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Abstract – The present study sought to address the scheduling of the grid-connected hybrid 
energy resources under uncertainty of renewable sources, and load in the residential sector. 
After introducing hybrid resources, scheduling model was implemented through a power 
management algorithm in an attempt to optimize resource cost, emissions, and energy not 
supplied (ENS). The stated problem consists of two decision-making layers with different 
weight coefficients based on the prioritization of each objective function. The proposed 
algorithm is selected for energy optimal management based on technical constraints of the 
dispatchable and non-dispatchable resources, uncertainty parameters and day ahead real 
time pricing (RTP). Furthermore, the impact of demand response programs (DRP) on the 
given algorithm was investigated using load shedding and load shifting techniques. Finally, 
the results obtained led to the optimization of the functions in all decision-making layers with 
different modes of operation. 

Keywords – Day ahead real time pricing (RTP); demand response programs (DRP); 
Power management algorithm; two decision-making layers.  

Nomenclature 
PN.PV Rated power of the PV  
RS Solar irradiance  
RST Solar radiation in the standard conditions  
RN A certain radiation point  
PN.WT Rated power of the WT  
V Wind speed  
VCi Wind turbine cut-in speed  
VR Wind turbine rated speed  
VCo Wind turbine cut-out speed  

α, β, γ Fuel cost factors of DG  
PDG Output power of DG  

SU
DGC  Start-up Cost of DG  

CBB Cost of BB  
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,
dis ch

BB BBP P  Discharge power and charge power of BB  
ηdis, ηch Discharge and charge efficiency of  BB  

CA
BBC  Capital cost of BB  

&O M
BBC  Operation and maintenance cost of BB  

NC Number of discharge and charge cycles  
NB Number of batteries  
VB Voltage of a battery  
QB Capacity of a battery  
LBB Lifetime of BB  

,b s
g gχ χ  Cost of purchased and sold power factors  

,b s
g gP P  Purchased power and sold power  

,b s
g gC C  Cost of purchased power and Cost of sold power  

µ, λ, ρ Emission factors of DG  

σg Emission factor of grid  
PLS Load shedding power  
PL Power load of household appliances  
VOLL Value of lost load  
u Binary variable  
MUT, MDT Minimum uptime and minimum downtime of DG  

,D UR R  Ramp up and ramp down limit of DG  

.
S

L aP  Power load of movable household appliances  

.
S

L INP  Power load of interruptible household appliances  
.0

.
S

L aP  Power load of movable household appliances before DRP  

1. INTRODUCTION  

Recently, the usage of renewable energy resources in the distribution grids to supply the 
residential energy demands has considerably increased in various countries. Taking into 
account the environmental and economic issues, renewable energy resources can be 
considered an effective source of power in distribution grids. One of the most prominent 
applications of the hybrid energy resources is using on-site portable generators to meet 
residential energy demands [1]. These generators can meet the energy demands with the 
minimum emissions and at the least cost through optimal scheduling. Research indicates that 
the main part of the energy consumption is dedicated to the household sector [2]. Accordingly, 
the attention of many researchers has been drawn to the energy management in the household 
sector, thereby plenty of research has been conducted in this field. The stated researches 
generally cover three main areas, namely increasing the productivity of the household 
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appliances, scheduling the household appliances usage, and augmenting the penetration of 
renewable resources [3]. Moreover, given the recent advances in telecommunication 
technology and the emergence of smart measurement devices and automatic control 
equipment, growing interest has been focused on the smart grids application in residential 
areas [4].  

The consumption pattern and time is determined so that the consumers reduce the power 
consumption at peak hours and shift it to non-peak hours. Intelligent consumption 
management or demand response may afford consumers economic benefits. Time of use 
(TOU) program operates such that similar economic benefits are also provided for power 
suppliers [3], [4].  

Power generators are designed to meet consumer demand at peak hours. However, typically, 
they cannot save energy. They have excess capacity for all off-peak hours, which has high 
maintenance costs for the suppliers. Thus, if the peak hour demand declines, the power 
suppliers can save their capital, which helps not to construct power plants for the peak hours 
and leads to discounts on the prices [5].  

Until a few years ago, power networks were assumed to meet the power needs of modest 
and small consumers, and there have been power plants built around communities and local 
energy consumers. Such water and power networks have been designed for the end-users, and 
then their peak consumption along with efficiency was calculated once a month. This one-
way interaction resulted in difficult conditions for the network to be controlled by the 21st 
century ever-changing and ever-increasing demands for energy. On the other hand, with the 
emersion of intelligent networks, interactive communications can be made between the 
supplier and the customers, where power generation and consumption information can easily 
be exchanged. In such an environment, not only can the network be more efficient, reliable, 
safe, and green but also newer technologies such as solar and wind energy generation can 
help the integration and reliability of the network [6]–[8]. With active participation of 
end-users as the aware consumers and improving communications between them and services, 
the intelligent network is used instead of the outdated network infrastructure. Above all, by 
using communication means, such as Home Area Networks (HANs), there is the possibility 
of connecting different smart devices and measurement units to Energy Management System 
(EMS), so that manage internal device functionalities in a cost-efficient manner [9]. Given 
the residential Energy Management System (EMS), many pieces of research have recently 
been conducted, and their findings have been published in different papers. A residential EMS 
has been proposed for network support programs and Distributed Energy Resource (DER) 
management with respect to the minimum operation cost [10]. Thus, the single-purpose 
energy management algorithm has been specified for home demand planning concerning the 
minimum power price. Work plans and internal energy management were developed for a 
residential building considering different technical and operational aspects. Moreover, this 
was investigated by different methods, taking into account the domain-time simulation with 
dynamic thermal-electrical limitations, price flexibility variation, and incentive-based 
response actions. As we see in the literature, extensive studies exist in the field of energy 
management in intelligent residential networks considering relevant objectives and 
limitations. Demand Side Management (DSM) is a fascinating approach in intelligent network 
management that is employed by a means to minimize energy consumption in the demand 
side [11]. DSM scheme involves energy saving, consumption shift, and response demand 
plans. In DR plans, the consumers are motivated to participate in the power market actively 
and directly communicate with the network. The consumers are expected to change their 
energy consumption pattern as a response to the power price variation; thus, they could 
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decrease their electricity bills. In the conducted studies, it was indicated that a considerable 
part of the energy price for the consumers is obtained from DR plans. Direct Load Control 
(DLC) and Time of Use (TOU) are two common methods in DSM that have been proposed 
by different suppliers. In DLC, the service providers have direct control on the replacement 
and deactivation of the consumer loads. At the same time, in RTP, water and power have a 
time-dependent pricing scheme; the load curve of the system, therefore, is almost divided 
during the high demand period equal to the increase in the price [9], [10]. Given the increased 
demand and reduced common energy resources, the energy is continuously increasing in 
price. Hence, after-sales services concerning Renewable Energy Resources (RER) are 
established as an alternative solution to respond to the demand. However, the unpredictability 
in generating energy from RERs due to the alternating nature of RER directs the devices to 
additional operational challenges. In addition to the renewable energy generation systems on 
a large scale, the residential consumers are also encouraged by the governments to meet the 
solar or small-wind-turbine energy generation systems, either partly or completely. Such a 
renewable generation in small scale helps to reduce power credits when renewable power 
generation is higher [13], [14]. New resources are expected to affect the energy price 
dynamism. Moreover, in recent days, residential buildings have been becoming more accurate 
by extensively using intelligent devices and integrating Information and Communication 
Technology. To achieve the maximum use of RERs at home along with the maximum TOU 
benefits, use of smart appliances requires a right time. As a result, the need for timing the 
load for each residential building in an intelligent network environment is inevitable [15].  

Smart household appliances enable the optimal scheduling of the appliances, such that the 
use of some appliances can be shifted from peak to mid-peak or off-peak hours [16], [18]. In 
[19]–[21], for example, household peak load reduction and load shifting through optimization 
algorithms were investigated. The scheduling optimization of the smart household appliances 
for emissions minimization and economic use of smart household appliances was studied in 
[22], [23]. Taking into consideration the consumer performance, smart household appliances 
scheduling was addressed in [24], and the software infrastructure was developed to this end. 
In [25], electricity cost minimization was tackled by considering electric vehicles and hybrid 
energy resources for smart household energy management. Hybrid resources optimization and 
residential energy management through the weighted sum method (WSM) were examined in 
[26]–[28]. Some studies, for example, [29]–[33], also dealt with multi-objective functions for 
minimizing the operating cost and emissions in a hybrid energy system regardless of the 
reliability indices. 

Therefore, scheduling of the electric power generating units may require an 
economic-environmental model to describe the relationship between the costs and capacity 
of power generation. As it is a non-linear model, effective optimization methods are needed 
to reduce the costs. Table 1 shows a comparison between this paper scheduling models with 
those reported in the literature. 

In this paper, the use of a power management algorithm is considered as a smart strategy to 
optimize energy. The objective functions are based on the minimization of equipment 
operating costs, emissions, and ENS. Also, the interaction between home automation 
technologies and consumer behaviour is taken into account. The consumer can also use 
movable and adjustable household appliances to reduce the operating costs and power 
consumption at peak hours.  
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TABLE 1. COMPARISON OF SCHEDULING MODELS REPRESENTED IN THIS PAPER AND IN 
LITERATURE 

Reference Objective 
functions Uncertainties Implementing 

Load shedding by 
Load-Shift 
Model 

Solving Method and 
Implementation 
Approach 

]16[ 
Reliability 
Environment 
economy 

Load, WT, 
PV Total Loads  Price, Encourage 

and RTP-Based Weighted Sum  

]17[ Reliability 
environment Load, WT Total Loads Price-Based Weighted Sum 

]18[ Reliability PV, WT Total Loads 
Price and 
Encourage-
Based 

Weighted Sum and 
non-linear 

]19[ Reliability 
Economy 

Load, WT, 
PV Total Loads Price-Based Non-linear  

]20[ Reliability 
Economy PV, WT Total Loads 

Price and 
Encourage-
Based 

Weighted Sum and 
non-linear 

]21[ Reliability 
Environment 

Load, PV, 
WT Total Loads Price-Based Weighted Sum 

]22[ Reliability Load, WT Total Loads Encourage-
Based 

Weighted Sum and 
non-linear 

]23[ Reliability 
Economy PV, WT - Price-Based Non-linear an SFL 

]24[ 
Reliability 
Economy 
Environment 

Load, PV -  
Price and 
Encourage-
Based 

Weighted Sum and 
non-linear 

]25[ Reliability 
Economy 

Load, WT, 
PV Total Loads Price-Based Weighted Sum 

]26[ Economy Load - - Random  

]27[ Environment 
Economy Load -  - Weighted Sum 

]28[ Environment 
Economy PV, WT - Price-Based Weighted Sum and 

Monte Carlo 

]29[ Environment 
Economy Load, WT - 

Price and 
Encourage-
Based 

Weighted Sum 

]30[ Reliability 
Economy 

Load, PV, 
WT - 

Price, 
Encourage, and 
RTP-Based 

PSO 

]31[ Reliability 
Environment 

Load, WT, 
PV - Price and 

Encourage- SFL, TLBO 

]32[ Economy 
Reliability PV, WT Total Loads Price-Based Epsilon-Constraint and 

Weighted Sum 

]33[ Reliability Load, WT, 
PV - 

Price and 
Encourage-
Based 

Random  

The innovations undertaken in the present study are briefly presented as follows: 
− Proposing a multi-objective function based on the power management algorithm and 

the WSM by considering different layers of decision-making. 
− Investigating the impact of DRP on each objective function through power 

management algorithm in different cases under uncertainty of renewable source and 
loads. 

− Recommending ENS as an objective function for managing the consumers’ power 
consumption behaviours in an effort to reduce emissions and operating costs.  
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− Suggesting the implementation of load shedding program for interruptible loads. 
The rest of the paper is organized as follows. Section 2 presents the deterministic model 

and the configuration of the hybrid energy system. Section 3 is dedicated to scenario 
generation. Section 4 is dedicated to the introduction of the proposed objective functions and 
constraints. Section 5 describes DRP modelling and constraints. The power management 
algorithm and optimization method are proposed in section 6. Section 7 investigates the 
numerical simulation and the results analysis. Finally, the conclusions are presented in 
section 8. 

2. DETERMINISTIC MODEL 

The configuration of the proposed system is demonstrated in Fig. 1. In this hybrid system, 
resources can be classified under three units according to the type of generation: 1) 
dispatchable units, such as diesel generator (DG), 2) non-dispatchable units, such as 
photovoltaic (PV) systems and wind turbines (WT), and 3) power reserve units, such as 
battery bank (BB) and loads. The modelling of each aforementioned equipment is explained 
in the following sub-sections. 

 
Fig. 1. The configuration of the proposed hybrid energy system. 

2.1. PV Modelling 

PV system output is variable and typically dependent on the solar irradiance. The solar 
irradiance distribution in a specific place typically follows a two-dimensional distribution 
which can be perceived as a linear combination of two non-generative distribution functions. 
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As it is provided below, the same Probability Density Function (PDF) beta is used for each 
of the following items [34]: 

 
1 1( ) (1 ) 0 1, 0, 0

( ) ( )
0 otherwise

PV s s sα− β−Γ α +β − ≤ ≤ α ≥ β ≥Γ α Γ βρ = 


, (1) 

where s represents the solar irradiance (kW/m2). The α and β are parameters of the Beta 
distribution function. 

The output power of PV can be calculated under the standard test condition Eq. (2) [34]. 

 

2

if 0

( ) f

if

N S
PV S N

ST N

N S
PV PV N S ST

ST
N

PV ST S

RP R R
R R

RP t P i R R R
R

P R R

  
≤ ≤  

 
  = ≤ ≤  

 
 ≤



 (2) 

2.2.  WT Modelling 

PDF Rayleigh is typically used as a suitable model of wind velocity expression. It is a 
specific case of PDF Weibull, is as follows [34]: 

 

1

0( )

0 otherwise

kk v
c

WT
k v e vv c c

−  − 
 

   × × ≥ ρ =   



, (3) 

where ρWT(v), c and v are Rayleigh PDF, scale index and wind speed, respectively. 

The output power of WT, which is proportional to the wind speed in each hour, is expressed 
as below [34]: 

 

0 if

( ) if

if

i O

N O
WT WT O R

R O
N

WT R i

V V V

V VP t P V V V
V V
P V V V

≤ ≤


 −= ≤ ≤  − 
 ≤ ≤

 (4) 

2.3. Load Modelling 

In this paper, the load demand forecast error based on normal distribution function is 
assumed and by ρd is specified by the region under the Gaussian distribution curve between 
the upper and lower limits in the i-th interval in each time. Therefore, forecast error is 
presented by standard deviation (σ) for normal PDF and net forecast demand (df) is given as 
follows [35]: 
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( )2

2 21 d
2

fi

i

x du
D

l

e x
− −

σ ×ρ =
σ× π ∫ , (5) 

where ui and li are, the upper and lower bounds of the demand at each interval, respectively. 

2.4. DG Modelling 

The function cost of the power generated by DG is proportional to the output power and 
power generated by DG is depended on fuel cost, and it is stated as Eq. (6). 

 2( ) ( ) ( )DG DG DGC t P t P t= α +β + γ∑  (6) 

2.5. BB Modelling 

The cost function of BB considering the variables such as charge-discharge power is 
expressed as: 

 ( ) ( ( ) / ( ) )dis ch
BB BB BB dis BB chC t L P t P t= × η − ×η∑ , (7) 

where [36]: 

 
&CA O M

BB BB
BB

C B B B

C CL
N N V Q

 +
=  × × × 

. (8) 

 
The charge-discharge power of BB has direct and unidirectional effect on the BB lifetime, 

which by Eq. (8) is given.  

2.6. Grid Modelling 

Given the price of purchasing power from the electricity grid as well as RTP tariffs, the 
grid model can be stated as Eq. (9) and Eq. (10). 

 ( ) ( ) ( )b b b
g g gC t t P t= χ ×  (9) 

( ) ( ) ( )s s s

g g gC t t P t= χ ×   (10) 

The buying and selling power from electricity grid in each hour are variable and based on 
RTP tariffs by consumers can be consumed. 

3. SCENARIO GENERATION 

According to the given explanations, in uncertainty modelling, random variable of the 
probability distribution is applied using a limited set of scenarios. One probability of event is 
obtained in each scenario. In this paper, Monte Carlo simulation (MCS) is used to scenario 
generation process. Thus, scenario generation process of solar, wind and load demand can be 
expressed as follows [37]: 
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               ( ) ( ) ( ) ( )PV WT Ds s s sρ = ρ ×ρ ×ρ , (11) 

  
1

( ) ( ) ( ) 1
S

PV WT D

s

s s s
=

ρ ×ρ ×ρ =∑ , (12) 

where ρPV, ρWT and ρD are probability of solar generation, wind generation and load demand 
in scenario s, respectively. The probability of solar generation, wind generation and load 
demand in each time are variable. 

3.1. Scenario Reduction 

Uncertainty typically occurs as a result of random and non-controllable events mostly 
happen due to the unknown probability distribution. The calculation of uncertainty through 
mathematical modelling may lead to a difference between the measured and estimated values, 
which can be a matter of utmost importance in economic and environmental issues. In this 
paper, day-ahead forecasting was used to predict electricity power price and load demand. 
Furthermore, beta and Weibull distribution function was used due to the uncertainty in the 
estimated values of solar radiation and wind speed, respectively. 

Due to the increasing number of scenarios by applying the scenario generation method, 
number of the scenarios can be easily reduced by scenario reduction methods. The process of 
the scenario reduction methods removes similar scenarios and very low probability of event. 
In this paper, backward method is employed to scenario reduction. The process of scenario 
reduction in backward method includes following steps [37]. 

1. Provide the probability distance with the cardinality of DT (ξs,ξs
’) including the distance 

between pairs of created scenarios. 
2. Compute the probability distances of all scenario pairs as Eq. (13). 

 2

1

( )
SN

i j
t s s

s

DT
=

= ρ −ρ∑  (13) 

3. Minimum distances are select as DTi = arg min DTt. 
4. If cardinality of DT is adequate, go to step 2. If cardinality of DT is not adequate, then 

continue. 
5. Obtain accurate size of the reduced scenario set based on repeat steps 2–4. 

4. OBJECTIVE FUNCTIONS 

In this paper, three objectives are minimized and classified into: 1) The operation cost; 2) 
Emission polluting; 3) Energy not supplied (ENS). 

4.1. The Operation Cost Modelling 

The operation cost of DG, including fuel and start-up costs by first and second term of (14) 
are calculated, respectively. Third term of (14) is operation cost of BB system, and operation 
cost of buying and selling from electricity grid by fourth and fifth terms of (14) are given, 
respectively. It should be noted that, operation costs of the equipment and electricity grid in 
section 2 are explained. 
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1

1 1 1
( , ) ( , ) ( , ) ( , )

S t t
SU b s

s DG DG BB g g
s i i

j C t S C C t S C t S C t S
= = =

= ρ + + + −∑ ∑ ∑
 

 (14) 

4.2. The Emission Polluting Modelling 

The second objective function is emissions polluting considering the amount of emissions 
generated by DG and electricity grid. This function is expressed as Eqs (15)–(17). 

 
2

1 1 1
( , ) ( , )

S t t

s DG g
s i i

j E t S E t S
= = =

= ρ +∑ ∑ ∑ , (15) 

where [38]: 

 2( ) ( ) ( )DG DG DGE t P t P t= µ + λ +ρ∑ , (16) 

 ( ) ( ) ( )b
g g gE t t P t= σ × . (17) 

The first term of (15) is emission generated by DG, that by (16) is modelled, and emission 
of electricity grid by second term of (15) is given, and by (17) can be calculated. 

4.3. The ENS Modelling 

The third objective function is the cost of ENS which is related to the unmet demand. This 
function is stated as Eq. (18). 

 
3

1 1
( , )

S t

s
s i

j ENS t S VOLL
= =

= ρ ×∑ ∑  (18) 

The ENS can be expressed in two models: 

1

1

( )0 if , ( ) ( ) ( ) ( ) ( ) 0

( )

( )( ) ( ) ( ) ( ) ( ) otherwise

dist
b chBB

gL PV WT BBDG ch
i dis

LS
dist

b chBB
gL PV WT BBDG ch

i dis

P tP t P t P t P t P t P

P t

P tP t P t P t P t P t P

=

=

  
  
  


      

− + + + + +η × ≤
η

=

− + + + + +η ×
η

∑

∑
 (19) 

The Value of Lost Load (VOLL) depends on multiple factors, including the type of load 
and duration of outage. The ENS can be investigated from two perspectives: (1) load shedding 
and (2) increased power generated by resources. The latter fails to be considered in the present 
study due to the limits imposed upon resources. Further explanations in this regard will be 
presented in the following sections. 

4.4. Constraints 

The optimal scheduling is managed by several constraints presented next. 
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4.4.1. Power Balance Constraint 

The power balance constraint covers power generated and consumed by respective units. 
This constraint is expressed as Eqs (20)–(22). 

 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t
b b dis dis

g gPV WT BB BBDG DG LS LS
i

t
ch ch s s

g gL BB BB
i

P t P t P t u t P t u t P t u P t u t

P t P t u t P t u t

=

=

+ + × + × + × + ×

= + × + ×

∑

∑
, (20) 

where:  

 ( ) ( ) 1b s
g gu t u t+ ≤ , (21) 

 ( ) ( ) 1dis ch
BB BBu t u t+ ≤ . (22) 

Equations (15) and (16) are binary variables and used to restrict the electric power sold to 
or purchased from the grid, as well as to regulate the charge/discharge action of the BB. 

4.4.2. Power Limits Constraint 

The generation power of each resource such as DGs, BB system and as well as electricity 
grid should have a certain limit to enable continuous optimal scheduling in the system. 

 max0 ( )DG DGP t P≤ ≤  (23) 

 ,max0 ( )dis dis
BB BBP t P≤ ≤  (24) 

 
 ,max0 ( )ch ch

BB BBP t P≤ ≤  (25) 
 
 ,max0 ( )b b

g gP t P≤ ≤  (26) 
 
 ,max0 ( )s s

g gP t P≤ ≤  (27) 

4.4.3. Technical Constraints 

The equipment used in the hybrid system also has technical constraints such as maximum 
and minimum uptime, downtime, ramp down and up limit of DG by Eqs (28)–(30) are given, 
respectively. Moreover, BB determines the power supply by considering the state of charge 
(SoC), which by Eq. (31) limit of SoC is given, and Eq. (32) is SoC model. 

 
1

( 1)
t

DG
i

u t MUT
=

+ ≥∑  (28) 

 
1
1 ( 1)

t

DG
i

u t MDT
=

− + ≥∑  (29) 

 ( ) ( 1)D UDG DGR P t P t R≤ − − ≤  (30) 
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 min max( )SOC SOC t SOC≤ ≤ , (31) 

where [25]: 

 ( ( ) / ) ( ( ) )( ) ( )
dis dis ch ch

BB B BB BB

B B B

P t P tSOC t SOC t t
N V Q

η + ×η= −∆ −    .                   (32) 

5. ELECTRICAL LOAD AND DEMAND RESPONSE PROGRAM 

Household electrical appliances can be divided into three categories according to the type 
of load:  

1) non-movable loads, e.g., critical lighting, refrigerator (RE), air conditioning (AC);  
2) movable loads, e.g., dryer (DY), washing machine (WM), and electric vehicles (EV); 

and  
3) interruptible loads, e.g., air conditioning (AC), optional lighting, and dryer (DY) [39]. 

Therefore, to implement Demand response programs (DRP), household appliances scheduling 
is required to be examined from the facet of consumption characteristic at operating time. 
DRP implementation in the present paper is conducted using load shedding and load shifting 
techniques. Accordingly, the implementation of DRP is specific to movable and interruptible 
loads. DRP modelling is described in the following [40]: 

− For each load, the power consumption limit must be considered. The reason for 
applying this constraint is to introduce the nominal power of the electrical appliances 
at operating time as well as the threshold of the curtailed power in interruptible loads; 

 ,max
, ,0 ( )S S

L a L aP t P≤ ≤  (33) 

 max
,0 ( )LS L INP t P≤ ≤  (34) 

− Implementation of the consumer model tends to change the pattern of consumption; 
This model is applied by enabling movable-load device adjustment by the consumer, 
as modelled in Eqs (35)–(36); 

 ,0max
, ,

1
( ) ( ),

t
S S

L a L a
i

P t P t t
=

 
 
 

= ξ×∑  (35) 

 ,0
, ,

S S
L a L aP P=∑ ∑  (36) 

− In Eq. (35), the value of ξ is in the interval [0, 1], which can be adjusted by the 
consumer, i.e., the consumer can adjust its consumption at any time according to the 
consumption pattern. A point that deserves mentioning is that the total movable load 
before and after the DRP implementation must be equal, as formulated in Eq. (36). The 
movable-load based on diverse RTP traffics in each time can be employed by consumer 
in low price traffic in day ahead scheduling. 
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6. INVESTIGATION OF THE OPTIMIZATION MODEL AND THE 
PROBLEM-SOLVING METHOD 

Given the optimization problem-solving method, objective functions must be defined as 
one objective function. Considering that the problem at issue includes three objectives 
(optimization of operating cost, emissions, and ENS), WSM and uncertainty parameters of 
wind speed, solar radiation, load, and RTP changes in the energy market are considered to 
fulfil the stated objectives. In this paper, the optimization model is implemented as follows: 

− Forecast of the uncertain parameters; 
− Establishing an algorithm for energy optimization. 

Therefore, the objective functions for solving the optimization problem can be written as:  

 ( )1 1 2 2 3 3min w j w j w j+ + , (37) 

subject to constraints Eqs (19)–(37), here, w1, w2, and w3 are weight coefficients in the interval 
[0, 1], and their sum is equal to 1. The objective functions are considered according to the 
constraints. The power management algorithm for the hybrid system at each time step is 
presented in Fig. 2. In this algorithm, at first, the power generation capacity of the non-
dispatchable energy sources (PV and WT) is calculated, and then this generating power is 
compared with the power consumption, and then the following states are obtained: 

− The generating capacity of the non-dispatchable sources is equal to the power 
consumption. Hence, thanks to the power balance, the algorithm runs at the next time 
step. 

− The generating capacity of the non-dispatchable sources is less than the consumption 
power, hence consumers use the batteries depending on the SOC. In this case, the 
maximum discharged power of the batteries at this time step is compared with the 
remaining consumption power. If the power balance is still maintained, the algorithm 
runs at the next step. Otherwise, DG or grid is used based on the tariffs in the electricity 
market for peak, mid-peak, and off-peak periods chosen by the consumer. In this case, 
following power balancing, the Energy Management Center (EMC) is used to monitor 
the consumer performance respecting emissions generation. Comparing the cost of 
emissions and that of operation, EMC may impose limits on the consumer (limits are 
applied with weight coefficients). Then, if the consumer fails to react to the given 
limits, the load shedding program is implemented. Indeed, EMC must pay penalties 
associated with greenhouse gas emissions. In this case, the objective functions are 
prioritized based on the importance of the problem, and then weights are tuned so that 
sum total of weights equals 1. On the other hand, the cost of DG fuel and the cost of 
electricity purchased from the grid can be of priority objectives. This issue will be 
further discussed in the simulation section. The power management algorithm based 
on consumer decision and EMC decision are divided. In consumer decision, consumer 
is attempted for minimization of generation costs such as RTP, fuel cost and etc. But, 
in EMC decision, EMC is provided energy optimal management for reducing emission 
polluting in consumer decision. 
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Fig. 2. Power management algorithm based on decision-making layers. 
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7. NUMERICAL SIMULATION AND RESULTS ANALYSIS 

Given the components used in the hybrid energy system and the control components of the 
system, input data is required to be provided. Fig. 3 depicts the estimated value of solar 
radiation and wind speed. Table 2 and Table 3 present data associated with WT and PV. 
Power demand of household appliances is demonstrated in Fig. 4. Economic and technical 
data related to DG and BB are presented in Tables 4 and 5. The modelling is considered for 
single house in Tehran city based on RTP traffics in Iran, which Fig. 5. demonstrates the 
electricity purchase price from the grid at the hours under study. Energy supply tariffs 
according to the RTP are categorized for hours as off-peak (7–24), mid-peak (8–17), and peak 
(18–23). 

TABLE 2. WT DATA 

 

 

TABLE 3. PV DATA 
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Fig.3. (a) Estimated daily solar radiation and (b) estimated wind speed in hours under study. 

The environmental pollution refers to carbon dioxide (CO2) and nitrogen 
oxides (NOx) emissions from DG and grid. In this regard, the cost function for the emissions 
is a penalty applied for producing per kilo of the mentioned gases. µ = 0.5, ρ = 1, and σ = 5 
are considered as the emission coefficients. 

 
Fig. 4. Consumer energy demand profile based on the day-ahead prediction. 

A point that should be clarified is that the price of selling electricity to the grid is considered 
0.01 $/kW, and the VOLL is set at 5 $/kWh. 

The simulation was implemented with the Intel (R) Core (TM) i5 2.5 GHz processor and 
6 GB RAM and GAMS software. Also, to evaluate the proposed algorithm, different modes 
of operation are chosen in light of the decisions. Table 6 presents the weight coefficients in 
two operation cases. 
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Fig. 5. RTP rate according to the market tariffs. 

TABLE 4. DG DATA 
Parameter Values Units 

α 0.018 $/kW2 

β 1.2 $/kW 
γ 0 $ 
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C  0.01 $ 
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DGP  35 kW 
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MDT 2 hr 

TABLE 5. BB DATA 
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function may minimize that objective function and optimize the costs associated with that 
decision-making layer. In case 1, for instance, the consumer is mostly focused on minimizing 
the costs of power purchased from the grid, DG fuel, and ENS, but less attention is dedicated 
to the environmental pollution issues. Contrariwise, the objective function associated with 
the emissions is more important in case 2. 

TABLE 6. WEIGHT COEFFICIENTS FOR TWO OPERATING MODES 
w3 w2 w1 Operation Mode 

0.3 0.1 0.6 Case 1 
0.3 0.6 0.1 Case 2 

7.1. Results Analysis 

The generating power of the hybrid system to supply power in light of the weighted 
coefficients in cases 1 and 2 is shown in Fig. 6 and Fig. 7, respectively. The variables include 
the power of DG (PDG), grid power (Pgrid), power of battery bank (PBB), load shedding power 
(PLS), PV power (PPV), and WT power (PWT) are calculated based on changing in consumption 
pattern by moveable-loads and interruptible loads. As demonstrated in Fig. 6, the power is 
purchased from the grid by the consumer in mid-peak and off-peak hours. However, at peak 
times, due to the increased RTP rates by the grid, the consumer has to respond part of this 
power demand through DG. 

 

Fig. 6. The optimized output power of the hybrid system in case 1. 

On the other hand, in an attempt to reduce emissions, load shedding is instituted at hours 
23 and 24, due to the higher demand during peak hours and considering the increased power 
purchased from the grid and DG. load shedding at mentioned hours is respectively 6.2 kW 
and 18.3 kW. BB generates 2.5, 2, and 2 kW power supplies at hours 20, 21 and 24, 
respectively. However, in case 2, because of the high value of the grid emission factor, DG 
is used to meet load demand. Hence, at 17, 4.9 kW power is sold to the grid. Also, in peak 
hours due to the power limitation of DG and increased fuel consumption, the grid is used 
instead (Fig. 7). 
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Fig. 7. The optimized output power of the hybrid system in case 2. 

Given the results depicted in Fig. 6 and Fig. 7, resource generation management for two 
operating modes is examined. As it is observed, due to the reduced generation of 
non-dispatchable electricity sources and BB to meet electricity demands, the use of DG and 
grid has increased. The efficient performance of the proposed algorithm in case 1 is due to 
the reduced fuel cost of the DG compared to case 2. However, in the latter, the grid is used 
less by the consumer as a result of increased weighted coefficients associated with emissions. 

7.2. Impact of Movable Loads on Optimal Scheduling 

In this subsection, the impacts of the movable loads on the optimization of the power 
generated by resources are investigated using the proposed algorithm. The respective loads 
are classified into two types according to the consumption characteristic, namely adjustable 
loads and non-adjustable loads. Adjustable loads, e.g., DY and WM, refer to loads in which 
the power consumption limit can be adjusted by the consumer [30]. For example, a consumer 
can use WM and DY with a lower power consumption, albeit for a longer time. The 
implementation of such kind of DRP not only shifts demand to off-peak hours but also reduces 
the outage as well. Non-adjustable load (e.g., EV), on the other, has a specific charge profile, 
and the consumer fails to play a role in reducing or increasing its amplitude. 

Considering Eq. (35) and Eq. (36), the value of ξ for WM and DY is chosen 0.5 and 0.7, 
respectively. Load shifting times for WM and DY are considered from 24 to 1 and 6 to 10, 
respectively. The value of ξ for EV is considered 1, and the load shifting times are considered 
24 to 5. Fig. 8 depicts the power consumption profile of the household appliances after load 
shifting. 

As shown in demand curve, load shifting in the time interval under study leads to reduced 
demand during peak periods, as presented in Fig. 9 (case 1) and Fig. 10 (case 2). In Fig. 9, 
the ENS value after load shifting is less than the value observed before shifting, power 
purchased from the grid also increased in the hours under study. 
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Fig. 8. Power consumption profile after movable loads shifting. 

 
Fig. 9. The optimized output power of the hybrid system in case 1 after movable load shifting. 

In Fig. 10, DG provides demand with maximum capacity. However, the grid is also used, 
and load shedding is applied at peak hours. Table 7 presents the results of operating modes 
based on the weighted coefficients for each of the objective functions. 
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Fig. 10. The optimized output power of the hybrid system in case 2 after movable loads shifting 

TABLE 7. THE ESTIMATED OBJECTIVE FUNCTIONS IN CASES 1 AND 2 BEFORE AND AFTER 
LOAD-SHIFTING 

After load shift Before load shift  
j3, $ j2, $ j1, $ j3, $ j2, $ j1, $        Obj. f. 

 
Case 

23.95 2874.94 130.91 122.95 2487.74 366.66 1 
103.45 972.8 400.12 122.95 1452.39 490.33 2 

8. CONCLUSION 

The present paper investigated short-term energy management of a smart house in 
consideration of RTP tariffs under uncertainty of renewable sources and loads. The proposed 
algorithm consisted of two decision-maker layers in energy consumption management, 
emissions control, and reliability testing based on the uncertainty parameters. Furthermore, 
different operating modes were considered with respect to weight coefficients to show the 
performance of the algorithm. As revealed by the results yielded, implementation of load 
shifting led to reduced amplitude of the movable loads and demand shifting from peak to mid- 
or off-peak periods. The simulation results for case 1 indicated that the operating cost and 
ENS reliability index were optimized following DRP implementation. Therefore, excessive 
electricity purchase from the grid resulted in an increase in emissions. In case 2, on the 
contrary, a significant reduction was observed in the environmental emissions following DRP 
implementation. Therefore, it can be concluded that DRP implementation using the proposed 
algorithm had an effective role in optimizing the objective functions at issue. Eventually, the 
proposed power management algorithm provided a framework for optimal scheduling of 
energy demand and optimal utilization of the extant resources. 
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