.68 284.64 305.93

IDR compensation cost (￥) 0 620.43 287.36
Total operating costs (￥) 7981.1 6999.22 6697.68

Renewable curtailment(kWh) 66.1 0 0

Table Ⅴ shows that the total operating costs and renewable
consumption vary with different scenarios. In scenario 1, the
gas supply subsystem operates independently and the cost of
purchasing energy for the CIES is the highest among all
scenarios. In scenario 2, the IDR enables the CIES to reduce the
total operating costs by 981.88￥ compared with scenario 1. In
scenario 3, the IDR compensation and the total operating costs
are reduced by 333.07￥and 301.54￥respectively compared to
scenario 2. This indicates that compared with scenario 2, the
CIES in scenario 3 provides a greater amount of energy at lower
costs. This is attributed to the close coupling of all subsystems
due to the participation of P2G and MT.

Most of the energy demand in the CIES is provided by
external energy grids, and the energy purchase plan for each
scenario is illustrated in Fig. 8.

Fig.8. Purchased energy from energy grids under different scenarios.

Fig. 8 shows that energy purchase plans have obvious
differences in different scenarios. To be specific, CIES
purchases electricity and gas during valley periods and off-
valley periods in scenario 3. The reason is that the MT is given
as a priority to supply the required electric and thermal energies
in off-valley periods; while in valley periods, the participation
of P2G further improves the operational economy of the CIES.

5) Satisfaction Analysis
We analyze the impact of different schemes corresponding to

scenarios 2 and 3 on user comprehensive satisfaction, the
comparison results are shown in Fig. 9.

Fig.9.  Comprehensive satisfaction index of scenarios 2 and 3.

Fig. 9 illustrates that comprehensive user satisfaction in
scenario 3 generally exceeds that of scenario 2. This indicates
that the participation of P2G and MT improves the CIES
operational flexibility, enabling the system to better satisfy the
load demands of users.

C. Comparison with Hybrid Intelligent Algorithm

In order to validate the performance of our solution method,
we compare it with the Hybrid Intelligent Algorithm (HIA),
which combines the particle swarm optimization (PSO)
algorithm with Monte Carlo simulations. For the HIA, the
population size is set to 100, and the rest parameters are taken
from [22]. The comparison results are shown in Table Ⅵ.

TABLE Ⅵ
COMPARISON OF PROPOSED METHOD WITH HIA

Confidence
levels (%)

Proposed method HIA

Operating
costs (￥ )

Calculation
time (s)

Operating
costs (￥ )

Calculation
time (s)

90 6697.68 2.31 6718.15 631.59
95 6918.21 2.32 7101.18 664.26

100 7317.66 2.41 7343.98 676.82

It can be seen from Table Ⅵ that the proposed method is
superior to the HIA in terms of operating costs and computation
time. 1) The operating costs calculated by using the presented
method are lower than those of the HIA under different
confidence levels; 2) The calculation time of the proposal is
basically unchanged under different confidence levels and is
remarkably less than that of the HIA.

VI. CONCLUSION

In this study, an optimal scheduling strategy of integrated
demand response-enabled CIES in uncertain environments is
proposed. Based on the simulation results on a real-world CIES,
the following conclusions can be summarized:

1) The electricity-gas-heat IDR mechanism is able to
implement peak shaving and valley filling, improving the
economy of system operation. By leveraging the IDR, the total
system operating cost is decreased by 12.3% under a scheduling
cycle with no renewable power curtailments.

2) As multi-energy carrier links, P2G and MT can enhance
the system operational flexibility and user comprehensive
satisfaction by taking advantage of multi-energy
complementary benefits.

3) The spinning reserves provided by ESD and power grid
are built in a form of chance constraints considering the
multiple RGs uncertainties. By setting a proper confidence level,
the CIES operation can achieve a balance between economy
and reliability.



4) The developed solution approach surpasses the commonly
used HIA due to its lower operating costs and higher calculation
efficiency. By using the SOT and linearization methods, the
original CCP-based scheduling framework is converted into a
solvable MILP model and then solved by the CPLEX solver.

Note that this work ignores battery degradation, EVs
interaction, and load uncertainty, while a more realistic
scheduling scenario should consider these factors [34], [35].
Another interesting topic is incorporating integrated demand
response and Game theory into the scheduling of IESs.
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