
Optimal scheduling of switched FlexRay networks
Thijs Schenkelaars

Electronic Systems group
Eindhoven University of Technology

The Netherlands

Bart Vermeulen
Central Research and Development

NXP Semiconductors
The Netherlands

bart.vermeulen@nxp.com

Kees Goossens
Electronic Systems group

Eindhoven University of Technology
The Netherlands

Abstract—This paper introduces the concept of switched
FlexRay networks and proposes two algorithms to schedule
data communication for this new type of network. Switched
FlexRay networks use an intelligent star coupler, called a switch,
to temporarily decouple network branches, thereby increasing
the effective network bandwidth. Although scheduling for basic
FlexRay networks is not new, prior work in this domain does not
utilize the branch parallelism that is available when a FlexRay
switch is used. In addition to the novel exploitation of branch
parallelism, the scheduling algorithms proposed in this paper
also support all slot multiplexing options as defined in the
FlexRay v3.0 protocol specification. This includes support for
the newly added repetition rates and support for multiplexing
frames from different sending nodes in the same slot. Our first
algorithm quickly produces a schedule given the communication
requirements, network topology and FlexRay parameters, but
cannot guarantee an optimal schedule in terms of the bandwidth
efficiency and extensibility. Therefore, a second, branch-and-price
algorithm is introduced that does find optimal schedules.

I. INTRODUCTION

The proliferation of distributed control applications in cars
drives the search for faster and more reliable in-vehicle net-
works. The increasing demand of bandwidth has led to the
development and standardization of the FlexRay protocol [1].
FlexRay supports bandwidths up to 10 Mbps and is introduced
as the new de facto standard for in-vehicle applications requir-
ing reliable communication, such as adaptive cruise control,
drive-by-wire and electronic stability control.

The FlexRay protocol organizes time into communication
cycles, as indicated in Fig. 1. Every cycle consists of four
parts.

1) The static segment is used to send critical, real-time data,
and is divided into static slots, in which the electronic
control units (ECUs) can send a frame on the bus. These
frames consist of a header, payload and trailer and are
assigned to the slots according to a static, TDMA-based
schedule. Channel idle time is enforced between frames
to prevent overlapping consecutive frames.

2) The dynamic segment enables event-triggered commu-
nication. The lengths of the mini slots in the dynamic
segment depend on whether or not an ECU sends data.

3) The symbol window is used to transmit special symbols,
for example to start up the FlexRay cluster.

4) The network idle time interval is used by the nodes to
allow them to correct their local time bases in order to

Cycle 0

Static
segment

Dynamic
segment

Symbol
window

Network
idle time

Cycle 1 Cycle C-1...

Slot
1

Slot
2

Slot
3

Slot
SFR

...

Header Payload Trailer

Channel idle time

Fig. 1. The FlexRay cycle structure

21 4 5
k1

k2

k3

k4

21

3

4 5

6

k1

k2

k3

k4
Active star Switch

(a) (b)

3

6

Fig. 2. (a) Active star topology, (b) Switched FlexRay network

stay synchronized to each other.
FlexRay can be used with multiple network topologies. The

most commonly used topology is the hybrid network, in which
multiple branches are connected together, optionally using a
central active star device (see Fig. 2(a)). Each branch can
contain one or multiple ECUs, referred to as nodes.

When a node has to send a data frame every cycle, it is
assigned a static slot in the FlexRay communication schedule.
However, it is also possible to assign multiple nodes to a slot,
when their frames do not have to be sent every cycle, but can
be interleaved in time. In one cycle, the frame of the first node
can be sent, and in the next cycle, the frame of the other node.
This is called slot multiplexing.

The active star forwards the data received from one branch
to all other branches. In Fig. 2(a) for example, if Node 1
sends data to Node 3, all other nodes also receive this data,
even though they have no need for this data.

By replacing the active star with a FlexRay switch [2],
which forwards frames only to those branches that connect
to nodes that actually need the information, the network can
potentially be simultaneously used by multiple senders, result-
ing in more net bandwidth. This is called branch parallelism.
A FlexRay switch uses the channel idle time between frames
to internally reconfigure the connections between the branches.
Therefore every slot can, in principle, have a different switch
configuration. In the switched network in Fig. 2(b), Nodes
1 and 3 can communicate with each other in the same slot978-3-9810801-7-9/DATE11/2011 EDAA

in which Nodes 4 and 6 communicate with each other, if
the switch keeps the two sets of branches separated for the
duration of that slot.

The duration and total number of static slots in a cycle
is defined by the car manufacturer. However, by minimizing
the number of slots that are actually used to send frames,
the schedule can be more easily extended in the future,
when the amount of in-vehicle communication increases. An
unoptimized schedule has the remaining bandwidth scattered
over all slots. When additional frames are added, this scattered
bandwidth is more difficult to reuse than empty slots. If not
enough continuous bandwidth can be found, the schedule even
needs to be completely redesigned.

The problem addressed in this paper is how exactly to
schedule the communication in a switched FlexRay network,
utilizing both slot multiplexing and branch parallelism, to
minimize the number of slots used. For this, we focus on the
FlexRay static segment, because currently most networks only
make use of this segment, and because the variable lengths of
the slots in the dynamic segment make the utilization of branch
parallelism in this segment very difficult [2].

The remainder of this paper is organized as follows. In
Section II, the scheduling problem is defined, and the notation
is introduced. Section III gives an overview of other FlexRay
scheduling algorithms and states the differences with the work
presented here. Then, in Section IV a first algorithm is intro-
duced that creates reasonably good schedules very quickly for
hybrid, switched FlexRay networks. These schedules however
do not always use the minimum number of slots. In order
to create optimal schedules, Section V describes a second,
branch-and-price algorithm that creates schedules with the
guaranteed minimum number of slots at the expense of a larger
run time. The different algorithms are evaluated and compared
to each other in Section VI. Section VII concludes this paper.

II. PROBLEM DEFINITION

The problem addressed in this paper, is to create a FlexRay
schedule by packing a set of frames in as few slots as possible.
A requirement however is that there are no collisions between
the frames. The input to our scheduling algorithms is a use
case, which consists of the communication requirements, the
network topology and the parameters of the FlexRay network.

The communication requirements define a set of frames F .
For every frame f ∈ F , a repetition rate rf is given, that
states every how-many cycles the frame needs to be sent. The
sender of a frame is denoted by nf ∈ N , where N is the set
of all nodes. The set df denotes the set of receivers.

The second input for the scheduling algorithms is the
network topology. A topology is defined by a set of nodes N ,
a set of branches K and a mapping function branch : N → K,
which for every node n returns the branch k on which it is
located.

The third input of the scheduling algorithms is the set of
FlexRay parameters. The important scheduling parameters are
the number of cycles C and the total number of slots in the
static segment SFR (see Fig. 1).

Given a use case, the scheduler assigns each frame f ∈ F
to a slot sf . As stated, multiple frames may be placed in the
same slot by using slot multiplexing and branch parallelism, in
order to minimize the number of used slots. Two frames can
be multiplexed in the same slot, if the least common multiple
of their repetition rates rf is larger than 1. By assigning every
frame a different base cycle bf , which is the first cycle in
which a frame is sent, the frames will be interleaved over the
cycles.

A frame f with base cycle bf is sent in the cycles

c = (bf + n · rf). ∀n ∈ N0|bf + n · rf < C (1)

In this paper, we consider only integer repetition rates that
exactly divide the number of cycles C. To be periodic, the
base cycle of a frame must be strictly smaller than its repetition
rate:

0 ≤ bf < rf . (2)

If the sender and receivers of two frames are located
on disjoint sets of branches, branch parallelism is used by
isolating these two sets of branches, as shown in the example
of Fig. 2(b).

III. RELATED WORK

In this section, the work presented in this paper is com-
pared with several previously published papers on FlexRay
scheduling. All previous scheduling algorithms, as well as the
algorithms presented in this paper, have the common objective
to minimize the number of used slots, and thereby to maximize
the extensibility of the schedule.

Packing frames into slots is a two dimensional bin-packing
problem. Because bin-packing problems are known to be NP-
hard, no optimal polynomial-time algorithm for the scheduling
problem is known.

The most fundamental difference between this work and
previous work on FlexRay scheduling, is that, to the best
knowledge of the authors, this paper is the first to address
the scheduling of switched FlexRay networks. A second ad-
vancement is that the algorithms presented here, fully support
the FlexRay v3.0 specification of slot multiplexing, while
all prior work is based on older specifications. In these
earlier FlexRay specifications, all repetition rates had to be a
power of two, and only frames coming from the same sender
were allowed to be multiplexed in a single slot. With the
introduction of FlexRay v3.0, additional repetition rates are
added and frames from different senders are allowed to share
a single slot, creating many more possibilities to schedule the
communication.

An important difference however, is that instead of frames,
the previously published papers regard the signals or protocol
data units (PDUs) as the basic communication units. A signal
is a small quantity of data, such as a sensor reading or a
control signal that is sent over the network. These signals are
grouped together in PDUs. Depending on their sizes, multiple
PDUs fit in one frame. The process of putting multiple PDUs
into frames is called frame packing. After slot multiplexing

TABLE I
EXAMPLE COMMUNICATION REQUIREMENTS

frame rep. rate sender receivers branches weight
f rf nf df kf wf

A 2 3 {4} {k2, k3} 1
4

B 2 4 {5} {k3} 1
8

C 2 5 {3} {k2, k3} 1
4

D 2 2 {3} {k1, k2} 1
4

E 1 6 {1,2} {k1, k4} 1
2

F 4 1 {3,5,6} {k1, k2, k3, k4} 1
4

B

A A

E A

B

slot 1

k1 k2 k3 k4

E

slot 2

k1 k2 k3 k4

F

A Dcycle 0

cycle 1

cycle 2

cycle 3

D

D D

C C

C C F F F

branches

E E

E E

E E

f sf bf

A 1 0
B 2 0
C 1 1
D 2 0
E 1 0
F 2 1

Fig. 3. Schedule created by decreasing first-fit algorithm

and branch parallelism, frame packing is the third dimension
along which multiple frames (or PDUs in this case) can be
placed in a single slot. It should be possible to extend the
algorithms described in this paper to also take advantage of
this third dimension. However, this is still future work and
therefore not covered in this paper.

In [3], a best-slot-first heuristic is introduced that packs
signals into frames and frames into slots. In addition to
scheduling, the genetic algorithm in [4] maps control tasks to
the available ECUs, given a task graph with repetition rates.

The scheduler in [5] distinguishes two phases. First, the
PDUs are packed into frames, thereby minimizing the number
of frames per node. Then, the resulting frames are assigned to
slots. The algorithm in [6] combines these two phases into a
single optimization step. An integer linear program is solved
to create an initial schedule. Then simulated annealing is used
to improve the extensibility of the individual slots.

In [7], the concept of a FlexRay switch is also introduced.
Although a generic system design approach is outlined, no
actual scheduling algorithm is described. A proof-of-concept
implementation of a FlexRay switch is described in [2].

IV. DECREASING FIRST-FIT ALGORITHM

Before presenting the first, polynomial-time decreasing first-
fit (DFF) scheduler, an example use case is given. Table I
shows a set of communication requirements. The table con-
tains two additional columns that can be derived from the other
data. The column kf states for every frame on which branches
it must be sent. Taking into account the topology of Fig. 2(b),
kf is the set of branches on which the sender or one of the
receivers of a frame is located. The second extra column gives
every frame a weight wf , which is defined by:

wf =
1
rf
· |kf |
|K|

, (3)

and states how much of the available bandwidth per slot is
required by the frame. The number of cycles C must be a

Listing 1. Decreasing first-fit algorithm
1 Sort frames in F in decreasing order of weight wf .
2 for each frame f ∈ F
3 for each slot s ∈ S
4 for each base cycle b ∈ {0, . . . , rf−1}
5 if no overlap with earlier placed frames:
6 place frame f in slot s with base cycle b
7 continue with next frame f
8 end if
9 end for

10 end for
11 frame f could not be scheduled, so DFF failed
12 end for

common multiple of all repetition rates. In the example, the
smallest common period is 4.

The DFF scheduling algorithm is stated in Listing 1. Before
scheduling, the frames are sorted according to their weight
wf in decreasing order. S is the set of (initially empty) slots.
The scheduler tries to place every frame f in the first slot
s ∈ S in which the frame fits. To check whether a frame can
be placed in a slot, every base cycle b ∈ {0, . . . , rf − 1} is
checked whether there would be a collision between any of the
previously scheduled frames and the current frame. Whenever
a frame cannot be placed in any of the slots, the DFF scheduler
fails to find a feasible schedule.

The schedule in Fig. 3 is created by the DFF algorithm.
Besides the graphical representation, it contains a table with
the slots and base cycles of the frames. The two large squares
in Fig. 3 represent two slots. Each slot is built-up from smaller
squares called cells, each representing one cycle on a single
branch of the given slot. Every frame needs one or more cells
in a specific configuration, in order to meet its communication
requirement. Every cell can be used by at most one frame.

On the horizontal axis of the slots in Fig. 3, branch
parallelism is shown. Different frames can be placed next to
each other, as long as their sets of branches kf are disjoint.
In the example, frames A and E can be placed in the same
slot, because the switch can separate their branches. Slot
multiplexing is shown on the vertical axis of the slots. Having
a repetition rate of 2, frames A and C are placed in the same
slot on base cycles 0 and 1, respectively. Although they share
the same branches, there is no collision because the frames
are sent in alternating cycles.

V. BRANCH-AND-PRICE ALGORITHM

The schedules obtained by the DFF algorithm however do
not always have the guaranteed minimum number of used
slots. Optimal schedules can be obtained by formulating the
problem as an integer linear program (ILP), referred to as
the full ILP formulation. However, for realistic use cases as
described in Section VI, this full ILP has more than 20,000
binary variables and 5,000 constraints. As will be shown,
solving this problem takes a long time with a generic ILP
solver. However, by applying the Dantzig–Wolfe decompo-
sition [8], a decomposed formulation is obtained that takes
advantage of the fact that every slot has similar constraints,

allowing the problem can be solved more efficiently. This
section describes a branch-and-price (BP) algorithm [9]–[11],
which finds optimal schedules by solving this decomposed
formulation. The BP algorithm focuses on individual slots. A
set of frames that can be scheduled in a single slot is called a
packing. In the example schedule in Fig. 3, the slots 1 and 2
contain the packings {A,C,E} and {B,D,F}. For the example
use case in Table I, there are in total 22 unique packings. A
schedule is created by assigning some of these packings to the
slots of the static segment. To create a schedule that uses the
least possible number of slots, the smallest possible subset of
packings needs to be found that contains all frames at least
once. The problem of finding this smallest subset is called the
master problem.

A. Column generation
However, for larger problems, it is infeasible to enumerate

all possible packings. Therefore, the BP algorithm starts with
only a small set of packings and iteratively adds packings
to the set that can potentially reduce the number of slots. In
this way, not all packings have to be generated upfront. In
the master problem, all packings are represented by columns.
For example, the packing {A,B,D} is represented by column
p = [1 1 0 1 0 0]T. The principle of iteratively adding packings
to the master problem is therefore called column generation.

When a master problem is solved with only a limited num-
ber of all possible packings, it is called an restricted master
problem (RMP). Whether packing pi is selected in the smallest
subset is denoted by variable λi, where i ∈ {1, . . . , N} and N
is the number of packings in the RMP. The RMP is formulated
as the linear optimization problem in Eq. (4).

minimize: S =
N∑

i=1

λi (4a)

N∑
i=1

λi pi ≥ 1 (4b)

0 ≤ λi ≤ 1 ∀i ∈ {1, . . . , N} (4c)

The objective of minimizing the number of selected packings
is expressed in Eq. (4a). The left-hand side of Eq. (4b) results
in a vector stating how often every frame is selected, which
must be at least once for every frame. The bounds of the λi

variables are stated in Eq. (4c).
This linear formulation is solved with the simplex algorithm

[12]. The simplex algorithm hereby iteratively moves from
one feasible subset of packings to the other, until an optimal
one has been found. At every step, it inspects which packings
should be included in the smallest subset. From [9], it follows
that only packings for which the constraint

yTp > 1 (5)

holds are considered. Therefore, only those packings have to
be added to the restricted master problem. In Eq. (5), y is the
dual value vector obtained by the simplex algorithm, in which
every frame maps to a value. The product yTp represents the
sum of these dual values of the frames present in packing p.

Create initial
packings with DFF

Pricing

Better than current
solution?

Integer solution?

Solve RMP

Yes

No

Update SLB

no new colum

Prune node

Branch

New solution

Yes

No

Best solution > SLB

and
nodes left?

Select node

Done

Yes

No

relaxation <= SLB

Calculate SLB

Fig. 4. Branch-and-price implementation

B. Pricing problem

To find a packing for which Eq. (5) holds, a pricer tries to
find a new, feasible packing p that maximizes this product. If
it is larger than 1, the packing is added to the RMP. However
if no packing with a value larger than 1 is found, the current
solution of the restricted master problem forms an optimal
schedule.

The first-fit pricer tries to quickly find a packing with a
value yTp larger than 1. Similar to the DFF scheduler, it tries
to iteratively place the frames on all possible base cycles. The
frames are sorted in decreasing order of yf/wf , so that the
frames with the highest ‘value per bandwidth’ are tried first.
If the first run does not give a packing with a value larger than
1, the process is repeated several times, but every time with a
small variation in the order of the frames.

It is however not guaranteed that the first-fit pricer always
finds a packing with a value larger than 1 when there is one.
In order for the BP algorithm to be optimal, it must be ensured
that any potential packing that improves the existing solution
will always be found. By formulating the pricing problem as
an ILP, a packing with a value yTp larger than 1 will always
be found, if one exists. However, because this ILP pricer is
much slower than the first-fit pricer, the ILP pricer is only
used when the first-fit pricer cannot find a packing first.

C. Lower bound

Before the BP algorithm starts, a lower bound on the
obtainable number of slots is calculated. As soon as a schedule
with this number of slots is found, the column generation
process is terminated. The lower bound on the required number
of slots is obtained by calculating per branch how many slots
are needed to schedule the communication on that specific
branch. When taking the maximum number of slots over all
branches, the following bound is obtained:

SLB = max
k∈K

⌈ ∑
f∈F :k∈kf

1
rf

⌉
slots. (6)

Here, the set {f ∈ F : k ∈ kf} denotes the set of frames that
have a sender or receiver on branch k.

0 20 40 60 80 100
Nlocal

25

33

50

75

100

N
u

m
b

e
r

o
f

sl
o
ts

 (
S

)

|K|=1

|K|=2

|K|=3

|K|=4

Fig. 5. Impact of branch parallelism

D. Branch-and-bound

Although the solution of an RMP for which no new columns
can be found is optimal in the sense that it minimizes the
number of slots, it is not guaranteed that all λi are 0 or 1
(refer to Eq. 4c). The branch-and-bound algorithm described
in [9] is used to make all variables integer.

The implementation of the branch-and-price algorithm,
which is a combination of column generation and branch-and-
bound, is shown in Fig. 4. Whenever an optimal solution of
a master problem has been found, or if its objective value
reaches SLB, there are three options:

1) The node is pruned if the number of slots of this solution
is higher than the best solution so far.

2) If the linear program (LP) solution is better than the best
solution found, and all variables λi are 0 or 1, a new
solution has been found.

3) On the other hand, if the solution is better than the
current best solution, but contains fractional values, the
node is branched.

The branching rule focuses on pairs of frames. Whenever
the optimal solution of an RMP contains fractional values,
two frames are selected, and on the left child-node, these
two frames must appear together in all packings and on the
right child-node, the frames are not allowed to be scheduled
in the same slot. These branching constraints can easily be
incorporated into the pricing problem [11].

After a node has been processed, the algorithm checks
whether the lower bound has been obtained. When it has, or
when there are no nodes left to be processed, the algorithm is
done. Otherwise, the next node is processed.

VI. RESULTS

First, the BP algorithm is validated by inspecting the influ-
ence of branch parallelism and slot multiplexing in isolation.
After this validation, more realistic use cases are explored,
and a comparison is made between the different algorithms
described in this paper.

To show the impact of branch parallelism, a set of use
cases is created with two types of frames: broadcast frames
and local frames. Broadcast frames are sent to all branches
in the network and local frames are sent between two nodes
on the same branch. The total number of frames per use

1 2 4 8 16 32 64

Number of cycles C=64

0
5

10
15
20
25
30

%

1 2 4 5 8 10 20 40

Number of cycles C=40

0
5

10
15
20
25
30

%

Fig. 6. Distribution of frame repetition rates

0 20 40 60 80 100
Use cases

0

5

10

15

R
u

n
 t

im
e
 [

m
in

u
te

s] Full ILP
Optimal BP

Fast BP

DFF

Fig. 7. Run time comparison of different algorithms

case is 100. Fig. 5 shows the required number of slots for
topologies with 1 to 4 branches. Every branch contains two
nodes. If the number of local frames (Nlocal) is increased,
more potential branch parallelism is introduced, resulting in a
lower number of required slots. If the local frames are divided
evenly over all branches, the minimum number of slots is
Nbroadcast+dNlocal

|K| e. These lower bounds are depicted by the thin
gray lines. However, because the local frames in realistic use
cases are typically not uniformly distributed, this lower bound
is not reached in most cases. For all use cases, the scheduler
is however able to find the least possible number of used slots.
Similar tests have been performed to show the effect of slot
multiplexing in isolation. These tests also resulted in optimal
solutions.

To show the behavior of the algorithms for more realistic use
cases, another set of 100 use cases with 100 frames each has
been randomly generated. The communication requirements
are scheduled on a network with 8 nodes on 4 branches. The
number of branches on which the frames are sent, is for every
frame uniformly distributed from 1 to 4. Half of the use cases
have a cycle count C of 64 and the other use cases have 40
cycles. The distributions from which the repetition rates are
drawn, are shown in Fig. 6. These distributions are based on
the “realistic case study” in [6].

Fig. 7 shows the run times of the different algorithms, when
executed on an 3.16 GHz Intel Xeon X5460 processor. The
full ILP run times are obtained by solving the ILP formulation
of the scheduling problem before applying the Dantzig–Wolfe
decomposition with the Coin-or branch-and-cut solver [13].
Because the run times can get very large, all runs in this figure
are terminated after 15 minutes. Fig. 7 also shows the run

TABLE II
ALGORITHM RESULTS

DFF Optimal BP Fast BP

Avg. nr. of slots 30.22 30.05 29.99
Optimal use cases 71 91 94
Maximum runtime 50ms 10 hours 30 min

times of the DFF algorithm, which always finishes within 50
milliseconds. Even though the DFF algorithm is very fast, it
provides reasonable good schedules. For 71 of the 100 use
cases, the schedules obtained were optimal, see Table II.

Also the runtimes of the optimal BP scheduler are plotted in
Fig. 7. In 80 of the 100 use cases, it finds an optimal schedule
within 2 minutes and is therefore much faster than the full
ILP algorithm. After 10 hours, the optimal BP scheduler finds
optimal schedules for 91 use cases. It reduces 20 schedules
obtained with the DFF scheduler by 1 slot, which is a reduction
of 3 to 5.5 percent. However, in 9 use cases, the optimal
scheduler was still running after 10 hours. This long run-time
is caused by the ILP pricer, which sometimes takes many hours
to find out whether a packing with a value yTp larger than
one exists. The fast BP algorithm is introduced to overcome
this problem by disabling the ILP pricer. Whenever the first-
fit pricer cannot find a packing with a value larger then one,
it is (incorrectly) assumed that there is none. This makes the
algorithm much faster, at the cost of not being able to prove
the optimality of the schedules.

A more detailed comparison between the fast BP and the
optimal BP algorithms is shown in Fig. 8. It shows that the
average number of slots of the fast BP algorithm indeed drops
much faster than the optimal BP algorithm. To show that most
improvements are made in the first minutes, the figure has two
different time scales.

All runs of the fast BP algorithm finish within 30 minutes.
The fast algorithm then optimized 94 use cases, with an
average of 29.99 slots per use case. The optimal BP algorithm
on the other hand has an average of 30.05 slots per use case,
after 30 minutes. Within limited time, the fast BP algorithm
therefore even performs better than the optimal algorithm.

In theory however, with more runtime, the optimal BP
algorithm does better then the fast BP algorithm. This can
be seen from the dotted lines in Fig. 8, which indicates the
lower bounds on the number of slots that the algorithms will
eventually achieve. After 30 minutes, the optimal BP algorithm
still has room for improvement, whereas the fast BP algorithm
finished.

VII. CONCLUSION

This paper presented an approach to schedule data commu-
nication in switched FlexRay networks, with the objective to
minimize the number of used slots, and thereby to maximize
the extensibility of the resulting schedules. The algorithms use
the branch parallelism introduced by the FlexRay switch and
slot multiplexing as defined in FlexRay v3.0.

The decreasing first-fit scheduler produces good schedules
very quickly. However, in general the resulting schedules are
not optimal. The branch-and-price algorithm is introduced to

0 1 2 3 4 5 150 300 450 600

Runtime [minutes]

29.6

29.7

29.8

29.9

30.0

30.1

30.2

30.3

A
ve

ra
g

e
 n

u
m

b
e
r

o
f

sl
o
ts

SLB

DFF

Fast BP

Optimal BP

Fig. 8. Convergence of fast and optimal BP algorithms

find these optimal schedules. However, for some use cases,
the optimal BP algorithm takes very long. This might lead
to problems if the computer runs out of memory when the
branch-and-bound tree becomes too large. The fast BP algo-
rithm is introduced to overcome this problem. Within limited
time, the fast BP pricer produces even better schedules than
the optimal algorithm. However, the fast BP algorithm cannot
guarantee the optimality of the schedules.

Although the improvements that the BP algorithms bring
are not very large, the extra time investment of finding smaller
schedules, may be worth the extra computation time, given that
for every car model these schedules only have to be calculated
once.

REFERENCES

[1] Protocol specification Version 3.0, FlexRay Consortium, Dec. 2009.
[Online]. Available: http://www.flexray.com

[2] P. Milbredt, B. Vermeulen, G. Tabanoglu, and M. Lukasiewycz,
“Switched FlexRay: Increasing the Effective Bandwidth and Safety of
FlexRay Networks,” IEEE ETFA, 2010.

[3] M. Grenier, L. Havet, and N. Navet, “Configuring the communication
on flexray - the case of the static segment,” in ERTS, 2008.

[4] S. Ding, N. Murakami, H. Tomiyama, and H. Takada, “A GA-based
scheduling method for FlexRay systems,” in EMSOFT: conference on
embedded software. ACM, 2005, pp. 110–113.

[5] K. Schmidt and E. Schmidt, “Message scheduling for the FlexRay
protocol: The static segment,” IEEE Trans. Veh. Technol., vol. 58, no. 5,
pp. 2170–2179, 2009.

[6] M. Lukasiewycz, M. Glaß, J. Teich, and P. Milbredt, “Flexray schedule
optimization of the static segment,” in CODES+ISSS, 2009.

[7] G. Tabanoglu, “Synchronous Switched Scheduling with Heterogeneous
Cycle Configurations for Efficient Bandwidth Usage in a FlexRay
Cluster,” 2010.

[8] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear pro-
grams,” Operations Research, vol. 8, no. 1, pp. 101–111, 1960.

[9] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser, “Solving
binary cutting stock problems by column generation and branch-and-
bound,” Comput. Optim. Appl., vol. 3, no. 2, pp. 111–130, 1994.

[10] C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance,
“Branch-and-price: Column generation for solving huge integer pro-
grams,” Operations Research, vol. 46, no. 3, pp. 316–329, 1998.

[11] E. Johnson, G. Nemhauser, and M. Savelsbergh, “Progress in linear
programming-based algorithms for integer programming: An exposi-
tion,” INFORMS Journal on Computing, vol. 12, no. 1, pp. 2–23, 2000.

[12] F. S. Hillier, G. J. Lieberman, F. Hillier, and G. Lieberman, Introduction
to Operations Research. McGraw-Hill, July 2004.

[13] “Coin-or branch and cut solver, version 2.4.0,” http://www.coin-or.org/,
COIN-OR: Common Optimization Interface for Operations Research.

