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Optimal scores: an alternative to parametric item response theory and sum 

scores 

Abstract 

The aim of this paper is to discuss nonparametric item response theory scores in terms of 

optimal scores as an alternative to parametric item response theory scores and sum scores. 

Optimal scores take advantage of the interaction between performance and item impact that is 

evident in most testing data. The theoretical arguments in favor of optimal scoring are 

supplemented with the results from simulation experiments, and the analysis of test data 

suggests that sum-scored tests would need to be longer than an optimally scored test in order to 

attain the same level of accuracy. Because optimal scoring is built on a nonparametric 

procedure, it also offers a flexible alternative for estimating item characteristic curves that can 

fit items that do not show good fit to item response theory models. 

1. Introduction 

Test scores are used to make decisions about test takers, and thus it is important that such scores 

estimate the ability levels of the test takers accurately. In the past, the use of sum scores (i.e. 

the number correct) has been the primary method of scoring tests, although parametric item 

response theory (IRT; Lord, 1980) is used, but primarily for representing item characteristics. 

Sum scores have the advantages of being easily calculated, computationally fast, and easy for 

the test takers to understand. A problem with using parametric IRT is that not all items can be 

satisfactorily modeled with a parametric IRT model, even in well-designed tests. The aim of 

this paper is to discuss the nonparametric IRT approach of optimal scoring and to compare it 

with parametric IRT and sum scoring using data from the Swedish Scholastic Assessment Test 

(SweSAT). 

In the usual test theory, ability   is  represented as a signed real number, and the one- 

(1PL), two- (2PL), and three-parameter logistic (3PL) IRT models are used to model the 

probability ( )iP   that item i  will be answered correctly at that ability level (Birnbaum, 1968). 

The logistic family of item characteristic curves (ICC) are defined for the 3PL as 
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where ia  is the item discrimination, ib  is the item difficulty and ic  is the pseudogessing 

parameter. 
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However, students and their teachers are apt to prefer the familiar score intervals [0, ]n  

or [0,100] for representations of either ability or actual performance, and would find an ability 

estimate of, say, -0.15 difficult to comprehend. Since   is a latent variable and thus not actually 

observed, then for any ψ in, say, [0,100] there exists a function *( )iP   such that the two 

probability values are equal. This can be achieved, for example, by the scaled logistic 

transformation  

100
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e
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

,    (2) 

and an infinity of other transformations exist as well. Of course the formulas for these three 

models will change as a consequence, but as long as the transformation preserves rank order 

and is reasonably smooth, this will be an acceptable score metric. Note, however, that using the 

whole real line will make transforming abilities of   and  , which are logical expressions 

of zero or perfect test scores, respectively, awkward from a computational point of view. 

An alternative to parametric models is to use nonparametric methods to estimate abilities 

and ICCs, and there have been many proposals for such ICCs in the past. Mokken (1997) 

studied nonparametric estimation in connection with monotonicity. Ramsay (1991, 1997) 

proposed an ICC estimation with kernel smoothing over quantiles of the Gaussian distribution, 

which gave fast and reasonably accurate ICC estimations in the program TestGraf. Ramsay and 

Silverman (2002) and Rossi, Wang, and Ramsay (2002) used the expectation-maximization 

(EM) algorithm to optimize the penalized marginal likelihood, and the ICC estimates came 

close to the 3PL IRT model when their roughness penalty increased. Woods (2006) and Woods 

and Thissen (2006) simultaneously estimated item parameters using a spline-based 

approximation of the ability distribution. Ramsay and Silverman (2005) proposed a method for 

nonparametric, but not strictly monotonic, curve estimates. Later, Lee (2007) compared several 

nonparametric approaches with each other. 

We define an estimated score as optimal if it optimizes some criterion for fitting the data 

provided by a test taker within some class of IRT models. In this paper, we have chosen to use 

maximum likelihood estimation (MLE) of a model, which is capable to represent the data as 

accurately as desired. To use MLE is in general considerable to be asymptotically efficient. 
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If the criterion is negative log likelihood and the data are binary scores , 1,..., ,iU i n  for 

example, then the fitting criterion for an arbitrary item response function over an arbitrary score 

interval is  

( )

1

log ( | ) [ ( ) log(1 )]i
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where the log-odds function ( )W   is defined as 
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In this paper, we focus on optimal scores over intervals [0,n] or [0,100] using the 

nonparametric item response functions in Ramsay and Wiberg (2017a) computed using spline-

based expansions of item response functions. The use of these nonparametric expansions 

enables fast computation of item response function estimates, which can fit the data as closely 

as desired. This paper differs from Ramsay and Wiberg (2017a) in that it provides a nose-to-

nose comparisons between nonparametric sum scores and optimal scores estimated using either 

parametric or nonparametric ICCs. 

The rest of this paper is structured as follows. In the next section we introduce the 

SweSAT data and examine the empirical distribution of the data and the sum scores. In the third 

section, we move to the estimation of ICCs and the different test scores, including a brief 

description of the estimation of nonparametric ICCs. In the fourth section, optimal scoring is 

compared with sum scoring and parametric IRT scores. The paper ends with a discussion and 

some concluding remarks. 

2. Sum scores as a point of departure 

The SweSAT is a college admissions test with multiple-choice items that are binary 

scored. The SweSAT consists of a quantitative and a verbal part, both having 8o items. In this 

paper, only the quantitative part was used. Sum scores are typically used, and these are then 

transformed into scaled scores that are comparable to other administrations of the test. We will 

denote sum scores with jS , 1,...,j N . In the left panel of Figure 1, the empirical distribution 

of the sum scores and the later-described optimal scores for 30,000 test takers who took the 

SweSAT are shown. It is noticeable that neither scores are normally distributed.  

The right panel in Figure 1 contains estimates of the 80 item response functions for the 

SweSAT estimated by the Ramsay and Wiberg (2017a) nonparametric procedure. It is obvious 

that the SweSAT is difficult for the majority of the test takers; the median score was 35, the 

lowest score was 4, and only a single individual achieved a perfect score. From the right panel 
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of Figure 1, it is evident that some items have rather flat ICCs and that some items are much 

more difficult than others. We especially note that a number of ICCs appear to reach flat upper 

asymptotes that are well below the value one predicted from the 3PL model, suggesting that 

these items, failed by even the brightest test takers, are in some way defective. If so, the sum 

score is then also defective since there is no assurance that a near perfect score is achievable. 

This highlights the main limitation of the sum score, which is that it takes no account of item 

performance, or of any interaction between item and test taker performance. That is, a low sum 

score may reflect poor item performance as well as limited ability, in which case the test taker 

is blamed for what is essentially not his fault by the use of the sum score.  

 

Figure 1. The left panel shows the empirical distributions of sum scores and optimal scores for 

the SweSAT and a smooth density function rescaled over [0,80] to overlay them. The right 

panel shows the ( )iP   curves estimated over the interval  0,80 . The vertical dashed lines are 

the 5%, 25%, 50%, 75% and 95% quintiles of the empirical distribution of the sum scores. 

 

3. Estimating the log-odds functions ( )iW   

Ramsay and Wiberg (2017a) first proposed nonparametric IRT scores in terms of optimal 

scores. Instead of estimating ( )iP  , they concentrated on estimating the log-odds function 

( )iW  . Because   is defined over a closed interval and the values of ( )iW   are unbounded, an 

efficient estimate of ( )iW   uses B-spline basis function expansions  

 ( ) ( )
K

i ik ikk
W     ,    (4) 
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where ( ) ( | , )k kB d    , ik  is the coefficient of the basis function, ( | , )kB d   is the B-

spline basis function, 𝜉 is a knot sequence, k is the number of spline functions, and d is the order 

of the spline. 

Figure 2 displays in its upper left panel ( )iW   for a 2PL ICC (a=1, b=c=0) and in the 

lower left for a 3PL ICC (a=1, b=0 ,c=0.25). We see that the log-odds transformation tends to 

convert probability curves into straight or only mildly curved shapes, which renders the task of 

approximating them much easier. However, when we transform   into percentage values using 

the scaled log-odds transformation, we see that both extremes for the 2PL model approach 

vertical asymptotes and the right extreme does so for the 3PL model. The left panel of Figure 3 

shows the ( )iW   curves for the SweSAT data, which correspond to the ( )iP   curves in the 

right panel of Figure 1. There we do not see any indication of asymptotic behavior for either 

extreme, and instead only a mild tendency to curvature. The W curves are more informative 

than the P curves because the two horizontal asymptotes of probability hide important 

information about how rapidly these asymptotes are being approached. 

 

Figure 2 The upper and lower left panels show the log-odds transformations of the item 

characteristic curves for 2PL and 3PL models, respectively. The right panels display these 
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curves when the argument   is mapped into the interval [0,100] using the scaled version of the 

log-odds transformation. 

 

Figure 3. The estimated log-odds functions ( )iW   for the SweSAT are displayed in the left 

panel. The item impact curves, /idW d , which provide the optimal weighting of the item 

scores, are displayed in the right panel. 

 

The log-odds function ( )W   is also preferable to the probability-valued ICC because of 

its pivotal role in the negative log likelihood equation (3), and we see its importance even more 

clearly in the first derivative of the negative log likelihood defined at the optimal   

d d
( ) 0

d d

n ni i
ij ii i

W W
U P 

 
   .   (5) 

The first of the two terms on the left side is a weighted sum of the data, the second is the same 

type of sum of the fit, and at the optimal   the two terms are equal. The n weights /idW d  

are the slopes of the log-odds functions at  , and determine the importance of each term in the 

sums. That is, the quality of the information provided by a response is measured by how fast 

the log-odds is increasing at  ; so that where ( )iW   is flat the response is completely 

uninformative. This tends to happen when the test taker either finds the item too easy to 

challenging or too difficult to permit any strategy other than guessing. On the other hand, 

locations where ( )iW  is sharply increasing are those where the response matters a great deal 

in estimating the test taker’s ability. 

If we know which wrong option a test taker chooses, this will provide additional 

information about   because some wrong options are more wrong than others. If data are 

available for which M  options are given, the scoring accuracy can be improved by modeling 
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the option choices using the functions ( ),  1,...,im iW m M  . Thus, the multinomial version of 

Eq. (5), where we are not bundling the wrong options into a single failure category, becomes 

 0i in M n Mim im
jim imi m i m

j j

dW dW
U P

d d 
   

    
      

    ,  (6) 

where /
jiiUdW d  is the slope of the option for item i chosen by test taker j at ability  . Here, 

too, we see a weighted sum over residuals, where the second term is the expected W(θ) slope 

that is required on the average to fit the data in the first term. The central idea captured by both 

Eq. (5) and Eq. (6) is that items vary in the shape of their log-odds functions ( )iW  , as is 

obvious from the left part of Figure 3.  

The 80 item slopes of the log-odds curves are shown for the SweSAT data in Figure 3. 

From the right panel we see that there are sub-groups of items that switch from high to low 

impact and from low to high impact. In other words, there is an interaction between performance 

and item impact that is missing in an a priori weight assignment, such as the unit weight that 

defines the sum score. The term “performance-sensitive scoring” might be a useful description 

of optimal scoring, and we might refer to the slope-log-odds functions as item impact curves. 

An interpretation of optimal scoring motivated by linear regression is that Eq. (5) is a 

continuum of regression models indexed by   for which the residuals ( )ij i jU P   are predicted 

by the single covariate /i jdW d , and the value of j  is chosen to satisfy the requirement in 

regression analysis that the residuals be orthogonal to the covariates. In the multi-option version 

of this equation, too, we see a weighted sum over residuals, where the second term is the 

expected W slope that is required on the average to fit the data in the first term.  

Ramsay and Wiberg (2017a) point out that a simple adequately accurate method for 

estimating the log-odds functions is to bin the score values jS  into K bins such that the numbers 

of scores in the bins are roughly equal, and then use spline smoothing over bin centers of the 

log-odds transformations of the bin proportions (Ramsay, Hooker and Graves, 2009). This took 

under a second for the SweSAT data.  

The distribution of θ is determined by the shapes of the estimated probability or log-odds 

functions, and since the initial smoothing uses sum scores as the abscissa values, the estimated 

ability distribution will resemble that of the sum scores as shown in Figure 1. This operation 

may be repeated but using optimal score estimates rather than sum scores in order to define a 

distribution that more closely resembles that for the optimal scores. 
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4. Comparing different test scores 

4.1 Optimal scoring in comparison with sum scoring 

If we wish to consider moving from sum scores to optimal scores, we should examine to what 

extent optimal scores deviate from sum scores. Figure 4 shows a contour plot of the density 

j jS   as a function of jS  for the SweSAT data. The differences might be as much as 20% of 

the score values near the median, but particularly striking is the tail to the right in the plot 

showing a considerable increase in scores for the high-performance test takers. In other words, 

high achievers would obtain a higher score if optimal scoring were used instead of sum scoring.  

 

Figure 4. A contour plot of the density of the optimal score minus the sum score as a function 

of the sum scores for the SweSAT data. The points lined up on the left of the contours are test 

takers who were assigned scores of 80, and the numbers indicate the number assigned. 

4.2 Optimal-scoring ICC in comparison with parametric IRT ICC 

Parametric IRT is widely used among test constructors because it is believed that, given one of 

these parametric families, the estimated scores are invariant over different samples. Although 

many items can be modeled with a parametric IRT model, a problem is that even in a well-

designed large-scale assessment such as SweSAT there are some items that do not fit a 

parametric IRT model. The different lines in the two SweSAT items in Figure 5 correspond to 

an ICC from a 3PL IRT model and from spline smoothing. To generate these figures, we first 

binned the observed data in 25 bins containing equal numbers of test takers. Thus, the circles 

in the figures represent the middle values of each of the bin intervals. Clearly, nonparametric 

IRT in terms of optimal scoring allows us to model items that do not have a good fit to 

commonly used parametric IRT models. Of course, it is appropriate to suggest that all we have 

to do is to add a parameter or two to provide more flexibility, but the well-known difficulty of 

computing the lower asymptote parameter is likely to persist, and the spline curves shown in 



10 
 

the figure involved only five parameters and their estimation of these parameters is a far faster 

and more stable process. 

 

Figure 5. The fits to the log-odds data for two SweSAT test items (items 54 and 55) using the 

3PL model (solid line) and spline smoothing (dashed line). 

4.3 Comparison of the three different test scores 

To explore how the different test scoring methods perform, we compared the efficiencies of 

sum scores, parametric IRT scores, and optimal scores. We simulated data where the population 

was defined by the iW  curves and the j s estimated from the SweSAT data. To assess recovery 

of  , the root mean squared error (RMSE) of   was used because the RMSE is composed of 

both the bias and sampling variance. We also examined the average bias over  . We did not 

use correlations because correlations are a global measure, and work best if we have a linear 

relationship, which was not the case here. There are two estimation situations: (1) the functions 

( )iW   have been pre-calibrated and can be taken as known, or (2) the same data are used to 

assess test takers and to estimate item characteristics. In our simulation analyses, we found that 

the two types of analysis are practically indistinguishable for 1000N  . The RMSE of   

inevitably increases if it has to share information with the parameters that define the iW  

functions, but our experience suggests that the RMSE can still be a useful statistic for N on the 

order 400 or so (Ramsay & Wiberg, 2017a).  

Our simulation strategy had to deal with the identification of the distribution of  . In 

order to give sum scores the maximum advantage, we simulated test data using a smooth 
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estimate of the density of the sum scores based on an actual set of data as the template 

distribution. Because we had 30,000 test takers, we could assume that the iW  functions were 

known (i.e. situation 1 above) and that we only needed to simulate the test takers’ responses. 

The analyses of both the real and simulated data used the estimation of log-odds function 

approach given in Ramsay and Wiberg (2017a). The results reported here are based on 

simulations that emulated the SweSAT, and consequently Figures 1 and 3 can be consulted for 

information about the test characteristics. In particular, it should be noted that a number of items 

failed to reach 1iP  , thus sum scores near 80 are rare. 

We simulated 1,000 test takers’ responses and used the 81 sum score values as fixed 

values of   so that we could examine how RMSE varied over  . For each value of  , sum 

scores, optimal scores computed from spline estimates of log-odds functions, and optimal 

scores computed from 3PL IRT scores were averaged across 1,000 simulated samples. The 

Matlab code used in the simulation study is given as a supplementary file. The top and bottom 

panels of Figure 6 show the average bias and the average RMSE for the three estimates as a 

function of  , respectively. For the central 90% of the test takers, the optimal scores and sum 

scores are essentially unbiassed, the 3PL scores exhibit some bias, but the sum score and 3PL 

biases are much larger for the 10% of the most extreme scores. Low-end test takers get a boost 

from the sum scores and optimal 3PL scores, but the high-performing test takers lose as much 

as five items relative to the   values used to generate the data. 



12 
 

 

Figure 6. The top panel shows the average bias of   estimates, and the bottom panel shows the 

average RMSE of   estimates for the SweSAT data. The solid lines are for optimal scores 

estimated from nonparametric log-odds estimates, the dashed lines are for sum score estimates 

and the dotted lines are for 3PL log-odds estimates.   

The RMSE’s for the sum and optimal 3PL scores are larger than the RMSE’s for optimal 

nonparametric scores for the majority of the central 90% of test takers. The average 

improvement of the optimal nonparametric score RMSE over the sum score RMSE is 6.8%, 

corresponding to a mean squared error (MSE) improvement of 14%. Because the MSE declines 

in proportion to 1/ n , we see that the sum-scored SweSAT would have to be 14 items longer 

than an optimally scored test in order to achieve the same average accuracy. For test takers not 

too far from the 5% quantiles, the weighting used for optimal scoring effectively decreases the 

amount of information available for estimation and therefore has the larger RMSE. On the other 

hand, for test takers with nearly zero or perfect scores, the biases dominate the sampling 

variance and inflate the RMSE. The tail on the right of the contour plot in Figure 4 shows how 

optimal scoring compensates high-performance test takers for the negative bias in sum scores. 

In particular, 49 test takers with sum scores ranging from 73 to 80 were assigned optimal scores 

of 80. We believe this to be realistic given the size of the sample. These results for optimal 

scores compared with sum scores are in line with those in Ramsay and Wiberg (2017a) who 
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showed simulation results over the score intervals for three exams using the scenario where 

there is joint estimation of iW  functions and optimal scores. 

 

Figure 7. Results for a test taker with a sum score of 76 and an optimal score of 80. The upper 

left panel shows the negative log likelihood function, which is minimized at a score of 80. The 

dashed line shows the sum score for this test taker, and the solid line shows the optimal score. 

The upper right panel shows the iW  functions for the four items that this test taker answered 

incorrectly. The lower left panel shows the 20 iW  derivatives with the highest values at a score 

of 76, and the lower right panel shows the derivatives for the 20 iW  derivatives with the lowest 

values. 

 

The task of explaining the differences between optimal scores, parametric IRT scores, 

and sum scores to test takers who are accustomed to sum scores will be challenging. Figure 7 

shows what happens for a test taker who answered four items incorrectly but nevertheless was 

assigned an optimal score of 80, as shown in the upper right panel. The iW  functions for the 

incorrect items in the upper right panel are not particularly informative, and at a score of 76 

these are still well below the best curves in Figures 1 and 2. Thus it is not unusual for a high-

performance test taker to get items like these wrong. The bottom two panels show the iW  

derivatives for curves with the highest and lowest values at a score of 76. In particular, we see 

in the lower left panel in Figure 7 that these high weights are more or less constant between 

scores of 76 and 80, and consequently the maximum likelihood estimate criterion is tending to 

treat all test takers in this elite range the same. 
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5. Discussion 

The overall aim of this work was to show how nonparametric IRT in terms of optimal scoring 

is preferable to sum scoring and even optimal parametric IRT scoring. To do this, we used a 

sample from one administration of the SweSAT. From Figure 1 we can see that the empirical 

distribution is somewhat right skewed. It has been shown previously that the distribution of 𝜃 

is arbitrary, but this can be turned into an asset because it allows us to model ICCs over any 

interval. Here we chose to score them over closed intervals because the results are easier to 

interpret than if the whole real line is used. By defining 𝜃 over the range of sum scores or 

percentage, we can make a nose-to-nose comparison of their efficiencies and can communicate 

the results in more understandable terms to the test takers.  

In the sample data used here, the average RMSE and average bias were lower for optimal 

scores and thus such scores are to be preferred everywhere over the sum scores. A problem with 

the sum score is that it is severely positively biased for the weakest test takers and negatively 

biased for the strongest test takers. Bias in statistics is usually considered intolerable except in 

situations where it can greatly decrease RMSE. In an admissions test like SweSAT this is 

especially harmful as top achievers might still not get accepted to the university program of 

their choice. We can also expect greater benefits from using optimal scoring for tests developed 

in messier environments, for example, intermediate-sized government agencies, such as in the 

case of the four provincial exams given to all students in the province of Ontario, Canada.  

An attractive feature of optimal scoring in comparison to parametric IRT scoring is the 

added flexibility of using smoothing estimates of the log-odds functions ( )iW  . Low-

dimensional models like the 2PL or the 3PL IRT models might look nice, but the data do not 

always agree with such models, especially if the underlying distribution differs from the 

assumptions the models rely on. The sum scores are still useful in some situations, but if we put 

some effort into explaining how the maximum likelihood-weighted score works, optimal scores 

should be seen by test developer and test taker as preferable. We are, however, well aware that 

switching from sum scores to optimal scores will not be easy in practice. Parametric IRT is 

useful if we have test data that agree with the chosen model, but our practical experience as 

well as the SweSAT example suggest that there are always items – even in well-designed tests 

– that do not fit a parametric IRT model very well. 

The MSE and RMSE require that the point estimates are on the same scale, thus a point-

to-point comparison of the sum score to a competitor score requires that the two scores be on 

the same metric. The recasting of psychometric theory into closed intervals anchored at 0 seems 
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essential to make comparisons and provides a natural medium for discussing performance 

estimates with test takers and test constructors. Our results show that even well-designed tests 

can be improved in terms of accuracy if optimal scoring is used, and the average improvement 

in test scores is about 6% for 90% of the test takers. An improvement in the test score might 

matter a lot for the best test takers, and because the SweSAT is a college admissions test this 

could be the difference between being accepted to the university program of one’s choice or 

not.  

Our improvement in assessment accuracy rests on the combinations on four features, 

each of which has technical as well cosmetic implications. First, transposing to the domains 

[0,n] and [0,100] that are familiar to everyone permits us to use B-spline bases to  represent 

both the option curves and the density of the scores. It also enables a point-wise assessment of 

bias and MSE for the optimal and sum scores rather than the often-used correlation criterion, 

which is only a global measure of linear agreement. This in turn highlights the bias issues for 

extreme scores and the sampling variance issue for moderate scores. Secondly, we use the 

log-odds or logit transform to map observed proportions into values W(θ) with an unrestricted 

range. Thirdly, by binning the ordered scores so that they have roughly equal frequencies, we 

can use an extremely fast spline data-smoothing algorithm that can fit the log-odds data to an 

arbitrarily high level of precision and which is relatively stable in the low data-density 

extremes of the ability continuum. We can thus fit well even ill-behaved items which are 

usually not fit very well by parameter IRT models. Finally, the derivative of this log-odds 

transformation is a point-wise measure of the discriminability of the item at a specific score 

value that defines the weights in a differentially weighted sum score that in turn defines the 

maximum likelihood estimate of an examinee’s ability conditional on the estimated logit 

curves. 

We refer to this package as optimal score estimation, not in the sense that it is the best 

possible, but because it optimizes the likelihood of an examinee’s response sequence using an 

item response model that is as accurate as we choose. By contrast, the sum score does not 

optimize any criterion, including the likelihood of the Rasch model, even in the unlikely 

circumstance that it could provide a reasonable fit to the data. Of course, the maximum 

likelihood criterion assumes local independence and that the true score lies within a compact 

set. In our on-going development, we expect to be able support deviations from these 

assumptions as well. 

Although we show in this paper that the use closed-interval analogues of popular 

parametric models defined over [-∞,∞] do not have the capacity to fit that data that we analyze, 
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we are left with the interesting question of how many parameters a parametric model would 

need to have to provide a comparable fit to the data. Our use of functional principal components 

analysis of the log-odds curves suggests that about six would be required, and indeed, we see 

that using six B-spline basis functions also does well in representing the log-odds curves and 

supporting optimal scoring. 

Future research can go in many different directions. Where deemed appropriate, 

covariates are often available that shed further light on the state of the test taker. The use of 

covariates such as age, gender, educational background, and so on is not encouraged in 

academic testing, although there are recent examples of using covariates successfully in test 

equating (Wiberg and Bränberg, 2015). Covariates are certainly important in clinical 

assessment contexts provided that disclosure issues and other considerations are properly dealt 

with. Future research should also extend the proposed approach to polytomously-scored items 

and to multidimensional tests. It is also important to examine different types of tests. In this 

paper we had almost no one scoring at or near the endpoints and it is thus of interest to examine 

a diversity of tests and compare the results to other scores. 

Another important step is to make the results available to other researchers and test 

constructors. We are currently developing a new version of the TestGraf program described by 

Ramsay (2000) for both Microsoft and Apple operating systems that aims to provide much of 

this capability. We also envisage software that is executable on mobile devices and available 

through bubble-sheet scoring services. The test takers, who spend hours providing the data, 

have a right to know not only their final score, but also how it was obtained, what alternative 

scoring methods were available, confidence limits, score distributions, and other inferential 

material to help them understand their performance on the test. For example, full disclosure of 

the SweSAT items is required in Sweden. The voices of parents of gifted children who realize 

what the tail in the contour plot in Figure 4 implies are apt to be a powerful aid in selling the 

idea of performance-sensitive testing. The simulation analyses presented here, especially in 

comparison to sum scores, should help to persuade test administrators to use optimal scoring of 

their data. A future challenge is however to describe for test taker what optimal scores are and 

to make them understand how they work. 

An important step in making optimal scoring more mainstream is to construct simulation 

applications that can accept real data in a wide range of formats as discussed in Ramsay and 

Wiberg (2017b). Those can minimize the work involved in setting up a simulation based on 

these real data, that are fast enough to permit demonstrations within a meeting situation, and 

that come equipped with the kind of graphical display and automatically generated 
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documentation that executives and managers will find useful. The principles for such software 

have already been demonstrated by applications in both the R and Matlab communities, but our 

own progress in this direction is limited. It should, however, be doable because the proposed 

approach has proven to be computationally fast. The simulation experiment with the SweSAT 

data only took about four minutes with an iMac with four processors running in parallel.  

We began our research with the question, “Can we improve the scores given to test 

takers?” We are immensely excited by the opportunities that come with optimal scoring, and 

we believe that further use of such methods will show that reducing testing data to a binary 

form wastes a significant amount of useful information. Moreover, we believe that, as valuable 

as the unidimensional model for multiple-choice tests has been, it has its limitations and it is 

worth taking the leap towards using new and more efficient statistical methodologies.  
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