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Abstract. We introduce a non-overlapping variant of the Schwarz waveform relaxation algo-
rithm for wave propagation problems with variable coefficients in one spatial dimension. We derive
transmission conditions which lead to convergence of the algorithm in a number of iterations equal
to the number of subdomains, independently of the length of the time interval. These optimal trans-
mission conditions are in general non local, but we show that the non-locality depends on the time
interval under consideration and we introduce time windows to obtain optimal performance of the
algorithm with local transmission conditions in the case of piecewise constant wave speed. We show
that convergence in two iterations can be achieved independently of the number of subdomains in
that case. The algorithm thus scales optimally with the number of subdomains, provided the time
windows are chosen appropriately. For continuously varying coefficients we prove convergence of
the algorithm with local transmission conditions using energy estimates. We then introduce a finite
volume discretization which permits computations on non matching grids and we prove convergence
of the fully discrete Schwarz waveform relaxation algorithm. We finally illustrate our analysis with
numerical experiments.
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1. Introduction. Domain decomposition methods have been mainly developed
and analyzed for elliptic coercive problems and their convergence theory is well under-
stood, see [41, 8, 37, 36] and references therein. When treating evolution problems, the
classical approach consists of discretizing the time dimension uniformly on the whole
domain by an implicit scheme and then treating the obtained problems at each time
step by a classical domain decomposition method for steady problems. For parabolic
problems see for example [6, 29, 7], and for hyperbolic problems [2, 40].

This approach has two disadvantages. First one needs to impose a uniform time
discretization for all subdomains and thus looses one of the main features of do-
main decomposition algorithms, namely to adapt the solution process to the physical
properties of the subdomain. It is still possible to refine in space, but for evolution
problems this is not sufficient, since the space and time discretization are linked in
general by stability constraints and conditions on the dispersion of the numerical
scheme. Second the algorithm needs to communicate small amounts of information
at each time step. Each communication involves in addition to the cost for the data
transmitted a startup cost independent of the amount of data transmitted. It can
thus be of interest to communicate larger packages of data at once over several time
steps instead of many small packages to save communication time. This factor can be-
come important if the algorithm runs on an existing network of workstations without
special high performance links.

To avoid the above disadvantages, we propose in this paper an approach different
from the classical one. We decompose the original domain into subdomains like in
the classical case, but we do not discretize the time dimension. Instead we solve time
dependent subproblems on each subdomain. This approach is related to waveform
relaxation algorithms for ordinary differential equations and has first been consid-
ered for partial differential equations by Bjørhus in [5, 4] where first order hyperbolic
problems were analyzed, in which case only incoming characteristic information can
be imposed on subdomain interfaces. An overlapping Schwarz algorithm of this type
has been analyzed for the heat equation in [13, 19, 18], and for more general parabolic
problems in [20, 14], which led to a new understanding of the performance of the
waveform relaxation algorithm when applied to parabolic partial differential equa-
tions; in particular a new and faster asymptotic convergence rate is obtained with
overlapping subdomain splitting compared to the classical waveform relaxation rate
for Jacobi splittings. For overlapping and non-overlapping Schwarz waveform relax-
ation methods for the wave equation and convection reaction diffusion equation see
[15].

We are focusing in this paper on wave propagation phenomena in the presence
of variable and discontinuous coefficients. We first perform an analysis at the contin-
uous level and derive transmission conditions for non overlapping Schwarz waveform
relaxation algorithms which lead to optimal convergence. The optimal transmission
conditions involve linear operators Sj related to the Dirichlet to Neumann maps at
the artificial interfaces. For elliptic problems, results of this type have been studied
in [9, 33, 32, 12, 17]. These optimal transmission conditions are nonlocal in general,
but we show that the non-locality depends on the time interval under consideration
in the wave equation case. We introduce then time windows to obtain optimal perfor-
mance of the algorithm with local transmission conditions for piecewise constant wave
speed. We show that convergence in two iterations can be achieved independently of
the number of subdomains in that case. The algorithm thus scales optimally with
the number of subdomains, without any additional mechanism like a coarse grid. For
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Fig. 2.1. Domain decomposition into I non-overlapping subdomains.

continuously varying coefficients we prove convergence of the algorithm with local
transmission conditions using energy estimates. We then introduce a finite volume
discretization and analyze the fully discrete Schwarz waveform relaxation algorithm.
This algorithm allows us to use non-matching grids both in space and time on dif-
ferent subdomains, so that the resolution can be adapted to the underlying physical
properties of the problem. For piecewise constant wave speed we analyze the conver-
gence of the algorithm using discrete Laplace transforms, a tool introduced for the
continuous analysis of waveform relaxation algorithms by Miekkala and Nevanlinna in
[30] and later used by Nevanlinna in [34, 35]. For an analysis of waveform relaxation
algorithms discretized in time, see also Janssen and Vandewalle [22] and references
therein. For continuously varying wave speed we prove stability of the subdomain
problems and convergence on non-matching grids using energy estimates. Our ap-
proach is an alternative to the mortar method for non-matching grids [3], see also [1].
We finally illustrate the analysis with numerical experiments for model problems and
a simulation for a typical underwater sound speed profile from an application. For a
different approach of a space time decomposition for evolution problems using virtual
controls see [27] and for other ways of grid refinement in space and time see [2, 10, 25].

2. The Optimal Schwarz Waveform Relaxation Algorithm. We consider
the second order wave equation with variable wave speed in one dimension,

L(u) =
1

c2(x)
∂2u

∂t2
− ∂2u

∂x2
= f(2.1)

on the domain R × (0, T ) with initial conditions

u(x, 0) = p(x),
∂u

∂t
(x, 0) = q(x).

For 0 < c ≤ c(x) ≤ c < ∞ there exists a unique weak solution u of (2.1) on any
bounded time interval t ∈ [0, T ], see [26].

2.1. A General Non-Overlapping Schwarz Waveform Relaxation Al-
gorithm. We decompose the domain R into I non overlapping subdomains Ωi =
(ai, ai+1), aj < ai for j < i and a1 = −∞, aI+1 = ∞ as given in Figure 2.1. We
introduce a general non overlapping Schwarz waveform relaxation algorithm

L(uk+1
i ) = f in Ωi × (0, T )

B−
i (uk+1

i )(ai, t) = B−
i (uk

i−1)(ai, t) t ∈ (0, T )
B+

i (uk+1
i )(ai+1, t) = B+

i (uk
i+1)(ai+1, t) t ∈ (0, T )

uk+1
i (x, 0) = p(x) x ∈ Ωi

∂uk+1
i

∂t (x, 0) = q(x) x ∈ Ωi

(2.2)

where B±
i are linear transmission operators which we will determine to get optimal

performance of the algorithm. For ease of notation we defined here

uk
0 := 0, uk

I+1 := 0(2.3)
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so that the index i in (2.2) ranges from i = 1, 2, . . . , I. Note that we call this algorithm
a waveform relaxation algorithm because time dependent problems are solved on
subdomains like in the waveform relaxation algorithm for large systems of ordinary
differential equations [24]. The algorithm we consider here is a Jacobi type or additive
Schwarz algorithm, since all the subdomains are treated in parallel. A Gauss Seidel or
multiplicative Schwarz algorithm could be considered as well. But since the analysis
would be similar, we focus in this paper on the additive version of the algorithm only.

2.2. Transmission Conditions for Optimal Convergence. For elliptic prob-
lems, the Dirichlet to Neumann map has been used in [31] to define optimal transmis-
sion conditions. For wave propagation, it is more convenient to introduce the linear
operator S1(x0) defined by

S1(x0) : g(t) �→ ∂v

∂x
(x0, t)(2.4)

where v(x, t) is the solution of

L(v) = 0, in (−∞, x0) × (0, T )
∂v
∂t (x0, t) = g(t) t ∈ (0, T )

v(x, 0) = ∂v
∂t (x, 0) = 0 x ∈ (−∞, x0).

(2.5)

and the linear operator S2(x0) defined by

S2(x0) : g(t) �→ ∂v

∂x
(x0, t)(2.6)

where v(x, t) is the solution of

L(v) = 0, in (x0,∞) × (0, T )
∂v
∂t (x0, t) = g(t) t ∈ (0, T )

v(x, 0) = ∂v
∂t (x, 0) = 0 x ∈ (x0,∞).

(2.7)

The operators Sj defined in (2.5) and (2.7) are the key ingredients to obtain an optimal
Schwarz Waveform Relaxation algorithm. This algorithm is obtained by choosing the
transmission operators B±

i in the algorithm (2.2) to be

B−
i := S1(ai)∂t − ∂x, B+

i := S2(ai+1)∂t − ∂x.(2.8)

This choice is not arbitrary. The absorption property of these transmission operators
allows the algorithm to compute subdomain solutions which do not see the interfaces
and hence are exact; for the steady convection diffusion case, see [33].

Theorem 2.1 (Convergence in I steps). The non-overlapping Schwarz waveform
relaxation algorithm (2.2) with transmission operators defined by (2.8) converges in I
iterations where I denotes the number of subdomains.

Proof. First note that convergence in less than I iterations, where I denotes the
number of subdomains, is not possible over long time intervals, since the solution on
each subdomain depends on the data on all the other subdomains and information is
only propagated locally to neighboring subdomains. To show that the algorithm with
the transmission operators (2.8) achieves convergence in I iterations and therefore is
optimal we rewrite the algorithm (2.2) in substructured form on the interfaces only.
By linearity it suffices to consider the homogeneous case (the error equations) only,
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f = p = q = 0, and to prove convergence to zero. We denote the interface values
which subdomain Ωi obtains from its neighbors Ωi−1 and Ωi+1 by

gk−
i (t) := B−

i (uk
i−1)(ai, t), gk+

i (t) := B+
i (uk

i+1)(ai+1, t), ∀t ∈ (0, T )

and put all these values gk−
i (t) and gk+

i (t) together into the vector-valued function
gk := (gk+

1 , gk−
2 , gk+

2 , . . . , gk−
I ). Note that there is only one element in gk for the

leftmost and rightmost subdomain, since they both extend to infinity. One step of the
Schwarz waveform relaxation algorithm (2.2) can now be seen as a linear map taking
a vector-valued function gk as input and producing a new vector-valued function gk+1

as output. On each subdomain Ωi for interior subdomains, i = 2, . . . I − 1, there are
two linear mappings, both taking as input arguments the values of the neighboring
subdomains and one producing a new value on the left boundary

A−
i : (gk−

i , gk+

i ) �→ B+
i−1

(
uk+1

i

)
(ai, ·)

and the other one a new value on the right boundary

A+
i : (gk−

i , gk+

i ) �→ B−
i+1

(
uk+1

i

)
(ai+1, ·).

For the outermost subdomains there is only one linear map each, taking one input
argument only,

A+
1 : gk+

1 �→ B−
2

(
uk+1

1

)
(a2, ·) and A−

I : gk−
I �→ B+

I−1

(
uk+1

I

)
(aI , ·).

Note that by the definition of the operators Sj both A+
1 and A−

I map any argument
to zero: for any function g(t) we have

A+
1 (g) ≡ A−

I (g) ≡ 0.(2.9)

This can be seen for A+
1 for example by

A+
1 (g) = B−

2 (v) (a2, ·) = (S1(a2)∂t − ∂x)v = vx(a2) − vx(a2) = 0

where we have used that by the definition of S1 the function v is solution of (2.5).
Similarly for interior subdomains we have for any function g(t)

A−
i (g, 0) ≡ A+

i (0, g) ≡ 0.(2.10)

But this implies by linearity that A+
i (g, h) does only depend on g and A−

i (g, h) does
only depend on h, since

A+
i (g, h) = A+

i (g, 0) + A+
i (0, h) =: Ã+

i (g),
A−

i (g, h) = A−
i (g, 0) + A−

i (0, h) =: Ã−
i (h).

(2.11)

Using these linear mappings on each subdomain, a complete step of the non over-
lapping Schwarz waveform relaxation algorithm can be described by the linear map
A : gk �→ gk+1 where Agk is defined by

Agk = A(gk+

1 , gk−
2 , gk+

2 , . . . , gk−
I )

= (A−
2 (gk−

2 ,gk+

2 ),A+
1(gk+

1 ),A−
3 (gk−

3 ,gk+

3 ),A+
2(gk−

2 ,gk+

2 ), . . . ,A−
I (gk−

I ),A+
I−1(g

k−
I−1,g

k+

I−1))

= (Ã−
2 (gk+

2 ), 0, Ã−
3 (gk+

3 ), Ã+
2 (gk−

2 ), . . . , 0, Ã+
I−1(g

k−
I−1))
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or written in matrix form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Ã−
2

0 0 0 0
0 0 0 0 Ã−

3

Ã+
2 0 0 0

. . .
0 0 0 0

Ã+
3 0 0 Ã−

I−1

. . . 0 0 0
0 0 0 0

Ã+
I−1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now proving that the non-overlapping Schwarz waveform relaxation algorithm (2.2)
converges in I iterations is equivalent to showing that the Schwarz iteration map
satisfies AI−1 = 0 since then after I − 1 iterations all the interface values are zero
and thus after one more iteration the solution will be converged to zero everywhere.
We prove this by showing that AI−1 applied to an arbitrary vector valued function
e(t) = (e1(t), e2(t), . . . , e2I−2(t)) equals zero. The first application of A will delete the
second and second last entry in e. The second application therefore will delete the
fourth and fourth last entry in e because of the structure of A. This process continues
until the I − 1 application of A deleted the 2I − 2 and the 2I − 2 last entry, which
is the first entry in e. Thus now AI−1e is the zero vector and in the next step the
solution is zero everywhere.

Note that the proof only uses the fundamental property of the linear operators Sj

leading to the transparent transmission conditions, and no special properties of the
wave equation. The result is therefore valid for other partial differential equations as
well where the appropriate operators Sj can be defined.

3. Optimal Convergence with Local Transmission Conditions for Piece-
wise Constant Wave Speed. We now consider the wave equation (2.1) with piece-
wise constant wave speed to investigate the optimal transmission operators further.
This will lead to the interesting result of convergence in less iterations than the num-
ber of subdomains on certain bounded time intervals. We consider first the wave
equation (2.1) with two physical domains

O1 = R
− with c(x) = c1 and O2 = R

+ with c(x) = c2.(3.1)

In this case we can compute the linear operators Sj explicitly and from them we gain
more insight in the optimal Schwarz waveform relaxation algorithm. In Subsection
3.3 we generalize the results to an arbitrary number of discontinuities.

3.1. Identification of the Optimal Non-Local Transmission Conditions.
We define the ratio r by

r :=
c2 − c1

c2 + c1
.(3.2)

Lemma 3.1. In the case of piecewise constant wave speed (3.1), the linear oper-
ators Sj in (2.4), (2.6) are given by

(S1(x0)) g(t) =

⎧⎨⎩
1
c1

g(t) x0 ∈ O1

1
c2

(
g(t) + 2

∑� c2t

2x0
�

k=1 rkg(t − 2kx0/c2)
)

x0 ∈ O2
(3.3)
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and

(S2(x0)) g(t) =

⎧⎨⎩ 1
c1

(
g(t) + 2

∑� c1t
2x0

�
k=1 rkg(t + 2kx0/c1)

)
x0 ∈ O1

1
c2

g(t) x0 ∈ O2

.(3.4)

Proof. This result can be obtained by explicitly computing the solutions, for
details, see [16].

In this special case one can see why the operators Sj are non local in general: they
have to include reflections stemming from the discontinuity in the wave speed between
the two different physical domains. Using Theorem 2.1 the non overlapping Schwarz
waveform relaxation algorithm for the wave equation with a discontinuity in the wave
speed converges in I steps where I denotes the number of subdomains. However an
implementation of these non-local transmission conditions is rather complicated and
we do not recommend this, especially if several discontinuities occur in the physical
domain. But the result indicates a better approach already, and we develop it in the
next subsection.

3.2. Local Transmission Conditions Using the Time Evolution. The op-
timal transmission operators (2.8) depend on the time interval under consideration,
since the linear operators Sj in (3.3), (3.4) contain a sum with a number of terms
proportional to the length of the time interval. In particular for a given time interval
[0, T ] we have at most

max
(
	c1T

2x0

, 	c2T

2x0


)

terms in the sum to obtain optimal convergence. We thus obtain the important
corollary of Theorem 2.1:

Corollary 3.2. In the case of piecewise constant wave speed (3.1), if the discon-
tinuity at x = 0 lies within the subdomain Ωl, al < 0 < al+1, then the non overlapping
Schwarz waveform relaxation algorithm (2.2) with local transmission operators

B−
i :=

1
c(ai)

∂t − ∂x, B+
i :=

1
c(ai+1)

∂t + ∂x(3.5)

converges in I iterations where I denotes the number of subdomains, if the computa-
tion is restricted to the time interval t ∈ [0, T ] with

T ≤ T1 = 2 min
(

|al|
c(al)

,
|al+1|
c(al+1)

)
.(3.6)

Proof. If we choose T such that

max
1<j≤I

	c(aj)T
2|aj|


 ≡ 0(3.7)

then there are no terms left in the sum of the operators Sj in (3.3), (3.4) and thus the
optimal transmission operators become the local operators (3.5). But the maximum
in condition (3.7) can only be attained for either j = l or j = l + 1 because the
discontinuity lies in subdomain Ωl and thus (3.7) is equivalent to the condition (3.6).

8



This corollary suggests to avoid the costly non-local transmission conditions by
cutting the given time domain [0, T ] into time windows of length T1 given in (3.6).
Then the algorithm can employ local transmission conditions and will still converge
in at most I iterations.

But condition (3.6) can impose very small time windows if al or al+1 are very
close to the discontinuity at x = 0. At first glance this suggests that it is best to place
the subdomains so that the discontinuities lie inside the subdomains, away from its
boundaries. The optimal location for al < 0 < al+1 would be such that

|al|
c(al)

=
|al+1|
c(al+1)

(3.8)

to maximize the time interval (3.6) one can use with the algorithm and local trans-
mission conditions. There is however a better choice: taking the limit of the operators
Sj in (3.3,3.4) as x0 goes to zero we find

(S1(0))g(t) =
1
c1

g(t), (S2(0))g(t) =
1
c2

g(t)(3.9)

and thus the operators Sj become local operators in that case. This suggests that
aligning physical domains with computational ones is an advantage for the transmis-
sion conditions. Defining

c(x−) := c(x − 0), c(x+) := c(x + 0)

to include the correct limits when the discontinuity lies exactly at an interface between
two subdomains, we obtain

Corollary 3.3. In the case of piecewise constant wave speed (3.1), if the discon-
tinuity lies on the interface between the two subdomains Ωl and Ωl+1, al+1 = 0, then
the non overlapping Schwarz waveform relaxation algorithm (2.2) with local transmis-
sion operators

B−
i :=

1
c(a−

i )
∂t − ∂x, B+

i :=
1

c(a+
i+1)

∂t + ∂x,(3.10)

converges in I iterations where I denotes the number of subdomains, if the computa-
tion is restricted to the time interval t ∈ [0, T ] with

T ≤ T2 = 2 min
(

|al|
c(al)

,
|al+2|
c(al+2)

)
.(3.11)

Proof. If we place the discontinuity directly between the two subdomains Ωl and
Ωl+1, then the optimal transmission conditions between Ωl and Ωl+1 are local as seen
in (3.9). Therefore the largest time interval we can choose for local transmission con-
ditions depends now only on the total width of Ωl and Ωl+1 which leads to condition
(3.11).

Hence with the discontinuity at x = 0 aligned with a subdomain boundary, say
at al+1 = 0, one would choose the subdomain boundaries al and al+2 such that

|al|
c(al)

=
|al+2|
c(al+2)

(3.12)

to maximize the possible time interval in (3.11) where the algorithm can be used with
local transmission conditions. This choice leads to a longer time interval than the
choice with the discontinuity within one subdomain (3.8) since al < al+1 < al+2.
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3.3. Convergence in 2 Iterations Independent of the Number of Sub-
domains. In more realistic situations there will be more than one discontinuity in
the computational domain which seems to complicate the situation, because for the
global optimal transmission conditions of the type (3.3,3.4) one would need to track
more and more reflections from the various discontinuities in the wave speed. But due
to the finite speed of propagation in the wave equation, the previous analysis can be
applied locally using time windows again. In addition with time windows, not every
subdomain solution depends on the solution on all the other subdomains if the time
interval is short enough. Neighboring information suffices in that case and it is thus
possible to reduce the number of iterations below I for I subdomains.

Suppose we have J physical domains Oj = (dj , dj+1) with constant wave speed
per physical domain, c(x) = cj for dj < x < dj+1, j = 1, . . . , J , d1 = −∞ and
dJ+1 = ∞. We decompose the physical domain R into I computational subdomains
Ωi = (ai, ai+1) as before. We denote by ni the number of discontinuities within each
subdomain Ωi and we exclude for the moment the case where a discontinuity is aligned
precisely between two computational subdomains. We also denote by mi the index of
the first physical domain Omi which intersects the computational subdomain Ωi. We
define the transmission time ti of a signal across subdomain Ωi by

ti :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ai+1 − ai

cmi

if ni = 0

dmi+1 − ai

cmi

+
ni−1∑
k=1

dmi+k+1 − dmi+k

cmi+k
+

ai+1 − dmi+ni

cmi+ni

if ni > 0.
(3.13)

We also define the reflection time at each interface ai of the computational subdomains
by

τi := 2 min
j

|ai − dj |
c(ai)

.(3.14)

These two time constants allow us to formulate conditions for convergence in less than
I steps.

Theorem 3.4. The non overlapping Schwarz waveform relaxation algorithm
(2.2) with local transmission conditions (3.10) and any discontinuities strictly in the
interior of the computational subdomains converges in 2 iterations independently of
the number of subdomains if the time interval [0, T ] is chosen such that

T ≤ T3 = min
(
min

i
ti, min

i
τi

)
(3.15)

where ti is defined in (3.13) and τi is defined in (3.14).
Proof. Consider one of the computational domains Ωi. The solution on that

domain depends only on the solution of the neighboring domains Ωi+1 and Ωi−1

determined by their initial conditions, because the time interval [0, T ] given by (3.15)
is too short for any signal to reach domain Ωi across the neighboring subdomains
due to condition (3.15). So after one iteration, the exact boundary conditions for
domain Ωi are available, if the transmission conditions employed at the boundary of
Ωi are exact absorbing boundary conditions. But this is ensured by condition (3.15)
as well because T is smaller than any reflection time τi so that the local transmission
conditions (3.10) are indeed exactly absorbing. Thus the second iteration produces
the exact solution on subdomain Ωi. Since this argument holds for all computational
subdomains, the result is established.
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Fig. 3.1. Towards the optimal algorithm: unknowns to recompute for the time window T4 and
Tε respectively.

As in Corollary 3.2 this result can require very small time intervals, since the
reflection times τi can be very small when a discontinuity approaches a subdomain
boundary. This can however be avoided as before by aligning physical discontinuities
with the boundaries of the subdomains, a natural approach for domain decomposition.
Doing this for all discontinuities, the minimal transmission time mini ti becomes nec-
essarily smaller than the minimal reflection time mini τi because the reflection time
requires the signal to go twice across a subdomain (there are no discontinuities any
more within subdomains). In addition the transmission times formula (3.13) simplifies
greatly, it becomes

ti =
ai+1 − ai

c(a+
i )

.

We therefore obtain the following
Theorem 3.5. The non overlapping Schwarz waveform relaxation algorithm

(2.2) with local transmission conditions (3.10) and any discontinuities aligned with
the computational subdomain boundaries converges in 2 iterations independently of
the number of subdomains if the time interval [0, T ] is chosen such that

T ≤ T4 = min
i

ai+1 − ai

c(a+
i )

.(3.16)

Proof. The argument is the same as in the previous theorem.
Further computation can be saved by noting that only values above the charac-

teristics in each subdomain need to be recomputed during the second iteration, as
shown in Figure 3.1. If the time window is chosen to be [0, T4] from Theorem 3.5 then
convergence will be achieved in two iterations and in the second iteration only the
variables in the region denoted by Recalc(T4) need to be recalculated. If we choose
however an even smaller time window Tε, then much less variables need to be recalcu-
lated in the second iteration, namely the ones denoted by Recalc(Tε). Thus with our
algorithm the solution of the wave equation can be optimally parallelized: the parallel
algorithm run on a sequential machine will run at a cost 1+ε of the optimal sequential
code, provided the cost is linear in the number of unknowns. The optimal choice of
Tε depends on the latency time of the network linking the computational nodes. If
the latency time is small, then a short Tε will lead to the best performance, since
almost no values need to be recomputed. If the latency time is important however, it
is better to communicate larger amounts of data each time a communication needs to
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be done. This can be achieved by choosing a larger Tε and will lead to faster solution
times even if more values need to be recomputed in the second iteration.

4. Convergence with Local Transmission Conditions for Continuous
Wave Speed. Discontinuous wave speeds allowed us to use local transmission condi-
tions in the Schwarz waveform relaxation algorithm and still get optimal performance.
If the wave speed is varying continuously, such a result can not hold any more, because
reflections become relevant immediately. Nevertheless the algorithm is well defined
with local transmission conditions and we prove that it converges using energy es-
timates. Energy estimates are useful tools for proving well-posedness of boundary
or initial boundary value problems, in particular for variable coefficients. They have
been used to analyze the convergence of Schwarz algorithms in the stationary case
before, see for example [28], [11] or [32]. We extend these techniques here to time
dependent problems.

Let u be a solution of the wave equation in the interval [a, b], for t ≥ 0,

1
c2(x)

∂2u

∂t2
− ∂2u

∂x2
= 0(4.1)

where c(x) is now any continuous function. We define the kinetic and potential
energies by

EK(u)(t) :=
1
2

∫ b

a

1
c2(x)

(
∂u

∂t
(x, t)

)2

dx, EP (u)(t) :=
1
2

∫ b

a

(
∂u

∂x
(x, t)

)2

dx(4.2)

and the total energy by the sum E := EK + EP . Multiplying (4.1) by ∂u
∂t and

integrating on the interval [a, b] yields
Theorem 4.1 (Continuous Energy Identity). The energy identity

d

dt
[E(u)(t)] +

∂u

∂t
(a, t)

∂u

∂x
(a, t) − ∂u

∂t
(b, t)

∂u

∂x
(b, t) = 0(4.3)

holds for any positive time t.

4.1. Well-Posedness of the Continuous Subdomain Problems. Introduc-
ing the general progressive and regressive transport operators

T +
α =

1
α

∂

∂t
+

∂

∂x
, T −

α =
1
α

∂

∂t
− ∂

∂x
(4.4)

where α is a positive real number, we can rewrite (4.3) for any positive α and β as

d

dt
[E(u)(t)]+

α

4
[
T +

α u(a, t)
]2+ β

4

[
T −

β u(b, t)
]2

=
α

4
[
T −

α u(a, t)
]2+ β

4

[
T +

β u(b, t)
]2

.(4.5)

Suppose that the boundary conditions (4.4) are given by

T −
α u(a, t) = g−(t), T +

β u(b, t) = g+(t).(4.6)

Then we get a bound on the energy on any finite time interval.
Theorem 4.2. For the wave equation (4.1) on [a, b] with boundary conditions

(4.6), the energy E(u)(t) on [a, b] stays bounded for all finite time t,

E(u)(t) ≤ E(u)(0) +
∫ t

0

[
α

4
|g−(τ)|2 +

β

4
|g+(τ)|2]dτ.(4.7)

By standard techniques, see for example [26], the well-posedness is then estab-
lished.
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4.2. Convergence with Local Transmission Conditions. Consider now the
domain decomposition algorithm (2.2) for continuously variable wave speed c(x). By
linearity it suffices to consider the homogeneous wave equation with homogeneous
initial conditions and prove convergence to zero. The local transmission operators
(3.10) can be expressed in terms of the transport operators (4.4),

B−
i = T −

c(ai)
, B+

i = T +
c(ai+1)

(4.8)

where i = 1, . . . , I.
Theorem 4.3. Suppose the velocity is continuous on the interfaces ai. Then on

any time interval [0, T ], the non-overlapping Schwarz waveform relaxation algorithm
with local transmission conditions

T −
c(ai)

(uk+1
i )(ai, ·) = T −

c(ai)
(uk

i−1)(ai, ·), on (0, T )
T +

c(ai+1)
(uk+1

i )(ai+1, ·) = T +
c(ai+1)

(uk
i+1)(ai+1, ·) on (0, T )

(4.9)

converges in the energy norm,

I∑
i=1

E(uk
i )(T ) −→ 0 as k −→ ∞.

Proof. We can write (4.5) on the interval [ai, ai+1], with α = c(ai) and β =
c(ai+1), which gives

d
dt [E(uk+1

i )(·)] + c(ai)
4

[
T +

c(ai)
(uk+1

i )(ai, ·)
]2

+ c(ai+1)
4

[
T −

c(ai+1)
(uk+1

i )(ai+1, ·)
]2

= c(ai)
4

[
T −

c(ai)
(uk+1

i )(ai, ·)
]2

+ c(ai+1)
4

[
T +

c(ai+1)
(uk+1

i )(ai+1, ·)
]2

(4.10)
for 1 ≤ i ≤ I, with the convention

T +
c(a1)(u

k+1
1 )(a1, ·) = 0, T −

c(aI+1)(u
k+1
I )(aI+1, ·) = 0,(4.11)

and by using the boundary conditions, we obtain

d
dt [E(uk+1

i )(·)] + c(ai)
4

[
T +

c(ai)
(uk+1

i )(ai, ·)
]2

+ c(ai+1)
4

[
T −

c(ai+1)
(uk+1

i )(ai+1, ·)
]2

= c(ai)
4

[
T −

c(ai)
(uk

i−1)(ai, ·)
]2

+ c(ai+1)
4

[
T +

c(ai+1)(u
k
i+1)(ai+1, ·)

]2
.

(4.12)
Summing these equations for 1 ≤ i ≤ I and shifting the indices of the two sums on
the right-hand side, we find

I∑
i=1

d

dt
[E(uk+1

i )(·)] +
I∑

i=1

c(ai)
4

[
T +

c(ai)
(uk+1

i )(ai, ·)
]2

+
I∑

i=1

c(ai+1)
4

[
T −

c(ai+1)
(uk+1

i )(ai+1, ·)
]2

=
I−1∑
i=0

c(ai+1)
4

[
T −

c(ai+1)
(uk

i )(ai+1, ·)
]2

+
I+1∑
i=2

c(ai)
4

[
T +

c(ai)
(uk

i )(ai, ·)
]2

.

(4.13)
13



Now note that by (2.3) we have uk
I+1 = uk

0 = 0 and thus T +
c(aI+1)

(uk
I+1)(aI+1, ·) =

T −
c(a1)

(uk
0)(a1, ·) = 0. Together with (4.11), we obtain the energy equality

I∑
i=1

d

dt
[E(uk+1

i )(·)] +
I∑

i=2

c(ai)
4

[
T +

c(ai)
(uk+1

i )(ai,·)
]2

+
I−1∑
i=1

c(ai+1)
4

[
T −

c(ai+1)
(uk+1

i )(ai+1,·)
]2

=
I∑

i=2

c(ai)
4

[
T +

c(ai)
(uk

i )(ai, ·)
]2

+
I−1∑
i=1

c(ai+1)
4

[
T −

c(ai+1)
(uk

i )(ai+1, ·)
]2

.

(4.14)
Now we have the same terms on the boundary, on the left for iteration step k +1 and
on the right for iteration step k. Defining

Êk(t) :=
I∑

i=1

E(uk+1
i )(t)

Êk
B(t) :=

I∑
i=2

c(ai)
4

[
T +

c(ai)
(uk

i , ·)(ai)
]2

+
I−1∑
i=1

c(ai+1)
4

[
T −

c(ai+1)
(uk

i )(ai+1, ·)
]2

we find the energy equality

d

dt
Êk+1 + Êk+1

B = Êk
B on (0, T )

and thus summing up over all iteration steps k = 0 . . .K and denoting the sum of the
energies Êk at each step by

EK :=
K∑

k=0

Êk

we find by cancellation of the Êk
B terms

d

dt
EK + ÊK

B = Ê0
B on (0, T ).

Since ÊK
B ≥ 0 we obtain

d

dt
EK ≤ Ê0

B on (0, T ).

Now integrating over (0, T ) and noting that EK(0) = 0 we find

EK(T ) ≤
∫ T

0

Ê0
B(t)dt

and thus the total energy EK is uniformly bounded independently of the number of
iterations K. Hence the energy at each iteration must go to zero and the algorithm
converges.

5. A Finite Volume Discretization. We discretize the wave equation (2.1) on
each subdomain Ωi×(0, T ), i = 1, . . . , I separately using a finite volume discretization
on rectangular grids. For simplicity we set f = 0. We allow non-matching grids on
different subdomains, with Ji + 2 points in space numbered from 0 up to Ji + 1 and
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x t x + Δxx − Δx

t + Δt

t − Δt

D

∂D

x t x + Δx

t + Δt

t − Δt

D

∂D

Fig. 5.1. Control volume of an interior grid point and a boundary grid point.

Δxi = (ai+1 − ai)/(Ji +1) and Ni +1 grid points in time with Δti = T/Ni numbered
from 0 up to Ni. Note that we chose for the exposition here uniform spacing in time
per subdomain, but the techniques developed are not limited to this special case. We
denote the numerical approximation to uk

i (ai + jΔxi, nΔti) on Ωi at iteration step k
by Uk

i (j, n). To simplify the notation we omit the index i on quantities depending on
the subdomain and the index k referring to the iteration as long as we are discussing
one subdomain only.

5.1. Discretization of the Subdomain Problem.

5.1.1. Interior Points. Denoting by D the volume around a grid point (x =
ai + jΔxi, t = nΔti) in the interior of subdomain Ωi × (0, T ), as shown in Figure 5.1
on the left, we obtain the finite volume scheme by integrating the equation over the
volume D and applying the divergence theorem,

0 =
∫ x+Δx/2

x−Δx/2

∫ t+Δt/2

t−Δt/2

[
1

c2(ξ)
∂2u

∂t2
(ξ, τ) − ∂2u

∂x2
(ξ, τ)

]
dτdξ

=
∫ x+Δx/2

x−Δx/2

1
c2(ξ)

∂u

∂t
(ξ, t + Δt/2)dξ −

∫ x+Δx/2

x−Δx/2

1
c2(ξ)

∂u

∂t
(ξ, t − Δt/2)dξ

−
∫ t+Δt/2

t−Δt/2

∂u

∂x
(x + Δx/2, τ)dτ +

∫ t+Δt/2

t−Δt/2

∂u

∂x
(x − Δx/2, τ)dτ.

(5.1)

Now we approximate the remaining derivatives by finite differences on the grid,

D+
t (U)(j, n) := U(j,n+1)−U(j,n)

Δt ≈ ∂u
∂t (ξ, t + Δt/2),

D−
t (U)(j, n) := U(j,n)−U(j,n−1)

Δt ≈ ∂u
∂t (ξ, t − Δt/2),

x − Δx
2 ≤ ξ ≤ x + Δx

2 ,

D+
x (U)(j, n) := U(j+1,n)−U(j,n)

Δx ≈ ∂u
∂x (x + Δx/2, τ),

D−
x (U)(j, n) := U(j,n)−U(j−1,n)

Δx ≈ ∂u
∂x (x − Δx/2, τ),

t − Δt
2 ≤ τ ≤ t + Δt

2 .

(5.2)

We introduce a discrete speed function Ci(j) which approximates c(ai+jΔxi) through
the integral relation

Δxi

C2
i (j)

:=
∫ x+Δxi/2

x−Δxi/2

1
c2(ξ)

dξ(5.3)

and we will omit the subdomain index i as long as we are on one subdomain. We
thus obtain from (5.1) the discrete scheme

0 =
Δx

C2(j)
(D+

t − D−
t )(U)(j, n) − Δt(D+

x − D−
x )(U)(j, n).
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which yields on using the identities ΔtD+
t D−

t = D+
t −D−

t and ΔxD+
x D−

x = D+
x −D−

x

the well known finite difference scheme(
1

C2(j)
D+

t D−
t − D+

x D−
x

)
(U)(j, n) = 0, 1 ≤ j ≤ J,(5.4)

for points in the interior of subdomains.

5.1.2. Boundary Points. So far the finite volume scheme led to a similar dis-
cretization as a finite difference scheme. On the boundary however the finite volume
scheme leads automatically to a consistent discretization of the transmission condi-
tions, whereas a finite difference discretization would require a special treatment. In
addition the finite volume scheme leads naturally to the correct transmission operators
when using non-matching grids in different subdomains.

Suppose the point (x = ai, t = nΔti) is on the left boundary of subdomain
Ωi × (0, T ), as shown in Figure 5.1 on the right. Then we have only half a volume D
to integrate over. Proceeding as before, we obtain

0 =
∫ x+Δx/2

x

1
c2(ξ)

∂u

∂t
(ξ, t + Δt/2)dξ −

∫ x+Δx/2

x

1
c2(ξ)

∂u

∂t
(ξ, t − Δt/2)dξ

−
∫ t+Δt/2

t−Δt/2

∂u

∂x
(x + Δx/2, τ)dτ +

∫ t+Δt/2

t−Δt/2

∂u

∂x
(x, τ)dτ.

Again we can approximate ∂u
∂t and ∂u

∂x by the finite differences given in (5.2), except
on the left side of the control volume where we can not approximate ∂u

∂x (x, τ) by a
finite difference, since we are on the boundary and the point at x−Δx is not available.
We approximate only on the three other sides by finite differences and obtain

0 =
(

Δx

2C2(0)
(D+

t − D−
t ) − ΔtD+

x

)
(U)(0, n) +

∫ t+Δt/2

t−Δt/2

∂u

∂x
(x, τ)dτ.(5.5)

Note that this equation defines the spatial derivative along the boundary, once all
the grid values are known. But to compute the grid values, we need to use the
transmission condition imposed on the left boundary which also defines the spatial
derivative at the boundary, since it is of the form

B−(u)(x, t) =
(

1
c(x−)

∂u

∂t
− ∂u

∂x

)
(x, t) = g−(t)(5.6)

where g−(t) is a given boundary condition. Solving for ∂u
∂x and integrating we find∫ t+Δt/2

t−Δt/2

∂u

∂x
(x, τ)dτ =

∫ t+Δt/2

t−Δt/2

1
c(x−)

∂u

∂t
(x, τ)dτ −

∫ t+Δt/2

t−Δt/2

g−(τ)dτ(5.7)

which gives us the missing expression for the spatial derivative in the discrete scheme
(5.5). The newly introduced time derivative on the right can be approximated again
by finite differences as in (5.2), on the upper part of the integral by D+

t and on the
lower part by D−

t . Summing those contributions we obtain a centered finite difference,

D0
t (U)(j, n) :=

U(j, n + 1) − U(j, n − 1)
2Δt

(5.8)
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and we get on denoting by C− := c(x−) for the integral of ∂u
∂x∫ t+Δt/2

t−Δt/2

∂u

∂x
(x, τ)dτ =

Δt

C−D0
t (U)(0, n) −

∫ t+Δt/2

t−Δt/2

g−(τ)dτ(5.9)

which we insert into our scheme (5.5). Denoting the integral over the boundary
condition g−(t) by

ΔtG−(n) :=
∫ t+Δt/2

t−Δt/2

g−(τ)dτ, t = nΔt,

we obtain the discretization

0 =
(

Δx

2C2(0)
D+

t D−
t − D+

x +
1

C− D0
t

)
(U)(0, n) − G−(n).(5.10)

This result also defines the discrete transmission operator B−. Comparing with (5.6)
we find (where we add now the subdomain index i for completeness)

B−
i (Ui)(0, n) :=

(
Δxi

2C2
i (0)

D+
t D−

t − D+
x +

1
Ci−1(Ji−1 + 1)

D0
t

)
(Ui)(0, n)(5.11)

where we used the fact that C− = Ci−1(Ji−1 + 1). Similarly for a point (x, t) on the
right boundary of a subdomain with imposed transmission condition

B+(u)(x, t) =
(

1
c(x+)

∂u

∂t
+

∂u

∂x

)
(x, t) = g+(t)(5.12)

one obtains on defining

ΔtG+(n) :=
∫ t+Δt/2

t−Δt/2

g+(τ)dτ, t = nΔt

and C+ := c(x+) the discrete scheme

0 =
(

Δx

2C2(J + 1)
D+

t D−
t + D−

x +
1

C+
D0

t

)
(U)(J + 1, n) − G+(n)(5.13)

and thus the definition of the discrete transmission operator for subdomain i

B+
i (Ui)(Ji+1, n) :=

(
Δxi

2C2
i (Ji+1)

D+
t D−

t +D−
x +

1
Ci+1(0)

D0
t

)
(Ui)(Ji+1, n)(5.14)

where we used that C+ = Ci+1(0).

5.1.3. Points on the Initial Line. Suppose (x = ai + jΔxi, 0) is a grid point
on the interior of the initial line of subdomain Ωi × (0, T ). We have again half a
volume D to integrate over, as shown in Figure 5.2 on the left. Integrating as before
we obtain

0 =
∫ x+Δx/2

x−Δx/2

1
c2(ξ)

∂u

∂t
(ξ, Δt/2)dξ −

∫ x+Δx/2

x−Δx/2

1
c2(ξ)

∂u

∂t
(ξ, 0)dξ

−
∫ Δt/2

0

∂u

∂x
(x + Δx/2, τ)dτ +

∫ Δt/2

0

∂u

∂x
(x − Δx/2, τ)dτ.
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x x + Δxx − Δx

Δt

D

∂D

x x + Δx

Δt

D

∂D

Fig. 5.2. Control volume of a grid point on the initial line and in a corner.

Now the remaining derivatives can be approximated by finite differences (5.2), except
∂u
∂t (ξ, 0). But this derivative is given explicitly by the initial condition, and approxi-
mating it on one grid cell by

Δx
Ut(j)
C2(j)

:=
∫ x+Δx/2

x−Δx/2

1
c2(ξ)

∂u

∂t
(ξ, 0)dξ,

we obtain the scheme(
1

C2(j)
D+

t − Δt

2
D+

x D−
x

)
(U)(j, 0) − 1

C2(j)
Ut(j) = 0.(5.15)

5.1.4. Corner Points. For the corner points on the initial line, there is only a
quarter of the original finite volume left to integrate over. For example on the left
corner we obtain according to Figure 5.2

0 =
∫ Δx/2

0

1
c2(ξ)

∂u

∂t
(ξ, Δt/2)dξ −

∫ Δx/2

0

1
c2(ξ)

∂u

∂t
(ξ, 0)dξ

−
∫ Δt/2

0

∂u

∂x
(Δx/2, τ)dτ +

∫ Δt/2

0

∂u

∂x
(0, τ)dτ.

Here two of the remaining derivatives can be approximated by the finite differences
(5.2), whereas ∂u

∂t (ξ, 0) is given by the initial condition and ∂u
∂x (0, τ) has to be obtained

from the transmission condition by proceeding as before along the boundary. We
obtain the discrete scheme

0 =
(

Δx

2C2(0)
D+

t − Δt

2
D+

x +
Δt

2C−D+
t

)
(U)(0, 0) − Δx

2C2(0)
Ut(0) − Δt

2
G−(0)

and thus the discrete transmission operator B− on the initial line on the left is ob-
tained by dividing through by Δt/2,

B−
i (Ui)(0, 0)=

(
Δxi

ΔtC2
i (0)

D+
t −D+

x +
1

Ci−1(Ji−1 + 1)
D+

t

)
(Ui)(0, 0) − Δxi

ΔtC2
i (0)

Ut,i(0).

(5.16)
Similarly for the corner point on the right, we get

0=
(

Δx

2C2(J+1)
D+

t +
Δt

2
D−

x +
Δt

2C+
D+

t

)
(U)(J+1, 0)− Δx

2C2(J+1)
Ut(J+1)−Δt

2
G+(0)

and thus the discrete transmission operator B+ on the initial line on the right is

B+
i (Ui)(Ji + 1, 0) =

(
Δxi

ΔtC2
i (Ji + 1)

D+
t + D−

x +
1

Ci+1(0)
D+

t

)
(Ui)(Ji + 1, 0)

− Δxi

ΔtC2
i (Ji + 1)

Ut,i(Ji + 1).
(5.17)
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For given discrete transmission conditions G−(n) and G+(n), n = 0 . . .N , the above
discrete scheme describes a numerical method to solve one subproblem on one subdo-
main.

5.2. Extraction of the Transmission Conditions from Neighboring Sub-
domains. Now the boundary values g−i (t) and g+

i (t) imposed through the transmis-
sion conditions on subdomain Ωi have to come from the neighboring subdomains
Ωi−1 and Ωi+1. We thus need to calculate from our discrete scheme above on the
neighboring subdomains the integrals∫ ti+Δti/2

ti−Δti/2

g−i (τ)dτ =
∫ ti+Δti/2

ti−Δti/2

[
1

c(x−)
∂ui−1

∂t
(x, τ) − ∂ui−1

∂x
(x, τ)

]
dτ(5.18)

where (x, t) is on the right of subdomain Ωi−1 and similarly

∫ ti+Δti/2

ti−Δti/2

g+
i (τ)dτ =

∫ ti+Δti/2

ti−Δt/2

[
1

c(x+)
∂ui+1

∂t
(x, τ) +

∂ui+1

∂x
(x, τ)

]
dτ(5.19)

where (x, t) is on the left of the subdomain Ωi+1. Lets take for example the subdo-
main to the right, Ωi+1. To perform the integration (5.19) we note that the numerical
approximation to ∂ui+1

∂t in the finite volume scheme is piecewise constant and accord-
ing to (5.2) given by D+

t (Ui+1)(0, n) for t ∈ [nΔti+1, (n + 1)Δti+1). Similarly the
numerical approximation to ∂ui+1

∂x is piecewise constant in the finite volume scheme.
According to (5.5) it is given for t ∈ [(n − 1

2 )Δti+1, (n + 1
2 )Δti+1) by(

− Δxi+1

2Δti+1C2
i+1(0)

(D+
t − D−

t ) + D+
x

)
(Ui+1)(0, n).

Inserting these two numerical approximations into (5.19) we obtain on one grid cell
of Ωi+1∫ (n+1/2)Δti+1

(n−1/2)Δti+1

g+
i (τ)dτ =

(
−Δxi+1Δti+1

2C2
i+1(0)

D+
t D−

t +Δti+1D
+
x +

Δti+1

Ci+1(0)
D0

t

)
(Ui+1)(0, n)

and thus the definition of the discrete transmission operator B̃+
i is

B̃+
i (Ui+1)(0, n) :=

(
− Δxi+1

2C2
i+1(0)

D+
t D−

t + D+
x +

1
Ci+1(0)

D0
t

)
(Ui+1)(0, n) = G̃+

i (n).

(5.20)
Similarly we find on the left subdomain Ωi−1 the discrete transmission operator B̃−

i

to be

B̃−
i (Ui−1)(Ji−1+1, n) :=

(
− Δxi−1

2C2
i−1(Ji−1+1)

D+
t D−

t −D−
x+

1
Ci−1(Ji−1+1)

D0
t

)
(Ui−1)(Ji−1+1, n)

= G̃−
i (n).

(5.21)
Note that in the discrete case B±

i and B̃±
i are different operators, whereas in the

continuous case we found the identical operator B±
i . On the initial line we find
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accordingly

B̃+
i (Ui+1)(0, 0) :=

(
− Δxi+1

Δti+1C2
i+1(0)

D+
t + D+

x + 1
Ci+1(0)

D+
t

)
(Ui+1)(0, 0)

+ Δxi+1

Δti+1C2
i+1(0)

Ut(0),

B̃−
i (Ui−1)(Ji−1+1, 0) :=

(
− Δxi−1

Δti−1C2
i−1(Ji−1+1)

D+
t −D−

x + 1
Ci−1(Ji−1+1)D

+
t

)
(Ui−1)(Ji−1+1, 0)

+ Δxi−1

Δti−1C2
i−1(Ji−1+1)

Ut(Ji−1 + 1)

(5.22)
and we have

B̃+
i (Ui+1)(0, 0) = G̃+

i (0), B̃−
i (Ui−1)(Ji−1 + 1, 0) = G̃−

i (0).

5.3. Projections for Different Grids. If different grids are used on different
subdomains, the extracted transmission condition G̃+

i is a vector in R
Ni+1+1 and G̃−

i

is a vector in R
Ni−1+1 which both represent step functions on their corresponding

grids and what we need to impose on the boundary on Ωi are vectors G±
i in R

Ni+1.
We thus need to introduce a projection operation to transfer the boundary values
onto the grid of Ωi. Suppose we are given a vector v = (v0, . . . , vN ) ∈ R

N+1 which
represents the values of a step function on the corresponding intervals In = (tn, tn+1)
where t0 = 0, tN+1 = T and ∪N

n=0In = [0, T ] and the intervals do not overlap. Then
we define the scalar product on R

N+1 by

(v, w)N+1 :=
N∑

n=0

|In|vnwn

where |In| denotes the length of the interval In. We thus obtain the induced norm on
R

N+1

||v||2N+1 := (v, v)N+1.

We first define the operator F : R
N+1 −→ L2(0, T ) which constructs a piecewise

constant function on the intervals In from the vector v,

F : v �−→ f(t) := vn, t ∈ In

Then we define the operator E : L2(0, T ) −→ R
N+1 which projects a given function

f(t) onto a vector v ∈ R
N+1 corresponding to a piecewise constant function in the

intervals In

E : f(t) �−→ vn :=
1

|In|

∫
In

f(t)dt.

Denoting by Fi and Ei the corresponding operators using the grid of Ωi, we define
the operator Pi,j : R

Ni+1 −→ R
Nj+1 by

Pi,j := Ej ◦ Fi.(5.23)

A direct calculation shows that for any u in R
Ni+1 we have

||Pi,ju||Nj+1 ≤ ||u||Ni+1(5.24)

which is a natural consequence of the L2 projection on piecewise constant functions.
To perform the projection Pi,j between arbitrary grids is a nontrivial task, since one
needs to find the intersections of corresponding arbitrary grid cells. For one dimension
however, there is a short, concise algorithm, see Appendix A.
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5.4. The Discrete Schwarz Waveform Relaxation Algorithm. We obtain
the discrete Schwarz waveform relaxation algorithm on subdomains Ωi, i = 1 . . . I
with non-matching grids(

1
C2

i (j)
D+

t D−
t − D+

x D−
x

)
(Uk+1

i )(j, n) = 0, 1 ≤ j ≤ Ji, 1 ≤ n ≤ Ni,(
1

C2
i (j)

D+
t − Δti

2 D+
x D−

x

)
(Uk+1

i )(j, 0) − 1
C2

i (j)
Ut,i(j) = 0, 1 ≤ j ≤ Ji,

B−
i (Uk+1

i )(0, ·) = Pi−1,iB̃
−
i (Uk

i−1)(Ji−1 + 1, ·),
B+

i (Uk+1
i )(Ji + 1, ·) = Pi+1,iB̃

+
i (Uk

i+1)(0, ·),
(5.25)
where the operators Pi±1,i are defined in (5.23), the discrete transmission operators
B±

i for n ≥ 1 are given in (5.11), (5.14) and the extraction operators B̃±
i are for

n ≥ 1 given in (5.20), (5.21). For n = 0 the corresponding operators are given in
(5.16), (5.17) and (5.22). For conforming grids with these transmission conditions,
the solution obtained at convergence satisfies the finite volume discretization scheme
without decomposition, as one can see by taking the difference of B±

i and B̃±
i . For

example for constant wave speed across the interface we obtain

B+
i − B̃+

i =
Δx

C2
D+

t D−
t + D−

x − D+
x = Δx

(
1

C2
D+

t D−
t − D−

x D+
x

)
which is the discretized wave operator (5.4). For non-conforming grids (5.25) defines
the solution when converged. For a different definition of a solution on non-matching
grids see [10].

6. Normal Mode Analysis and Convergence Proof for Piecewise Con-
stant Wave Speed and Two Subdomains. We consider two sub-domains Ωi, i =
1, 2 with piecewise constant velocity ci per subdomain. We discretize the problem on
each subdomain in space with spatial discretization parameter Δxi and we keep the
time discretization uniform across the subdomains with discretization parameter Δt.
Then there is no projection in the transmission operators in (5.25).We denote by γi

the CFL number in the corresponding subdomain Ωi,

γi = ci
Δt

Δxi
(6.1)

For the stability of the Cauchy problem, we suppose that γi < 1 [38]. By linearity it
suffices to analyze algorithm (5.25) for homogeneous initial conditions and to prove
convergence to zero. To avoid the special case of the interface conditions for n = 0
in the analysis, we set U(j, 0) = U(j, 1) = 0 which corresponds to initial conditions
u(x, 0) = ut(x, 0) = 0.

6.1. Discrete Laplace Transforms. The discrete Laplace transform of a grid
function v = {vn}n≥0 on a regular grid with time step Δt is defined for η > 0 by [38]

Lv(s) = v̂(s) =
1√
2π

Δt
∑
n≥0

e−snΔtvn, s = η + iτ, |τ | ≤ π

Δt
,(6.2)

and the inversion formula is given by

vn =
1√
2π

∫ π
Δt

− π
Δt

esnΔtv̂(s)dτ = − i√
2π

∫
|z|=eηΔt

zn−1v̂(z)dz.

21



The corresponding norms are

||v||η,Δt = (Δt
∑
n≥0

e−2ηnΔt|vn|2)
1
2 , ||v̂||η = (

∫ π
Δt

− π
Δt

|v̂(η + iτ)|2dτ)
1
2(6.3)

and we have Parseval’s equality

||v||η,Δt = ||v̂||η.(6.4)

Suppose U(j, n) is a solution of the difference equation(
1

C2
D+

t D−
t − D+

x D−
x

)
(U)(j, n) = 0(6.5)

with the initial condition U(j, 0) = U(j, 1) = 0. We denote by Û(j, s) the discrete
Laplace transform in time of U(j, n). Equation (6.5) becomes the difference equation

γ2Û(j − 1, s) − 2(γ2 + h(z))Û(j, s) + γ2Û(j + 1, s) = 0,(6.6)

with z = esΔt, h(z) = 1
2 (z + 1

z ) − 1 and γ = cΔt/Δx. The solutions of (6.6) are
formed by powers of the roots of the second order equation

γ2r2 − 2(γ2 + h(z))r + γ2 = 0.(6.7)

We need several technical Lemmas about these roots.
Lemma 6.1. For η = 0 and τ = 0, equation (6.7) has one double root r± = 1.

For η = 0 and | sin( τΔt
2 )| = γ, equation (6.7) has one double root r± = −1.

Proof. One can do the analysis on a case by case basis.
Lemma 6.2. For |z| > 1 (i.e. η > 0), equation (6.7) has one root r− whose

modulus is strictly less than 1 and one root r+ whose modulus is strictly bigger than
1.

Proof. The discriminant of the equation (6.7) is

Δ = h(z)(2γ2 + h(z))(6.8)

and for it to vanish we have the sequence of necessary and sufficient conditions

Δ = 0 ⇐⇒ h(z) = 0 or 2γ2 + h(z) = 0
⇐⇒ z = 1 or z + 1

z − 2 + 4γ2 = 0
⇐⇒ z = 1 or z = 1 − 2γ2 ± 2iγ

√
1 − γ2.

In both cases |z| = 1, as a short computation in the second case shows, and |z| = 1 is
excluded in this Lemma and treated in Lemma 6.3. Hence for |z| > 1 there are two
distinct roots whose product equals 1. They are therefore either complex conjugate of
modulus 1 or one is of modulus strictly bigger than 1 whereas the other is of modulus
strictly less than 1. It thus remains to exclude the complex conjugate case. We find

r̄ =
1
r

⇐⇒ r + r̄ = r +
1
r

⇐⇒ γ2 + h(z)
γ2

∈ R ⇐⇒ h(z) ∈ R

r̄ =
1
r

⇐⇒ z +
1
z
∈ R ⇐⇒ ηΔt = 0 or τΔt = 0,±π.

22



If η = 0, we have |z| = 1, which is again excluded by the conditions of the Lemma. If
on the other hand τΔt = 0, we compute the real part of the root r and obtain

�(r) = 1 +
h(z)
γ2

= 1 +
2
γ2

sinh2(
ηΔt

2
) ≥ 1,

and if τΔt = ±π, we have

�(r) = 1 − 2
γ2

cosh2(
ηΔt

2
) ≤ −1,

and in both cases |r| > 1, a contradiction which excludes this case as well and hence
proves the Lemma.

Lemma 6.3. For |z| = 1 (i.e. η = 0), | sin( τΔt
2 )| different from 0 and γ, equation

(6.7) has two distinct roots r− and r+,

r± =

⎧⎨⎩
1
γ2

[
γ2 − 2 sin2( τΔt

2 ) ± 2i sin( τΔt
2 )
√

γ2 − sin2( τΔt
2 )
]

if | sin( τΔt
2 )| < γ,

1
γ2

[
γ2 − 2 sin2( τΔt

2 ) ∓ 2 | sin( τΔt
2 )|

√
−γ2 + sin2( τΔt

2 )
]

if | sin( τΔt
2 )| > γ.

Proof. For η = 0, one can compute the roots directly. The only difficulty is the
determination of the signs in front of the square root. In the case | sin( τΔt

2 )| < γ,
the roots are complex conjugate. We compute the roots r±(z) for z = (1 + ε)z0

with z0 = eiθ and let ε tend to zero. The sign is then defined by continuity. For
| sin( τΔt

2 )| > γ, there are two real roots and the sign is determined by the fact that
|r+| > 1 and |r−| < 1.

Lemma 6.4. For z real positive, which corresponds to τΔt = 0, we have

r± =
1
γ2

[γ2 + 2 sinh2(
ηΔt

2
) ± 2 sinh(

ηΔt

2
)

√
γ2 + sinh2(

ηΔt

2
) ],

and 0 < r− < 1, r+ > 1.
For z real negative, which corresponds to τΔt = π, we have

r± =
1
γ2

[γ2 − 2 cosh2(
ηΔt

2
) ∓ 2 cosh(

ηΔt

2
)

√
−γ2 + cosh2(

ηΔt

2
) ]

and −1 < r− < 0, r+ < −1.
Proof. For τΔt = 0,±π, which means z real, one can do the analysis on a case

by case basis.
In all cases except for Lemma 6.1 there are functions a+(s) and a−(s) such that

for all j the solution of (6.6) is given by

Û(j, s) = a+(s)rj
+ + a−(s)rj

−.(6.9)

In the case of Lemma 6.1 there exists functions a(s) and b(s) such that for all j

Û(j, s) = (a(s)j + b(s))rj
±.
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6.2. The Discrete Homogeneous Subdomain Problem. We consider for
example the problem posed in Ω1, with a non-homogeneous boundary condition of
type B+

1 , (
1

C2
D+

t D−
t − D+

x D−
x

)
(U)(j, n) = 0, −∞ < j < 0, n ≥ 1

U(j, 0) = U(j, 1) = 0, −∞ < j < 0,(
Δx

2C2
D+

t D−
t + D−

x +
1

αC
D0

t

)
(U)(0, n) = g(n) n ≥ 1

(6.10)

where α is a given, strictly positive real number. Applying the discrete Laplace
transform we obtain with the results of the previous subsection that every solution
bounded in space is of the form

Û(j, s) = a+(s)rj
+.

Applying the discrete Laplace transform to the boundary condition, we get(
Δx

C2Δt2
h(z) +

1
Δx

(1 − r−) +
1

αCΔt
(z − 1

z
)
)

Û(0, s) = ĝ(s)

and introducing the notation

k(z) =
1
2

(
z − 1

z

)
, E(z, γ, α) =

1
γ2

h(z) + 1 − r− +
1

αγ
k(z)(6.11)

the boundary condition becomes E(z, γ, α)a+(s) = Δxĝ(s). We call the problem
well posed in the sense of GKS (Gustafsson, Kreiss and Sundstrom) if the preceding
equation is invertible for all z with |z| ≥ 1. If z0 is such that E(z0, γ, α) = 0, we call
z0 a generalized eigenvalue [38].

Theorem 6.5. If γ < 1 and |z| ≥ 1 with z �= 1 then for any strictly positive α,
E(z, γ, α) �= 0. The only generalized eigenvalues are z = 1 and if γ = 1, z = −1.

Proof. Using the relation r+ + r− = 2
γ2 (γ2 + h(z)) satisfied by the roots of (6.7)

we find

E(z, γ, α) =
1
2
(r+ − r−) +

k(z)
αγ

.(6.12)

For z = 1 we obtain by Lemma 6.1 that E(1, γ, α) = 0. If γ = 1 we also get for
z = −1 by Lemma 6.1 that E(−1, γ, α) = 0. We have to show now that there are
no other generalized eigenvalues. For any generalized eigenvalue z, we must have
E(z, γ, α) = 0, which means

r+ − r−
2

= −k(z)
αγ

.(6.13)

Squaring both sides and using the relations of the roots r+ and r− of the quadratic
equation (6.7) to the coefficients of that equation, we obtain

k2(z)
α2γ2

=
1
4
(r+−r−)2 =

1
4
(
(r++r−)2− 4r+r−

)
=

(γ2+h(z))2

γ4
−1 =

h(z) · (2γ2+h(z))
γ4

.

Inserting the definitions of h(z) from (6.6) and k(z) from (6.11) and factoring, we
obtain the equation z has to satisfy to be a generalized eigenvalue,

(z − 1)2
(
(γ2 − α2)z2 + 2(α2 − 2α2γ2 + γ2)z + γ2 − α2

)
= 0.(6.14)
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The first factor contains the generalized eigenvalue z = 1 we have found earlier. For
γ = 1 the second factor contains the generalized eigenvalue z = −1 and for α = 1 it
contains again the generalized eigenvalue z = 1. It remains to show that for γ < 1 and
α �= 1 the solutions of the second factor are introduced by the squaring and they are
not solutions to the original equation (6.13) and therefore not generalized eigenvalues.
To do this, we perform the change of variables

a2 =
1
γ2

− 1, εb2 =
1
α2

− 1

with ε = ±1, ε( 1
α2 − 1) > 0, a > 0, b > 0 in the second factor of (6.14). Note that we

exclude the case b = 0 ⇔ α = 1 because then the only solution is z = 1. We obtain
after the change of variables for the second factor of (6.14)

(εb2 − a2)z2 + 2(εb2 + a2)z + εb2 − a2 = 0

or equivalently

εb2(z + 1)2 = a2(z − 1)2.

Now if ε = +1, the only root with modulus greater or equal to 1 is

z1 =
a + b

a − b
.

Using Lemma 6.4 we see that the signs of (r+ − r−)(z1) and k(z1) are equal, which
contradicts (6.13) and thus z1 is not a generalized eigenvalue, E(z1) �= 0. If ε = −1
there are two complex conjugate roots of modulus 1,

z1 =
a − ib

a + ib
= eiτΔt, z2 =

a + ib

a − ib
= e−iτΔt.

To apply Lemma 6.3 we need to check that | sin(τΔt/2)| is different from 0 and γ. To
do so, note that the real part of both z1 and z2 is given by cos τΔt = a2−b2

a2+b2 and thus
we obtain for | sin(τΔt/2)|

sin2 τΔt

2
=

1
2
− 1

2
cos(τΔt) =

b2

a2 + b2
> 0.

Now since ε = −1 we have b2 < 1 and therefore

sin2 τΔt

2
=

b2

a2 + b2
<

1
a2 + 1

= γ2.

Hence the first case of Lemma 6.3 applies and we obtain

r+ − r− =
4i

γ2
sin(

τΔt

2
)

√
γ2 − sin2 τΔt

2
, k(z) = 2i sin τΔt

which again contradicts (6.13) because of the sign. The results for z2 are the same
with a sign change.

The values z = 1 (and z = −1 if γ = 1) are the generalized eigenvalues in the
sense of GKS. Following the analysis of Trefethen [39], they correspond to stationary
solutions which propagate at the same time towards the left and the right. We will
see that this does not affect the convergence of the Schwarz method.
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6.3. Convergence Rate. We denote by Ûk
i (j, s), i = 1, 2 the discrete Laplace

transforms in time of the iterates Uk
i (j, n), i = 1, 2 in algorithm (5.25). We obtain

with the results from Subsection 6.1

Ûk
1 (j, s) = Ûk

1 (0, s)rj
1,+ Ûk

2 (j, s) = Ûk
2 (0, s)rj

2,−(6.15)

where ri,+and ri,− are the roots of the second order equation (6.7) defined in each
subdomain,

γ2
i r2 − 2(γ2

i + h(z))r + γ2
i = 0, with γi = ci

Δt
Δxi

.

The coefficients Ûk
1 (0, s) and Ûk

2 (0, s) are determined iteratively by the Laplace trans-
form of the transmission conditions in (5.25). The discrete transmission operators in
the Laplace transformed domain are given by

b+
1 (z) =

1
γ2
1

h(z) + 1 − r1,− +
c1

c2γ1
k(z),

b̃+
1 (z) = − 1

γ2
2

h(z) − 1 + r2,− +
1
γ2

k(z),

b−2 (z) =
1
γ2
2

h(z) + 1 − r2,− +
c2

c1γ2
k(z),

b̃−2 (z) = − 1
γ2
1

h(z) − 1 + r1,− +
1
γ1

k(z).

(6.16)

The transmission conditions impose therefore

1
Δx1

b+
1 (z)Ûk+1

1 (0, s) =
1

Δx2
b̃+
1 (z)Ûk

2 (0, s)
1

Δx2
b−2 (z)Ûk+1

2 (0, s) =
1

Δx1
b̃−2 (z)Ûk

1 (0, s)

Inserting the second equation at iteration k into the first one, we find

Ûk+1
1 (0, s) =

b̃+
1 (z)

b+
1 (z)

b̃−2 (z)
b−2 (z)

Ûk−1
1 (0, s)

and a similar relation for Ûk+1
2 (0, s). Defining

σ(z, γ) =
1
γ2

h(z) + 1 − r− =
1
2
(r+ − r−), ρ(z, γ, q) =

−σ(z, γ) + 1
γ k(z)

σ(z, γ) + q
γ k(z)

(6.17)

we obtain for the convergence rate of the discrete Schwarz waveform relaxation algo-
rithm

R(z, γ1, γ2, c1/c2) :=
b̃+
1 (z)

b+
1 (z)

b̃−2 (z)
b−2 (z)

= ρ(z, γ2, c2/c1)ρ(z, γ1, c1/c2)(6.18)

and by induction we find

Û2k
i (0, s) = RkÛ0

i (0, s), i = 1, 2.(6.19)

Lemma 6.6. The convergence rate R(z, γ1, γ2, c1/c2) is an analytic function of z
for |z| ≥ 1.
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Proof. By Theorem 6.5, for γ < 1, z = 1 is the only root of E(z, γ, α) such that
|z| ≥ 1. Furthermore a Taylor expansion shows that it is a simple root, for z close to
1 we have

E(z, γ, α) ≈ α + 1
αγ

(z − 1).

With equations (6.16) and (6.18) we see that z = 1 is only an apparent pole for R
which concludes the proof.

Since R is analytic for |z| ≥ 1 which corresponds to η ≥ 0, R satisfies a maximum
principle for η ≥ 0 and hence attains its maximum on the boundary η = 0. It therefore
suffices to study the behavior of R for η = 0 and we do this by studying the factors
ρ(z, γ, q) for η = 0. Setting ω := τΔt

2 , we consider ω varying between 0 and π
2 (the

same computations apply for negative ω). For η = 0 we have the explicit formulas

ρ(z, γ, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
√

γ2 − sin2 ω + γ cosω√
γ2 − sin2 ω + qγ cosω

, if sin ω < γ,√
sin2 ω − γ2 + iγ cosω

−
√

sin2 ω − γ2 + iqγ cosω
, if sin ω > γ,

1
q
, if sin ω = γ.

To find a first necessary condition for convergence of the Schwarz method, we choose
ω1 such that sinω1 = γ1, ω1 ∈ (0, π

2 ), and q =
c1

c2
. We obtain for the convergence rate

at η = 0

R =
1
q

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ2 cosω1 −

√
γ2
2 − γ2

1

γ2 cosω1 + q
√

γ2
2 − γ2

1

, if γ1 < γ2,

iγ2 cosω1 +
√

γ2
2 − γ2

1

iγ2 cosω1 − q
√

γ2
2 − γ2

1

, if γ1 > γ2.

In the first case, R is a real number strictly between 0 and 1, in the second case if
q < 1, |R| > 1. We therefore have the

Theorem 6.7. If the convergence rate R given in (6.18) of the discrete Schwarz
waveform relaxation algorithm is bounded by 1 for all z of modulus bigger or equal to
1, then

(c1 − c2)(γ1 − γ2) ≥ 0,(6.20)

in other words, c1 > c2 implies γ1 ≥ γ2.
We now study the variations of |ρ(z, γ, q)|, for η = 0 as a function of ω. An

example is shown in Figure 6.1 for the case γ1 < γ2 and q = c1/c2 < 1. The complete
results are obtained by explicitly computing the derivatives and are summarized in
Table 6.1. They rely on

d

dz
ρ(z, γ, q) =

(q + 1)(γ2 − 1)
γ5

h(z)2

zσ(z)(σ(z) + q
γ k(z))2

(6.21)

where h is given in (6.6), k in (6.11) and σ in (6.17). For ω ≤ arcsin(γ2), we have
27



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

|ρ(e2iω , γ1, q)|
|ρ(e2iω , γ2,

1
q )|

|R(e2iω , γ1, γ2, q)|

γ1 γ2

q

1/q

sin2 ω

Fig. 6.1. Example of the dependence of |ρ(e2iω , γ, q)| as function of ω at η = 0, q = c1/c2.

ω = 0 0 < sin(ω) < γ sin(ω) = γ γ < sin(ω) < 1 sin(ω) = 1
q < 1 0 ↗ 1/q ↘ 1
q > 1 0 ↗ 1/q ↗ 1

Table 6.1

Behavior of |ρ(e2iω , γ, q)| as function of ω > 0 for η = 0.

|ρ(e2iω,, γ1, q)| ≤ 1/q and |ρ(e2iω , γ2,
1
q )| ≤ q. By (6.21), a final explicit computation

shows that the modulus of R is an increasing function of ω for ω ≥ arcsin(γ2) and

sup
ω∈[0, π

2 ]

|R(e2iω, γ1, γ2, q)| = |R(−1, γ1, γ2, q)| = 1.(6.22)

We therefore have
Theorem 6.8. For (c1 − c2)(γ1 − γ2) ≥ 0 the convergence rate R(z, γ1, γ2, c1/c2)

satisfies

sup
|z|=1

|R(z, γ1, γ2, c1/c2)| = 1,

For purely propagating modes, η = 0, the convergence rate equals 1.
For η > 0 however, we have the convergence result
Theorem 6.9. For (c1 − c2)(γ1−γ2) ≥ 0 and η > 0 fixed, there exists a constant

K strictly positive such that, for ηΔt sufficiently small but non-zero the convergence
rate satisfies

sup
|z|=eηΔt

|R(z, γ1, γ2, c1/c2)| ≤ 1 − KηΔt.
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Proof. By (6.21) we can calculate the derivative of |ρ| with respect to ηΔt and
get

d

d(ηΔt)
(|ρ(z, γ, q)|2)

∣∣∣∣
ηΔt=0

= 2
(q + 1)(γ2 − 1)

γ5
� h(z)2ρ̄(z)

σ(z)(σ(z) + q
γ k(z))2

.

For ηΔt = 0, h is real, k is purely imaginary and by Lemma 6.3 we have the explicit
value of σ which is purely imaginary for sin(ω) < γ and real negative for sin(ω) > γ.
We thus have ⎧⎨⎩

d
d(ηΔt)(|ρ(z, γ, q)|2)

∣∣∣
ηΔt=0

= 0 if sin(ω) < γ,

d
d(ηΔt)(|ρ(z, γ, q)|2)

∣∣∣
ηΔt=0

< 0 if sin(ω) > γ,

which together with (6.22) gives the desired result.

6.4. Convergence of the Discrete Schwarz Waveform Relaxation Algo-
rithm. We introduce the discrete norms in space and time

||U ||Ωi,η,Δt = (ΔtΔxi

∑
j∈Ωi

∑
n≥0

e−2ηnΔt|U(j, n)|2) 1
2 .(6.23)

Theorem 6.10. Let Up
i be the iterates of algorithm (5.25). For (c1 − c2)(γ1 −

γ2) ≥ 0 there exists a positive constant K such that for ηΔt sufficiently small but
non-zero, we have

||Up
i ||Ωi,η,Δt ≤ (1 − KηΔt)�

p
2 �maxi=1,2||U0

i ||Ωi,η,Δt.

Proof. By (6.15) and (6.19), we have Û2k
i (j, s) = RkÛ0

i (j, s) for any j, s and
therefore

||U2k
i ||2Ωi,η,Δt =

∫
|z|=eηΔt

|R(z)|2k||Û0
i (z)||2Ωi

dz ≤ sup
|z|=eηΔt

|R(z)|2k

∫
|z|=eηΔt

||Û0(z)||2Ω1
dz

≤ sup
|z|=eηΔt

|R(z)|2k||U0
i ||2Ωi,η,Δt ≤ (1 − KηΔt)2k||U0

i ||2Ωi,η,Δt.

A similar argument holds for U2k+1
i .

7. Energy Estimates and Convergence Proof for Continuous Wave Speed.
We consider here the case of I subdomains, with a continuous velocity, and non uni-
form grids in space and time. We use the same approach as in the continuous case to
prove convergence of the discrete domain decomposition algorithm. Such estimates
have been used in [21] in the context of discrete absorbing boundary conditions for
the wave equation, and in [10] to prove stability for a non uniform scheme.

7.1. Stability for the Discrete Subdomain Problem. Let U(j, n) for 0 ≤
j ≤ J + 1 and 0 ≤ n ≤ N solve the leap-frog scheme

1
C2(j)

D+
t D−

t (U)(j, n) − D+
x D−

x (U)(j, n) = 0, 1 ≤ j ≤ J.(7.1)

Here n stands for the discrete time variable, and j for the discrete space variable. We
define a discrete energy. First we denote by V = {V (j)}0≤j≤J+1 a sequence in R

J+2,
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and we define for V, W ∈ R
J+2 a bilinear form on R

J+2 by

ah(V, W ) =
Δx

2

J+1∑
j=1

D−
x (V )(j) · D−

x (W )(j).(7.2)

Accordingly, for any positive n, V (n) stands for the sequence {V (j, n)}0≤j≤J+1. The
discrete energy En at time step n, global in space, is defined as the sum of a discrete
kinetic energy EK,n and a discrete potential energy EP,n given by

EK,n =
Δx

2

⎡⎣ 1
2C2(0)

(D−
t (V )(0,n))2+

J∑
j=1

1
C2(j)

(D−
t (V )(j,n))2+

1
2C2(J+1)

(D−
t (V )(J+1,n))2

⎤⎦,
EP,n = ah(V (n), V (n − 1)),

En = EK,n + EP,n.
(7.3)
The quantity EK,n is clearly a discrete kinetic energy. It is less evident to identify En

as an energy. The following lemma gives a lower bound for En under a CFL condition
and hence shows that En is indeed an energy.

Lemma 7.1. For any n ≥ 1, we have

En ≥
(

1 −
(

C
Δt

Δx

)2
)

EK,n,(7.4)

where C is defined by C = sup1≤j≤J+1 C(j). Hence, under the CFL condition

C
Δt

Δx
< 1,(7.5)

En is bounded from below by an energy.
Proof. For any V, W ∈ R

J+2 we have

ah(V, W ) =
1
4
Ah(V + W ) − 1

4
Ah(V − W )(7.6)

with Ah defined by Ah(V ) = ah(V, V ). Since ah is a positive bilinear form, the first
term on the right-hand side is positive, which gives a first lower bound on En,

En ≥ EK,n − 1
4
Ah(V (n) − V (n − 1)).(7.7)

It remains to estimate the second term on the right-hand side. Using the well known
inequality

(a + b)2 ≤ 2(a2 + b2)(7.8)

we obtain

Ah(V (n)−V (n−1)) =
Δx

2

J+1∑
j=1

[
D−

x (V )(j, n) − D−
x (V )(j, n − 1)

]2
=

Δx

2

J+1∑
j=1

Δt2

Δx2

[
D−

t (V )(j, n) − D−
t (V )(j − 1, n)

]2
≤ C2Δt2

Δx2

⎡⎣Δx

J+1∑
j=1

1
C2(j)

(D−
t (V )(j,n))2+Δx

J∑
j=0

1
C2(j)

(D−
t (V )(j,n))2

⎤⎦.
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Thus

Ah(V (n) − V (n − 1)) ≤ 4C2 Δt2

Δx2
EK,n(7.9)

which, together with (7.7), gives the desired result (7.4).
Having defined a discrete energy, we obtain the discrete energy identity
Theorem 7.2 (Discrete Energy Identity). For any n ≥ 1, if U(j, n) is a solution

of (7.1), we have the energy identity

En+1 − En + ΔtD0
t (U)(0, n) · (D+

x − Δx

2C2(0)
D+

t D−
t )(U)(0, n)

= ΔtD0
t (U)(J + 1, n) · (D−

x +
Δx

2C2(J + 1)
D+

t D−
t )(U)(J + 1, n).

(7.10)

Furthermore if U(j, 0) is a solution of (5.15), we have the energy identity

EK,1 + E1 + Δt
2 D+

t (U)(0, 0) · (D+
x − 1

C2(0)
D+

t )(U)(0, 0)

=
Δt

2
D+

t (U)(J + 1, 0) · (D−
x +

1
C2(J + 1)

D+
t )(U)(J + 1, 0)

+ Δx

J∑
j=1

1
C2(j)

Ut(j)D+
t (U)(j, 0) +

Δx

2

J+1∑
j=1

(D−
x (U)(j, 0))2.

(7.11)

Proof. The proof is the discrete analog to the proof in the continuous case.
The problem here is that there is no canonical translation of the derivatives and the
integrals. For n ≥ 1, the appropriate choice is to multiply equation (7.1) by the
centered finite differences D0

t (U)(j, n). Then we sum up for 1 ≤ j ≤ J . We obtain
for the derivatives in time denoted by I1

I1 =
J∑

j=1

1
C2(j)

(
D+

t D−
t (U)(j, n)

) (
D0

t (U)(j, n)
)

=
1

2Δt

J∑
j=1

1
C2(j)

(
(D+

t − D−
t )(U)(j, n)

) (
(D+

t + D−
t )(U)(j, n)

)
=

1
2Δt

J∑
j=1

1
C2(j)

[(
D+

t (U)(j, n)
)2 − (D+

t (U)(j, n − 1)
)2]

where we used D−
t (U)(j, n) = D+

t (U(j, n−1)), and for the derivatives in space denoted
by I2

I2 =
J∑

j=1

D+
x D−

x (U)(j, n) · D0
t (U)(j, n)

=
1

Δx

⎡⎣ J∑
j=1

D+
x (U)(j, n) · D0

t (U)(j, n) −
J∑

j=1

D−
x (U)(j, n) · D0

t (U)(j, n)

⎤⎦ .

By a translation of indices in the first sum of I2 using D+
x (U)(j, n) = D−

x (U(j +1, n))
we get

I2 =
1

Δx

J+1∑
j=1

D−
x (U)(j, n) · (D0

t (U)(j − 1, n) − D0
t (U)(j, n))
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+
1

Δx

(
−D+

x (U)(0, n) · D0
t (U)(0, n) + D−

x (U)(J + 1, n)) · D0
t (U)(J + 1, n)

)
=

1
2Δt

⎡⎣− J+1∑
j=1

D−
x (U)(j, n + 1) · D−

x (U)(j, n) +
J+1∑
j=1

D−
x (U)(j, n) · D−

x (U)(j, n − 1)

⎤⎦
+

1
Δx

(
−D+

x (U(0, n)) · D0
t (U)(0, n) + D−

x (U(J + 1, n)) · D0
t (U)(J + 1, n)

)
.

We now compute the difference I1 − I2 and find

0 =
1

Δt

⎡⎣1
2

J∑
j=1

1
C2(j)

(D−
t (U)(j, n + 1))2 − 1

2

J∑
j=1

1
C2(j)

(D−
t (U)(j, n))2

⎤⎦
+

1
ΔtΔx

(ah(U(n + 1), U(n)) − ah(U(n), U(n − 1)))

+
1

Δx

(
D+

x (U)(0, n) · D0
t (U)(0, n) − D−

x (U)(J + 1, n) · D0
t (U)(J + 1, n)

)
.

Using the definition of En, we finally obtain

0 =
1

ΔtΔx
(En+1 − En) +

1
4C2(0)Δt

[
−(D+

t (U)(0, n))2 + (D−
t (U)(0, n))2

]
+

D+
x (U)(0, n) · D0

t (U)(0, n)
Δx

+
−(D+

t (U)(J+1, n))2 + (D−
t (U)(J+1, n))2

4C2(J+1)Δt

− 1
Δx

D−
x (U)(J + 1, n) · D0

t (U)(J + 1, n)

which gives (7.10) using the identities D+
t − D−

t = ΔtD+
t D−

t and D+
t + D−

t = 2D0
t .

For n = 0, the appropriate choice is to multiply equation (5.15) by the forward finite
difference D+

t (U)(j, 0) and to perform the same computations.
We define the discrete boundary operators

T−
α,C :=

1
α

D0
t − D+

x +
Δx

2C2
D+

t D−
t T̃−

α,C :=
1
α

D0
t − D−

x − Δx

2C2
D+

t D−
t

T +
α,C :=

1
α

D0
t + D−

x +
Δx

2C2
D+

t D−
t T̃ +

α,C :=
1
α

D0
t + D+

x − Δx

2C2
D+

t D−
t

(7.12)
to be applied to U(j, n) for n ≥ 1, where α is a positive real number. For n = 0,
D+

t D−
t /2 above is replaced by D+

t /Δt and D0
t is replaced by D+

t . Using the identity
ab = α

4

(
( 1

αa + b)2 − ( 1
αa − b)2

)
for α > 0, the energy identities (7.10,7.11) can be

rewritten for any positive α and β as

En+1 − En +
Δt

4

(
α
(
T̃ +

α,C(0)(U)(0, n)
)2

+ β
(
T̃−

β,C(J+1)(U)(J + 1, n)
)2
)

=
Δt

4

(
α
(
T−

α,C(0)(U)(0, n)
)2

+ β
(
T +

β,C(J+1)(U)(J + 1, n)
)2
)

.
(7.13)

2EK,1 + 2E1 +
Δt

4

(
α
(
T̃ +

α,C(0)(U)(0, 0)
)2

+ β
(
T̃−

β,C(J+1)(U)(J + 1, 0)
)2
)

=
Δt

4

(
α
(
T−

α,C(0)(U)(0, 0)
)2

+ β
(
T +

β,C(J+1)(U)(J + 1, 0)
)2
)

+2Δx

J∑
j=1

1
C2(j)

Ut(j)D+
t (U)(j, 0) + Δx

J+1∑
j=1

(D−
x (U)(j, 0))2.

(7.14)
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Suppose now the discrete boundary condition to be given for n ≥ 0 by

T−
α,C(0)(U)(0, n) = G−(n), T +

β,C(J+1)(U)(J + 1, n) = G+(n)(7.15)

and the initial conditions to be given by {U(j, 0)}, {Ut(j)}. Summing (7.13) in time
and adding (7.14) we get

En+1 + 2EK,1 + E1 ≤ 1
4
Δt

n∑
p=0

(
α(G−(p))2 + β(G+(p))2

)
+2Δx

J∑
j=1

1
C2(j)

Ut(j)D+
t (U)(j, 0) + Δx

J+1∑
j=1

(D−
x (U)(j, 0))2

Using the discrete Cauchy Schwartz inequality on the right-hand side, we get stability
for the numerical scheme.

Theorem 7.3 (Stability). Suppose U(j, n) is solution of (7.1), together with
initial conditions and boundary conditions (7.15), with α and β positive. For any
positive time step n one has

En+1+E1≤
1
4
Δt

n∑
p=0

(α(G−(p))2+β(G+(p))2)+Δx

J+1∑
j=1

(D−
x(U)(j,0))2+Δx

J∑
j=1

1
C2(j)

(Ut(j))2.

(7.16)
Thus, under the CFL condition sup1≤j≤J C(j) Δt

Δx < 1 required in Lemma 7.1, the
scheme is stable.

7.2. Convergence of the Discrete Schwarz Waveform Relaxation Al-
gorithm. Corresponding to the continuous analysis we take the velocity to be con-
tinuous at the interfaces. To shorten the notation we denote by T−

i the operator
T−

C(ai),C(ai)
and the others accordingly. To analyze convergence of the discretized

domain decomposition algorithm (5.25) it suffices to consider homogeneous initial
conditions in (5.25) and to prove convergence to zero.

Theorem 7.4. Assume that the velocity is continuous on the interfaces ai. If the
CFL condition (7.5) is satisfied by the discretization in each subdomain, then the non-
overlapping discrete Schwarz waveform relaxation algorithm (5.25) with homogeneous
initial condition converges to zero on any time interval [0, T ] in the energy norm,

I∑
i=1

ENi(U
k
i ) → 0 as k → ∞.

Proof. The energy estimates (7.13) and (7.14 ) can be rewritten as

Ek+1
n+1 − Ek+1

n +
Δti
4

(
c(ai)

(
T̃ +

i (Uk+1
i )(0, n)

)2

+ c(ai+1)
(
T̃−

i+1(U
k+1
i )(Ji + 1, n)

)2
)

=
Δti
4

(
c(ai)

(
T−

i (Uk+1
i )(0, n)

)2
+ c(ai+1)

(
T +

i+1(U
k+1
i )(Ji + 1, n)

)2)
.

(7.17)

2EK,1 + 2E1 +
Δti
4

(
c(ai)

(
T̃ +

i (Uk+1
i )(0, 0)

)2

+ c(ai+1)
(
T̃−

i+1(U
k+1
i )(Ji + 1, 0)

)2
)

=
Δti
4

(
c(ai)

(
T−

i (Uk+1
i )(0, 0)

)2
+ c(ai+1)

(
T +

i+1(U
k+1
i )(Ji + 1, 0)

)2)
.

(7.18)
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We define the boundary energies

F̃ k,+
i,n = Δti

4 c(ai)(T̃ +
i (Uk

i )(0, n))2, F̃ k,−
i,n = Δti−1

4 c(ai)(T̃−
i (Uk

i−1)(Ji−1+1, n))2,
F k,+

i,n = Δti−1
4 c(ai)(T +

i (Uk
i−1)(Ji−1+1, n))2, F k,−

i,n = Δti

4 c(ai)(T−
i (Uk

i )(0, n))2,
(7.19)
and rewrite (7.17) and (7.18) as

[En+1 − En](Uk+1
i ) + F̃ k+1,+

i,n + F̃ k+1,−
i+1,n = F k+1,+

i+1,n + F k+1,−
i,n ,

[2EK,1 + 2E1] (Uk+1
i ) + F̃ k+1,+

i,0 + F̃ k+1,−
i+1,0 = F k+1,+

i+1,0 + F k+1,−
i,0 .

(7.20)

Summing these equations in every subdomain for 1 ≤ n ≤ Ni , we find

[ENi+1 + 2EK,1 + E1](Uk+1
i ) +

Ni∑
n=1

F̃ k+1,+
i,n +

Ni∑
n=1

F̃ k+1,−
i+1,n =

Ni∑
n=1

F k+1,+
i,n +

Ni∑
n=1

F k+1,−
i+1,n .

(7.21)
Using now the transmission conditions and the fact that the projection is a contraction
in L2, we get

[ENi+1 + 2EK,1 + E1](Uk+1
i ) +

Ni∑
n=1

F̃ k+1,+
i,n +

Ni∑
n=1

F̃ k+1,−
i+1,n ≤

Ni+1∑
n=1

F̃ k,−
i+1,n +

Ni−1∑
n=1

F̃ k,+
i,n .

(7.22)
Note now that by definition we have as in the continuous case F k,±

1 = F k,±
I+1 = 0.

Thus, defining the total boundary energy at iteration k by

F̃ k =
I∑

i=1

Ni∑
n=0

[F̃ k,−
i,n + F̃ k,+

i,n ]

we have, by summing in i and shifting the indices, the inequality

I∑
i=1

[ENi+1 + 2EK,1 + E1](Uk+1
i ) + F̃ k+1 ≤ F̃ k.(7.23)

Thus the same arguments as in the continuous case proves that
I∑

i=1

ENi(U
k
i ) → 0 as

k → ∞.

8. Numerical Experiments. We perform the numerical experiments on the
wave equation

∂2u

∂t2
= c2(x)

∂2u

∂x2
, 0 < x < L, 0 < t < T,(8.1)

where we truncate the spatial domain at 0 and L using absorbing boundary conditions,
so that the results obtained correspond to the analysis on an infinite domain. We
discretize the wave equation and the optimal transmission conditions using the finite
volume scheme presented in Section 5.
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8.1. Optimal Global Transmission Conditions. First we test the conver-
gence result proved in Theorem 2.1 for a two subdomain problem with L = 2, T = 2
and a constant wave speed c(x) = 1. The domain is partitioned at x = 1 and the
optimal transmission conditions at the continuous level are local. We use the initial
conditions

u(x, 0) = 0,

∂u

∂t
(x, 0) = −100(0.5− x)e−50(0.5−x)2 ,

and we start the iteration with the initial guess zero. Table 8.1 shows for various
mesh parameters the difference of the domain decomposition algorithm result after 2
iterations and the numerical solution on the whole domain and compares this value
to the truncation error, the difference between the numerical solution on the whole
domain and the exact solution. One can see that the discretization of the optimal

grid error after 2 iterations discretization error
50 x 50 2.6128e-04 2.1515e-02

100 x 100 2.7305e-05 4.9472e-03
200 x 200 3.2361e-06 1.2218e-03
400 x 400 3.9852e-07 3.0321e-04
800 x 800 4.9548e-08 7.5567e-05

Table 8.1

Convergence in two iterations to below the accuracy of the discretization.

local transmission conditions leads to an algorithm which converges in two iterations
to well below the accuracy of the numerical scheme.

For the next model problem, we choose L = 6, T = 8 and a speed function c(x)
with a discontinuity at x = 1,

c(x) =
{

1 1 < x < 6
2 0 < x < 1 .

We decompose the domain into three subdomains, Ω1 = [0, 2]×[0, 6], Ω2 = [2, 4]×[0, 6]
and Ω3 = [4, 6] × [0, 6] and we use the initial conditions

u(x, 0) = 0
∂u

∂t
(x, 0) = −20(5 − x)e−10(5−x)2 .

We use again a discretization of the optimal transmission conditions, which are non-
local in this case. We start the Schwarz waveform relaxation with a zero initial guess.
Table 8.2 shows that the algorithm converges at the third iteration to the discretization
error level and illustrates Theorem 2.1, which states that we should find convergence
in a number of iterations identical to the number of subdomains. More accuracy is
achieved as the iteration progresses further. The nonlocal transmission conditions
(2.8) require for this value of T to include three terms of the sum of the operators Sj

in (3.3), (3.4) on the middle subdomain and one term on the right subdomain. We
computed the solution on a uniform grid with Δx = 1/20 and Δt = 1/40 for this
example.
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Iteration 0 1 2 3 4 5
||u − uk||∞ 5.0230e-01 5.0164e-01 5.0065e-01 4.0289e-03 3.9800e-03 3.9535e-05

Table 8.2

Convergence for a 3 subdomain problem and a discontinuity in the left subdomain.

8.2. Optimal Local Transmission Conditions. Now we introduce time win-
dows for the same example to be able to use optimal local transmission conditions.
We cut the time domain into four equal pieces [0, 2], [2, 4], [4, 6] and [6, 8] such that
the condition (3.15) according to Theorem 3.4 is satisfied. We solve the problem
consecutively on the four time subdomains and in each time window we expect the
algorithm to converge in two iterations. We show the convergence results for the first
time window only, [0, T = 2]. Table 8.3 shows the error in the infinity norm over
five iterations for the same mesh parameters as before. The algorithm converges now

Iteration 0 1 2 3 4 5
||u − uk||∞ 5.0200e-01 5.0135e-01 1.2089e-03 9.0654e-06 1.4775e-06 1.2551e-06

Table 8.3

Convergence with local transmission conditions over a shorter time interval.

already at the second iteration as predicted by Theorem 3.4 to the discretization error
level and more accuracy is achieved as the iteration progresses.

8.3. Non-Conforming Grids. As an illustration of Theorem 3.5 on non-con-
forming grids we consider a problem with a layered medium of six layers and we
decompose the domain into six subdomains corresponding to the different layers,
Ωi = [i − 1, i] with corresponding wave speeds ci ∈ {1, 2/3, 1/2, 3/4, 1, 4/5}. We
discretize each subdomain with a grid in space using Δxi = 1/50 and in time using
an appropriate time step satisfying the CFL condition ci

Δti

Δxi
< 1 but close to 1 which

is important for accuracy in the propagation properties of the solution, so different
time steps are essential in different subdomains. This leads to non-conforming grids
between subdomains. Since we have no algorithm that computes the entire solution
over non-conforming grids to compare with, we choose to compute the zero solution to
the homogeneous problem with zero initial conditions. We start with a non zero initial
guess on the artificial interfaces, g±(t) = 1. According to Theorem 3.5 the algorithm
will converge in two iterations if T ≤ 1. Table 8.4 shows that this is also observed
numerically. After two iterations the Schwarz waveform relaxation has converged

Iteration 0 1 2
||u − uk||∞ 5.0234e+00 5.0234e+00 1.1738e-02

Table 8.4

Convergence with local transmission conditions in 2 iterations to the level of the truncation
error for a problem with five discontinuities and six subdomains aligned with the discontinuities.

to the precision of the numerical scheme. Figure 8.1 shows a solution computed on
non-matching grids with the optimal Schwarz waveform relaxation algorithm.

8.4. Variable Wave Speed and Local Transmission Conditions. Now we
consider a variable propagation speed c(x) for which convergence of the Schwarz wave-
form relaxation algorithm with local transmission conditions was proved in Theorem
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Fig. 8.1. Computation with non-matching grids on a layered medium with five discontinuities,
a pulse created in the surface layer and propagating downward.

4.3 using energy estimates. The speed profile, which is a typical underwater profile,
was obtained from [23] and it is given as a function of depth by

c(x) =

⎧⎪⎪⎨⎪⎪⎩
300 m

s x < 0 (above ground)
1500− x/12 m

s 0 < x < 120
1480 + x/12 m

s 120 < x < 240
1505 m

s x > 240.

We decompose the domain into two subdomains Ω1 = [0, 300] and Ω2 = [300, 600] and
we apply the domain decomposition algorithm with the local transmission conditions
(3.10) which would be exact if the sound speed was identically constant over both
subdomains and equal to the sound speed at the artificial interface at x = 300. Table
8.5 shows the convergence of the algorithm for the variable sound speed for a time
interval [0, 1/2]. The algorithm converges again to the accuracy of the scheme in two

Iteration 0 1 2 3
||u − uk||∞ 5.0316e+00 5.0316e+00 9.9024e-03 6.2439e-04

Table 8.5

Convergence behavior of the algorithm for the variable sound speed profile from an application.

iterations, even though the sound speed is variable in this example. This is because
the variation is small in scale and thus the local approximations to the transmission
conditions are sufficiently accurate to lead to the convergence in two steps. Note also
that continuing the iteration, the error is further reduced.

9. Conclusions. We have presented and analyzed a non-overlapping Schwarz
waveform relaxation algorithm for the one dimensional wave equation with variable
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coefficients, both at the continuous and the discrete level. The algorithm permits the
use of grid CFL conditions adapted to the local wave speeds, non-matching grids on
different subdomains and it has optimal scalability when implemented on a parallel
computer. The formulation of the algorithm is quite general, it can be applied to the
wave equation in higher dimensions and even to other types of evolution equations.
The convergence result with the optimal transmission conditions also holds in these
more general situations: specific results for the wave equation in higher dimensions
will be presented elsewhere. The convergence analysis for the discretized algorithm
with approximate transmission conditions however is specific to the one dimensional
wave equation with variable coefficients. Although the ideas can be generalized to
higher dimensions, the discrete energy estimates present a real challenge, already
notation-wise. The advantage of the continuous analysis is however that convergence
results similar to the continuous ones can be expected to hold when the algorithm is
consistently discretized.
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Appendix A. A Projection Algorithm for Non-Matching Grids.
The projection operation between non-conforming grids as given in (5.23) is not

an easy task in an algorithm, since one cell can intersect with an arbitrary number of
neighboring ones or even not intersect at all, if it is fully contained in the neighboring
one. In one dimension, the following short algorithms in Matlab performs this task
in an efficient manner:
function b=transfer(a,ta,tb);
% TRANSFER integrates a stepfunction between given intervals
% b=transfer(a,ta,tb); computes the integral of the
% stepfunction with values a(j) in [ta(j),ta(j+1)] in the
% intervals [tb(i),tb(i+1)] and stores the result in b(i).
% Note that the first and last entry in ta and tb must be equal.

n=length(tb); % n-1 is the length of b
ta(length(ta))=tb(n); % numerical equality for proper termination
j=1;
for i=1:n-1,
b(i)=0;
m=ta(j+1)-tb(i);
while ta(j+1)<tb(i+1),
b(i)=b(i)+m*a(j);
j=j+1;
m=ta(j+1)-ta(j);

end;
m=m-(ta(j+1)-tb(i+1));
b(i)=b(i)+m*a(j);

end;
Given a vector ta = [0, ta(1), . . . , T ] of arbitrary grid points in time and a piecewise
constant function on the intervals between the grid points ta whose values are given
in the vector a, the algorithm computes the integrals of a on the intervals between the
grid points of a second grid given in the vector tb = [0, tb(1), . . . , T ]. The algorithm
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does a single pass without any special cases using the fact that the grid points are
sorted in time. It advances automatically on whatever side the next cell boundary
is coming and handles any possible cases of non-matching grids at a one dimensional
interface.
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of Travaux et recherches mathématiques, Dunod, 1968.
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