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ABSTRACT 

 
This paper describes the development and use of a model designed to optimise train 
schedules on single line rail corridors. The model has been developed with two major 
applications in mind, namely: as a decision support tool for train dispatchers to schedule 
trains in real time in an optimal way; and as a planning tool to evaluate the impact of 
timetable changes, as well as railroad infrastructure changes. The mathematical 
programming model described here schedules trains over a single line track. The priority 
of each train in a conflict depends on an estimate of the remaining crossing and 
overtaking delay, as well as the current delay. This priority is used in a branch and bound 
procedure to allow and optimal solution to reasonable size train scheduling problems to be 
determined efficiently. The use of the model in an application to a 'real life' problem is 
discussed. The impacts of changing demand by increasing the number of trains, and 
reducing the number of sidings for a 150 kilometre section of single line track are 
discussed. It is concluded that the model is able to produce useful results in terms of 
optimal schedules in a reasonable time for the test applications shown here. 
 



1    Introduction 
 
1.1  Background 
 
The model described in this paper is designed to be used in two main modes, namely: as a 
decision support tool for train dispatchers to schedule trains in real-time in an optimal 
way; and as a planning tool to evaluate the impacts of timetable changes, as well as 
railroad infrastructure changes on train arrival times and train delays. The model is 
primarily designed to optimally schedule trains on single line railroads. Under such 
conditions, trains operate over a single track and can only overtake and cross each other at 
specific locations referred to here as sidings. This type of operation is common 
throughout the world. Most developing countries have networks which are mainly single 
line track.  
 
In Australia, the average length of haul for interstate freight movements is around 1500 
kilometres. The bulk of this interstate network consists of single line track. The extent of 
that network is shown in Figure 1. The train dispatching function outside urban areas is 
currently performed using mainly manual methods. The dispatcher resolves train conflicts 
on a time-distance graph using experience and knowledge of prevailing conditions. The 
criteria for conflict resolution includes the priority of each train, current train delays, and 
expected remaining overtake and crossing delay. This criteria is used to develop an 
improved lower bound. When used with the depth first search Branch and Bound 
procedure, optimal solutions to large problems can be found. 
 
The main objective for developing the model described here is to provide the operator 
with a tool which helps him/her to perform the train dispatching function. The model is 
not designed to replace the dispatcher. The operator' s experience and knowledge of local 
conditions, will continue to be used. Train dispatching decisions, which to a certain extent 
involve human as well as technical factors, will require human intervention to resolve 
problems. However, with such an optimisation model available, the operator is able to 
quickly update a schedule as unplanned events occur. The new optimal schedule offered 
by the model may not be fully implementable for practical reasons. However, the gap 
between the optimum and the practically feasible schedule, can be readily assessed. The 
penalty for not being able to implement the optimum schedule, in terms of operating cost 
and travel time reliability, can be evaluated against the practical factors which prevent 
implementation of the optimum schedule. 
 
A second major use of the model relates to the planning of railroad operations. Such 
planning can be conveniently divided into two components, namely: short to medium 
term train planning; and railroad infrastructure planning associated with train operations. 
The model can be used to evaluate the implications of changes to a timetable in terms 
changed train departures, additional trains, and changes in train speeds. The optimum 
scheduling algorithm can be used as a simulator of proposed changes. 
 
1.2 Train Schedule Reliability 
 
When trains are scheduled on a rail corridor the objective is to achieve a given level of 
customer service whilst minimising overall operating costs. Customer service in this 
context is made up of several attributes which include overall journey time of trains and 



the degree to which those journey times are achieved on a daily basis. In the context of 
freight movements, the benefits of improved reliability need to be estimated on a train by 
train basis. Each train is usually loaded with freight from a range of customers and origin-
destination flows. The elasticity of demand with respect to transit time reliability will 
differ for each customer, commodity, and origin-destination combination. 
 
The overall timetable reliability is a measure of the likely performance of the timetable as 
a whole, in terms of schedule adherence. The reliability of arrivals is a critical 
performance measure for all rail markets. The ability of rail systems to compete 
effectively relies to a large extent on consistent transit time reliability (Fowkes et al., 
1991; Industry Commission, 1991; Bureau of Industry Economics, 1993).   
 
If the train operations are conducted under single line conditions, the transit time 
reliability is a function of a range of factors. The degree of 'slackness' built into the 
schedule; the number and position of train conflicts;  priorities for each train; terminal 
congestion; number and nature of scheduled stops; and train speeds  are all influencing 
variables. Analytically based models designed to quantify the amount of delay risk 
associated with each track segment, train and the schedule as a whole are given by 
Higgins et al. (1995a). 
 
There are several ways in which investment in track related infrastructure can reduce 
delays and hence improve transit time reliability. Four main investment strategies may 
have significant impact on the probabilities associated with train delays, namely: 
 
(a) Investment in major track strengthening to increase maximum allowable speeds. The 
higher speeds have the potential to reduce conflict related delays and improve train 
recoverability; 
 
(b) Investment designed to alter track alignments, both vertical and horizontal, thus 
increasing average train speeds;  
 
(c) Investment in additions to the number and length of sidings where trains can cross and 
pass each other on single line track. Conflict related delays are directly affected by the 
number, length and location of sidings; 
 
(d) Investment in advanced train control and communication systems to allow trains to 
proceed at shorter headways, and with less stops required for safe train operations. 
 
The benefits of some of the above investment usually extend beyond transit reliability 
gains. For example, in the case of track rehabilitation and upgrading, those benefits may 
include reductions in overall transit times; reduction in accident risks; lower track 
maintenance costs; increased train productivity from higher maximum allowable axle-
loads; reductions in rolling stock maintenance costs due to improved vehicle-track 
interaction; and improved locomotive productivity through the use of more modern 
equipment.  
 
In order to obtain maximum benefits it is usually necessary to combine a number of 
investment strategies into a coherent and complementary package of capital expenditure 
projects. For example, the gains in reliability from track upgrading projects can be 



augmented by investment in terminal infrastructure to allow faster loading/unloading of 
trains, and by locomotive investment to enable higher train speeds. 
 

2   Past Work 
 
Work on an optimum solution to the train scheduling problem started in the early 
seventies by Szpigel (1973) who developed a linear programming model to determine the 
best overtaking and crossing positions given that the departure times and upper velocities 
of the trains are known. A Branch and Bound method is used to resolve the conflicts and 
lower bound to the remaining delay is generated by relaxing the remaining conflicts. 
Minimising the sum of the travel times was the objective and only small problems were 
tested. Petersen et al (1986) considered a similar dispatch algorithm which calculates the 
crosses, segment transit times and determines which train takes the sidings in order to 
minimise the total travel times.  
 
Kraft (1987) takes a different approach by developing a dispatching rule giving the 
optimal time advantage for a particular train based on train priority, track running times 
and the delay penalties of each train. This rule was used to resolve crossing conflicts in 
the Branch and Bound procedure.  
 
Kraay et al (1991) proposes a model which paces trains in order to conserve fuel and, at 
the same time, keep the lateness of trains at a minimum. The fuel consumption is a 
function of friction and gradient of track, speed and mass of the train, and air friction. 
Two heuristics were proposed which are able to find solutions to realistic size problems. 
Jovanovic et al (1991) uses a similar constraint framework as part of a decision support 
model called 'SCAN' which is based upon combinatorial optimisation and simulation. 
Mills et al (1991) formulated a discrete network type model by discretising the departure 
and arrival time variables. The discretisation allows the use of the shortest path algorithm 
to update the journey of each train. A procedure recursively updates the path of each train 
until a feasible schedule is found. The solution procedure is an approximation. 
 
Mees (1991) models the single line rail as a network structure where each segment is an 
arc (a siding is considered as an extra arc), separated by nodes (considered as track 
intersections or stations). The network is time-space with a fixed schedule time span and 
headways are obtained by allowing only one train per arc at a time segment. A solution 
procedure similar to Mills et al (1991) is used to find a feasible solution.  
 
Due to the difficulty of finding an optimal solution to large problems the trend has been 
towards finding an approximate solutions. The objective in this paper is to present a lower 
bound that will allow the branch and bound procedure to find the optimal solution to 
realistic size problems in reasonable time. 
 
 
 
 
 

3   Model Formulation 
 



This section deals with the definition and derivation of the model. The resulting 
formulation is a non-linear mixed integer program for which the integer part is solved 
using an intelligent branch and bound procedure. 
 
3.1   Variables and Model Assumptions 
 
The set of trains is given by I={1,2,.....,m,m+1,.....,N} for which inbound trains are from 1 
to m and outbound are from m+1 to N. The variables used in the model are listed and 
described in this section. 
Let:       P P P=  { 1 2, } 
where: 
P P1 2=  set of single line tracks,  = set of double line tracks 
The integer decision variables for determining which train traverses a section first (also 
determines the position of conflict resolution) are given by: 

A
i m p P j m

ijp =
≤ ∈ ≤RST

   if inbound train  traverses track segment  before inbound train 
0  otherwise                                                                                                            
1 1  

B
i m p P j m

ijp =
≤ ∈RST

   if inbound train  traverses track segment before outbound train >
0  otherwise                                                                                                              
1 1  

C
i m p P j m

ijp =
> ∈RST

   if outbound train  traverses track segment before outbound train >
0  otherwise                                                                                                                
1 1  

The arrival and departure time decision variables are as follows: 
      X i I q Qi

aq =  arrival time of train  at station ∈ ∈  
      X i I q Qi

dq  =  departure time of train  from station ∈ ∈  
      X i Ii

Oi  =  departure time of train  from its origin station  ∈  
      X i Ii

Di  =  arrival time of train at its destination station  ∈  
The input parameters are defined as follows: 
      h p Pp =  minimum headway between two trains on segment ∈ 1 
      d p Pp  =  length of segment ∈  
      Y i Ii

Oi  =  earliest departure time of train  from origin station∈  
      Y i Ii

Di  =  planned arrival time of train  at destination station∈  
      v i I p Pi

p =  minimum allowable velocity of train  on segment ∈ ∈  
      v i I p P

i
p =  maximum achievable average velocity of train  on segment ∈ ∈  

      W i Ii  =  priority of train  (highest for passenger trains)∈  
       S i I q Qi

q =  scheduled stop time for train  at station ∈ ∈ . 
An illustration of the ordering of a single track used for the model in this paper is given in 
Figure 2 where the set of sidings is represented by Q={1,2,....,NS} and here, track 
( - )p P2 2∈ . 
 
The following assumptions are made with regard to the model in this section: 
• The track is divided into segments which are separated by sidings. 
• Crossing and overtaking can occur at any siding or double line track segments. 
• Trains can follow each other on a track segment with a minimum headway. If only 

one train is permitted on some track segments then the headway on these track 
segments is increased to the track length. 



• For double track sections, it is assumed one lane will be allocated for inbound trains 
and one lane will be allocated for outbound trains. Usually, signal points will be set up 
this way. 

• Scheduled stops are permitted at any intermediate siding for any train 
 
The model will require various information to make use for the input to the model. The 
specific information is as follows: 
 
• An unresolved train plan to make available the number of overtake and cross 

interferences for each train.  
• The priorities of each train. These are determined by several factors such as the type 

of train, customer contract agreements and train load. 
• The upper and lower velocity limits for each train (which are dependent on the 

physical characteristics of the track segment and the train). 
• The times of any scheduled train stops. These stops may include loading/unloading, 

refuelling and crew changes. 
 
 
3.2   Objective Function and Constraints 
 
The objective function used in the model takes the following form: 
Min  

i
∑ Wi *(delay of train i I∈  at destination) + Train Operating Costs  (1) 

For the purposes of the solution procedure (namely Branch and Bound), the delay of train 
i I∈  is comprised of two parts. These are the current delay of train i I∈  at any point in 
time and a lower bound estimate of remaining overtake and crossing delay from this 
point. The model is subject to various constraints to ensure safe operation, enforce speed 
restrictions and permit stops. The following and overtake constraints for outbound trains 
i j I, ∈  are as follows: 
M C X X h

M C X X h
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and for inbound trains i j I, ∈ : 
M A X X h

M A X X h
p P and i j m

ijp
i
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j
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ijp
i
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j
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Equation (2) implies that if train j I∈  goes first, then train i I∈  must depart station q Q∈  
after train j I∈  plus the minimum headway, and arrive at station (q+1)∈Q after train j∈I  
plus the headway. Equation (3) is similar except train i∈I  goes first. Equations (4) and 
(5) are the same as equations (2) and (3), but for inbound trains. The constraints for the 
case when two trains approach each other are: 



h X X M B
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Equation (6) implies that if outbound train j I∈  goes first, inbound train i∈I  must depart 
station q∈Q after train j∈I  arrives plus a safety headway. Constant M is chosen large 
enough so that both equations in each crossing and overtake constraint are satisfied. 
Given the upper and lower velocities for each train on each segment, the upper and lower 
limits for traversal time of train i I∈  on segment p P∈ 1 are given by: 
d
v

X X
d
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To stop trains from departing before their scheduled times and trains departing 
intermediate stations before they arrive, the following constraints are included. 
X Y

X S X
i I q Q

i
Oi

i
Oi

i
aq

i
q

i
dq

≥

+ ≤

UVW∀ ∈ ∈  ,         (8) 

 
The objective is to minimise equation (1) subject to constraints given by equations (2) - 
(8). The solution procedure to solve this model can be found in Appendix A. The 
algorithm for determining the lower bound is described in Appendix B. 
 

4    Model Applications 
 
4.1   Model Performance Analysis 
 
The solution procedure to solve the model of section 3.2 along with the lower bound 
estimates (LB1) have been implemented in FORTRAN on a 80486 PC. The model was 
tested on train schedules varying from 9 trains to 30 trains and was compared to a Branch 
and Bound Procedure with a lower bound calculated by relaxing the remaining conflict 
constraints (LB2). The exact objective function used is a combination of tardiness and 
fuel consumption (Mills et al (1991)). 
 
The results were also compared to a Tabu Search (TS) heuristic solution (Glover 1993). 
The TS was allowed to run until a certain number of iterations elapses when no 
improvement in solution value is found. The neighbourhood was defined as the movement 
of a conflict to a neighbouring siding and only a sample of the neighbourhood was 
searched at each iteration. A full description of the use of the TS heuristic can be found in 
Higgins et al (1995b).  
 
Different examples were solved for each problem size by varying the earliest departure 
time of each train, upper velocities and due arrival times. As shown in Table 1, the 
examples within each problem size contain different numbers of conflicts. The latter are a 
representation of the complexity of each problem. Results for the synthetic problems are 
summarised in Table 1. The results are given in terms of the number of times the schedule 



had to be updated due to the addition or change of a resolved conflict. The TS results 
shown are the average values of 5 trials. 
 
As shown in Table 1, the new lower bound presented in this paper (LB1) produced 
significant reductions in the number of calculations for all problems. The optimum 
solution to most of the smaller problems was found in the minimum possible time. Results 
compared favourably to the Tabu Search heuristic in terms of number of calculations and 
average travel time per train.   
 
However, the lower bound (LB1) took longer to calculate than LB2. The significance of 
this towards the overall CPU time depends on the way the schedule is updated when a 
resolved conflict is changed or added. For the procedure used in this paper (described in 
Appendix B) the CPU comparison between columns LB1 and LB2 would be valid if the 
values for LB1 in Table 1 were multiplied by 2.5. If a network flow algorithm or a 
software package such a GAMS/MINOS is used to update the schedule the significance of 
the calculation of LB1 towards the overall CPU time would be very low. The unresolved 
and resolved schedules for the 30 train problem is illustrated in Figures 3 and 4 
respectively. 
 
4.2   Option Testing 
 
The algorithm was tested on an actual section of railroad. The rail corridor contains 14 
sidings and 31 trains are scheduled on the busiest day of the week. The four types of 
trains scheduled are: fast freight, heavy freight, electric passenger and locomotive hauled 
passenger trains. Each train class has a different maximum achievable velocity. For the 
purposes of this paper it is assumed all sidings are sufficiently long to accommodate any 
train size. The algorithm only required 46 seconds to determine the optimum solution to 
the problem. The optimum schedule is demonstrated in Figure 5. The efficiency of the 
algorithm will allow the rapid updating of an optimum solution whenever an unexpected 
delay occurs.  
 
The solution procedure presented here was used to demonstrate the effects of two 
different types of operating changes, namely: increases in demand through additional 
trains and reduction in the number of sidings available for conflict resolution. As shown 
in Figure 5, the line is currently operating with significant spare capacity. The effects of 
train delays (in terms of average increase travel time per train in the optimal schedule), 
when sidings are removed is demonstrated in Figure 6. To prevent any possible bias, the 
siding positions in the original problem are taken to be equally spaced. When a siding is 
removed the remaining sidings are spaced equally. It is only when the number of sidings 
are reduced below nine that the increase in average transit time becomes significant. If the 
original number of sidings was reduced to nine, the schedule would operate with an 
increase in average transit time of less than 2 percent.  
 
However, this analysis does not take into account the ability of a given set of sidings to 
cater for unexplained events such as track and rolling-stock related delays on the line. 
Some sidings are required to provide insurance against delay risks, rather than to act as 
conflict resolution locations under 'ideal' conditions. 
 
 



The second application consisted of scheduling additional trains at already congested 
periods of the existing schedule. Three new fast freight trains were added at a time, one 
for each peak period. The average effects of adding these extra trains to the original 31 
train, 14 siding problem is demonstrated in Figure 7. The average transit time increases 
almost linearly with the number of trains in the schedule. The addition of 18 trains 
increases the average transit time by 8.4 percent. The schedule with 49 trains contained 
nearly 100 train conflicts and was solved within 10 minutes. The effects of adding extra 
trains and removing sidings simultaneously is demonstrated in Table 2. The numbers in 
the table represent the increase in average travel time as a proportion of the base problem. 
The increase in average travel time tends to be linear for the increase in number of trains 
and exponential for the reduction in sidings. 

 
 

 
 

5   Conclusions 
 
This paper has presented an on-line model for the scheduling of trains on a single line 
track. The solution procedure used a lower bound estimate of the remaining overtake and 
crossing delay to reduce the search space in the branch and bound tree. The lower bound 
estimate was based on the calculation of the least cost path of each train, while assuming 
the path of a train is independent of previous accumulated conflict delay. The calculation 
of the lower bound is shown to be of low order polynomial time. This has allowed the 
optimal solution to realistic size problems to be found in a reasonable time.  
 
As well as an online scheduling tool, the model presented here can be used for long-range 
planning of railroad operations. In Australia, there are two main infrastructure planning 
issues which are currently under investigation, namely: the upgrading of main line track 
to allow higher speeds and heavier axle loads; and the need to extend sidings to allow for 
longer trains. The scheduling optimisation model can be used to evaluate both these 
investment strategies. The impact on the schedule of extending some sidings and not 
others can be assessed by using the model to simulate the effect of the proposed changes 
on future schedules. The removal of sidings has a cost in terms of flexibility and 
feasibility of schedules. As part of the same research project, the authors have developed 
a model to optimise the location of sidings for a given set of train departure times and 
mean train speeds (Higgins et al 1994b).  
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Appendix A   Solution Procedure 
 
A1   General 
 
The solution procedure described in this section is based on Branch and Bound and uses 
the depth first search for the resolution of conflicts. Each node in the tree involves the 
solution of a non-linear program which can be solved using a specialised package 
program such as GAMS/ MINOS. An algorithm for determining the lower bound can be 
found in Appendix B. The procedure is as follows: 
 
1. Solve the objective function (1) subject to the velocity, departure time and scheduled 

stop constraints (7,8) ignoring the cross and overtake constraints (2)-(6). This will 
give an unresolved train plan. 

2. From the train graph in step 1. pick out the first conflict in time. Identify the two trains 
i j I, ∈  involved and the segment p P∈  which this conflict occurs. There will be two 
alternatives to resolve this conflict, train i I∈  is delayed, or train j I∈  is delayed. For 
each of the alternatives, update the train journey by solving the sub problem with the 
conflict between these two trains. ie. solve objective function (1) st (7,8) and the 
appropriate overtake or crossing constraint from equation (2)-(6). For each of these 
two alternatives determine the lowerbound estimate of the remaining crossing and 
overtake delay. Add the delay cost of the lower bound estimate of remaining delay to 
the overall cost. 

3. Pick the alternative (resolution) with the lowest cost. If the cost is greater than the 
current upperbound then go to step 6(a) (the rest of the branch is pruned). 

3(a). From this resolution (conflict) node, pick the next conflict in the train graph. 
Identify the trains involved and the segment which this conflict occurs.  

4. For each of the two alternatives, update the train journey by solving the subproblem 
with objective function (1) subject to the constraints (7,8) and a subset of the fixed 
integer constraints (2)-(6) when considering the current conflict, and previous 
conflicts (ie. conflicts on the same branch and higher in the branch and bound tree). 
Calculate the lower bound estimate of remaining conflict delay for each of these 
alternatives and add the delay cost of the lower bound estimate of remaining delay to 
the overall cost. 

5. If there are no more conflicts then go to step 6 otherwise go to step 3. 
6. Mark the best solution in this last alternative pair of resolutions. If the cost of this 

solution is less than the current upper bound then let the upper bound equal the cost of 
this new solution.  

6(a). Trace up the Branch and Bound tree, one level at a time until a level with an 
unbranched node and a cost lower than the upper bound is found. Pick the node with 
the smallest cost in this level. If the top level in the branch and bound tree is reached 
when tracing up, then the procedure terminates and the current solution is the best 
solution otherwise go to step 3(a). 

 
A2   Solving the Non-Linear Subproblem 
 
The non-linear subproblems (fixed integer variables) are solved using an approximate 
iterative procedure which builds up a schedule given a set of resolved conflicts. The 
objective function (equation 1) in the model is assumed to have the components tardiness 
and fuel costs of each train. It is assumed the cost of tardiness has a higher priority than 



fuel costs. A train will not travel slow to arrive at the destination station late unless the 
trains priority is set to a minimum. Situations occur when a train is not able to make a 
connection on time or the due arrival time of the train is extremely late. In such a case, the 
train will be delayed in every conflict and the train is paced between conflicts.  
 
When constructing the schedule using the iterative procedure, it is assumed a train will 
travel at the maximum achievable average velocity on any track segment, unless the train 
is to be delayed in a conflict at the next siding. In this case the train will be paced to arrive 
at the siding at the last moment. If a train has slack time, it is paced to arrive at the 
destination station on time from its last conflict. Full details of the algorithm can be found 
in Higgins et al (1994a). 
 
For solving the non-linear subproblem, the approximate procedure gave near identical 
results to GAMS/MINOS 5.2 for all size problems tried when the objective function of 
minimum tardiness and fuel consumption is used. For a problem of 32 trains and 14 
sidings, GAMS/MINOS 5.2 took 8 minutes (on a 80486DX PC) to solve one instance and 
required 8 megabytes of RAM. The approximate iterative procedure was able to solve 
nearly a thousand instances of this size problem in one minute with near identical results.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Australia interstate rail network 
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Figure 2:  Sample of a network showing the single and double track segments. 



 
No. of Trains 
(No. of 
Sidings) 

No. of Conflicts Branch & Bound 
(LB1) 

Branch & Bound 
(LB2) 

Tabu Search 
(TS) 

9 (6) 11 24# 97 620 
 12 24# 211 411 
 12 24# 282 543 
 13 28# 452 436 
     
11 (8) 11 42 433 789 
 14 30# 1052 402 
 15 38# 1129 421 
 19 56 1026 1140 
     
15 (8) 13 34# 402 816 
 14 36# 332 407 
 14 36# 1066 1151 
 21 74 1190 783 
     
20 (8) 19 36# 1054 995 
 19 96 1190 860 
 25 56# 1268 812 
 27 122 1440 405 
     
25 (12) 23 46# 1338 982 
 24 120 1270 384 
 34 72 1872 1062 
 40 120 2304 1108 
     
30 (12) 50 194 2265 1020 
 53 250 2820 1268 
#   Optimum solution found in minimum possible time 

 
Table 1:   Comparison between solution techniques:  Number of schedule updates 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Unresolved train schedule consisting of 30 trains 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Optimal train schedule 



 
 
 
 
 
 

Figure 5:  Real life problem consisting of 31 trains and 14 sidings 
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Figure 6:   Effect of decreasing number of sidings 
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Figure 7:   Effect of increasing demand 



 
 No. of Trains 

No. of Sidings 31 34 37 40 43 46 49 
14 1.000 1.007 1.029 1.052 1.068 1.075 1.083 
13 1.012 1.015 1.038 1.060 1.071 1.086 1.087 
12 1.012 1.017 1.042 1.062 1.074 1.097 1.097 
11 1.012 1.019 1.043 1.072 1.082 1.114 1.114 
10 1.013 1.024 1.044 1.071 1.082 1.114 1.114 
9 1.013 1.038 1.051 1.072 1.088 1.115 1.118 
8 1.014 1.051 1.062 1.078 1.097 1.120 1.123 
7 1.032 1.054 1.068 1.097 1.122 1.150 1.158 
6 1.057 1.092 1.128 1.146 1.155 1.168 1.180 
5 1.065 1.096 1.126 1.155 1.170 1.200 1.210 
4 1.112 1.154 1.178 1.230 1.258 1.269 1.279 

Table 2:  Two way effect of adding sidings and trains 
 



Av Travel Time (% Increase) 
 
Av Travel Time (% Increase) 
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Figure B1:  Demonstration of delay times 
Figure B2:   Train graphs to demonstrate best path 

 
 
 
 
 
 
 
 


