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This paper presents implementation of optimal search strategy (OSS) in verification of assembly process based on neural vibration
learning. The application problem is the complex robot assembly of miniature parts in the example of mating the gears of one
multistage planetary speed reducer. Assembly of tube over the planetary gears was noticed as the most difficult problem of overall
assembly. The favourable influence of vibration and rotation movement on compensation of tolerance was also observed. With
the proposed neural-network-based learning algorithm, it is possible to find extended scope of vibration state parameter. Using
optimal search strategy based on minimal distance path between vibration parameter stage sets (amplitude and frequencies of
robots gripe vibration) and recovery parameter algorithm, we can improve the robot assembly behaviour, that is, allow the
fastest possible way of mating. We have verified by using simulation programs that search strategy is suitable for the situation
of unexpected events due to uncertainties.

1. Introduction

The planning is a key ability of intelligent systems, increas-
ing their autonomy, reliabilities, efficiently and flexibility
through the construction of sequences of actions to achieve
their goals [1]. In artificial intelligence, planning originally
meant a search for a sequence of logical operators or actions
that transform an initial world state into a desired goal
state. Robot motion planning usually ignores dynamics and
considers other aspects, such as uncertainties, differential
constraints, modeling uncertainties, and optimality. The
robotic assembly, wheelchair navigation, sewer inspection
robot, autonomous driving system in urban and off-road
environments, and machine’s task planning for the robotic
system all are examples of autonomous systems, which solve
path planning/replanning problems [2, 3].

Dynamic replanning is necessary because at any time
during execution of its tasks the robot might unexpect-
edly run into problems [2]. The typical approach used for
replanning is repair plans, which are prepared in advance and

invoked to deal with specific exceptions during execution.
This class of approaches may work well in relatively static and
predictable environment. In more dynamic and uncertain
environment where it is hard to anticipate possible excep-
tions, the replanning generates a (partially) new plan in case
when one or more actions have problems during execution
[4].

Very interesting area of research is using planning
strategies in robot assembly. The example components can
be assembled faster, gentle, and more reliably using the
intelligent techniques. In order to create robot behaviours
that are similarly intelligent, we seek inspiration from
human strategies date [5]. The working theory is that
the human accomplishes an assembly in phases, with a
defined behaviour and a subgoal in each phase. The human
changes behaviours according to events that occur during the
assembly, and the behaviour is consistent between the events.
The human’s strategy is similar to a discrete event system in
that the human progresses through a series of behavioural
states separated by recognizable physical events.
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The primary source of difficulty in automated assembly
is the uncertainty in the relative position of the parts being
assembled [6]. The crucial thing in robot assembly is how to
enable a robot to accomplish a task successfully in spite of the
inevitable uncertainties. Often a robot motion may fail and
result in some unintended contact between the part held by
the robot and the environment.

There are generally three types of approaches to tackle
this problem. One is to model the effect of uncertainties
in the off-line planning process, but computability is the
crucial issue. A different approach is to rely on on-line
sensing to identify errors caused by uncertainties in a motion
process and to replan the motion in realtime based on sensed
information. The third approach is to use task-dependent
knowledge to obtain efficient strategies for specific tasks
rather than focusing on generic strategies independent of
tasks.

A systematic replanning approach which consisted of
patch planning based on contact analyses and motion
strategy planning based on constraints on nominal and
uncertainty parameters of sensing and motion is introduced
in [7]. In order to test the effectiveness of the replanning
approach, they have developed a general geometric simulator
SimRep which implements the replanning algorithms, allows
flexible design of task environments and modeling of
nominal and uncertainty parameters to run the algorithms,
and simulates the kinematics robot motions guided by the
replanning algorithms in the presence of uncertainties.

Another possibility in achieving acceptably fast robot
behavior with assuring contact stability is learning unstruc-
tured uncertainties in robot manipulators date. The example
components can be assembled faster, gentle, and more
reliably using the intelligent techniques. Many promising
intelligent control methods have been investigated [5, 8]. For
example, work in [9] describes intelligent mechanical assem-
bly system. Correct assembly path is chosen by using form of
genetic algorithm search, so the new vectors are evolved from
most successful “parents.” Another possibility in achieving
acceptably fast robot behavior with assuring contact stability
is learning unstructured uncertainties in robot manipulators
date. The paper [10] presents implementation of intelligent
search strategy based on genetic algorithm in verification of
assembly process in the presence of uncertainties.

The main contribution of our work is using optimal
search strategy in combination with robot learning from
experimental setup. The research platform is the complex
robot assembly of miniature parts in the example of mating
the gears of one multistage planetary speed reducer. Assem-
bly of tube over the planetary gears was noticed as the most
difficult problem of overall assembly, and favorable influence
of vibration and rotation movement on compensation of tol-
erance was also observed. For robotic assembly, the tolerance
is especially difficult problem because in process of mating
it must be compensated, but it takes time and requires
corresponding algorithms. In order to compensate tolerance
during robot assembly, we plan motion, involving path
alternatives to yield minimum distance. The neural-network-
based learning gave us new successful vibration solutions
for each stage of reducer [11]. In this paper, we introduce

optimal search strategy based on vibration parameters state
in order to overcome uncertainties during motion planning.

2. Robot Assembly

The first part of our research was the complex robot assembly
of miniature parts in the example of mating the gears of
one multistage planetary speed reducer. The main difficulty
in assembly of planetary speed reducers is the installation
of tube over planetary wheels. Namely, the teeth of all
three planetary wheels must be mated with toothed tube.
Figure 1 presents planetary speed reducer (cross-section
20 mm, height of five stages 36 mm), which has been used
for experiments.

In this research, it has not been considered the complete
assembly of each part of planetary reducer but only the
process of connecting the toothed tube to five-stage planetary
reducer. By solving the problem of assembly of the gears,
there will be no problem to realise complete assembly of
planetary speed reducer.

For the process of assembly, the vertical-articulated robot
with six degrees of freedom, type S-420i of the firm FANUC
has been used, completed by vibration module (Figure 2),
developed at Fraunhofer-IPA in Stuttgart, Germany.

Namely, the analysis of assembly process showed that
movement based on vibration and rotation acted positively
on the course of process. Vibration module produced
vibration in x- and y-direction and rotation around the z-
axis.

By starting the robot work, vibration module vibrated
with determined amplitude (±2 mm) and frequency (to
max. 10 Hz) for each stage of reducer. The ideal Lisague
figures (double eight, circle and line) have been used as
figures of vibration for extensive experiments. The vibration
figure horizontal EIGHT (Figure 3) was selected for waiter
experiments, because we achieved the best performance in
assembly process. In that case, the frequency ratio between
down and above plate was fD/ fU = 2.

During the robot assembly of two or more parts, we
encountered the problem of tolerance compensation.

According to the functioning, the individual systems of
tolerance compensation can be divided into:

(i) controllable (active) system for tolerance compen-
sation in which, on base of sensor information on
tolerance, the correction of movement is made for the
purpose of tolerance compensation;

(ii) uncontrollable (passive) system for tolerance com-
pensation in which the orientation of external parts
is achieved by the means of advanced determined
strategy of searching or forced by connection forces;

(iii) combination of above two cases.

For this system of assembly, the passive mechanism
of tolerance compensation has been used with specially
adjusted vibration of installation tools [12]. The assembly
process started with gripe positioning together with toothed
tube exactly 5 mm above the base part of planetary reducer
and continued in direction of negative z-axis (Figure 4).
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Figure 1: (a) One stage of planetary reducer, (b) planetary speed
reducer with 5 stages.

Figure 2: Vibration module.

In order to compensate tolerance during robot assembly,
in experimental setup, we used the “search strategy”, which
adjusted amplitudes and frequencies gained from experi-
mental experience (amplitudes of upper and down plate,
frequencies of upper and down plate). As optimum values
of amplitudes of down and above plate that were valid for all
stages of reducer are AD = AU = 0.8 mm.

From experiments, we gained that smaller frequencies of
vibration were better ( fD/ fU = 4/2 or 6/3) for 1-2 stage
(counting of stages starts from up to down), while for each
next stage the assembly process was made better with higher
frequencies ( fD/ fU = 8/4 or 10/5).

In case of jamming from different physical reasons
(position, friction, force, etc.), robot returned to beginning
of current reducer stage, where the jamming was made. It
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Figure 3: One example of vibration figure—EIGHT ( fD/ fU = 8/4,
AD/AU = 0.5/0.5).

exploited the technique of blind search in optimal parameter
space with repeated trials at manipulation tasks. When the
jamming had been overcome, robot kept moving until it
reached the final point in assembly.

The used speeds of robot were from 4–20 mm/s. The time
of complete assembly process for a given range of speeds
was a function of frequency, amplitude of upper and lower
plate of vibration module, amplitude and frequency of motor
rotation, and the speed of motor movement in z-direction.
The fastest process of assembly was for robot movement
speed of 16 mm/s. Then, the complete process of assembly
was only 4 s.

There were extensive experimental complex investiga-
tions made for the purpose of finding the optimum solution,
because many parameters had to be specified in order
to complete assembly process in defined realtime. But,
tuning those parameters through experimental discovering
for improved performance is a time-consuming process.
To make this search strategy more intelligent, additional
learning software was created to enable improvements of per-
formance.

3. Advanced Replanning

The planning involves the representation of actions and
world models, reasoning about the effects of actions, and
techniques for efficiently searching the space of possible
plans. Famous search algorithms tailored to planning prob-
lems are heuristic search algorithms (A∗, D∗, and Dijkstra
algorithm) and their variants.

The planning under uncertainty is a hard job and
requires replanning task structure. For example, the robot
has to be able to plan the demonstrated task before executing
it if the state of the environment has changed after the
demonstration took place. The objects to be manipulated
are not necessarily at the same positions as during the
demonstration, and thus the robot may be facing a particular
starting configuration it has never seen before.



4 Journal of Robotics

(a) (b)

(c) (d)

Figure 4: Particular phases of assembly process.

The replanning is used as specific case of planning
process (in case of jamming). Combining with the planning
operation, we can describe the replanning strategy as fol-
lows.

(1) Given the initial planning problem Pa = (S,G),
where S is an initial state parameter, G is a goal state
parameter, a plan Pa is a network of actions that lead
from S to G (result from optimal search strategy is set
of states parameters).

(2) If an action u in Pa fails, we define a replanning area
RA = {u}.

(3) RA is treated as a partially/new plan, and construct
a planning problem P′b = (S′,G), where S′ is a new
start point used by RA. P′b is a partially set of states

parameters, produced by RA as effects of new optimal
search strategy.

(4) We search for a plan for P′b. P′b replaces Pa in RA, and
go to 5. If new action in Pa fails, we go to 2.

(5) Resume the execution of P′b.

In order for the robots to react to stochastic and dynamic
environments, they need to learn how to optimally adapt to
uncertainty and unforeseen changes [13]. The robot learning
covers a rather large field, from learning to perceive, to
plan, to make decisions, and so forth. Learning control
is concerned with learning control in simulated or actual
physical robots. It refers to the process of acquiring a control
strategy for a particular control system and particular task by
trial and error.
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In our research, we use this concept state and action
order to describe the relationships between the parts being
assembled. Namely, the states are assembly parameters—
vibration amplitudes and frequencies for each planetary
reducer stage and transition actions (minimal path) are used
to move through assembly process from one stage to another
of planetary reducer.

Our planning/replanning search strategy consists of three
phase:

(i) learning phase (assembly through the states in X , try
various actions, and data collecting),

(ii) planning phase,

(iii) replanning phase.

We use neural-network-based learning which gives us
new successful vibration solutions for each stage of reducer.
With this extended vibration parameters as source infor-
mation for planning/replanning task, we introduce optimal
search strategy for robot assembly (Figure 5).

The error model is used to model various dynamic
effects of uncertainties and physical constraints by jamming.
Combing the efforts of the planner and learned optimal
values, the replanner is expected to guarantee that agent
system enters the region of convergence of its final target
location.

4. Neural Aspects of Robot Assembly Learning

Machine learning usually refers to the changes in systems that
perform tasks associated with artificial intelligence [14]. The
changes might be either enhancement to already performing
systems or synthesis of new system.

In order for the robots to react to stochastic and
dynamic environments, they need to learn how to optimally
adapt to uncertainty and unforeseen changes [13]. Artificial
neural networks are capable of modeling complex mappings
between the inputs and outputs of a system up to an arbitrary
precision [15]. Process of “capturing” the unknown infor-
mation is called “learning of neural network” or “training of
neural network”. In mathematical formalism to learn means
to adjust the free parameters (synaptic weight coefficients
and bias levels) in such a way that some conditions are
fulfilled [16].

There exist many types of neural networks, but the basic
principles are very similar. Neural-network-based learning is
used in this research to generate wider scope of parameters
in order to improve the robot behaviour. The amplitude
and frequencies vibration data are collected during assembly
experiments and are used as sources of information for the
learning algorithm.

In our research, we used multilayer feed-forward neural
networks (MLF) and Elman neural networks. MLFs, trained
with a backpropagation learning algorithm, are the most
popular neural networks. Elman neural network differs from
conventional ones in that the input layer has a recurrent
connection with the hidden one. Therefore, at each time
step, the output values of the hidden units are copied to
the input ones, which store them and use them for the next

time step. This process allows the network to memorize some
information from the past, in such a way to better detect
periodicity of the patterns [17].

We expected that Elman neural network will be better
than a standard MLF in our application, but we got the better
results with MLF. Namely, MLF is better for learning in order
to extend learning area parameters.

In our research, we used MLF neural network containing
10 tansig neurons in hidden layer and 1 purelin neuron in its
output layer. The feed-forward neural networks were formed
and tested for each stage of assembly process. Each one was
initialized with random amplitudesAU = AD = Ai between 0
and 2 and frequencies values fi between 0 through 4. Namely,
the range of the frequencies measurement is normalized by
mapping from frequencies ratio fU / fD = (4/2, 6/3, 8/4, 10/5)
onto the range of the state frequencies values (0 through 4).
To trains the MLF network, we used 35 vibrations sets for
each 5 phases of assembly. The mean square errors (MSE)
during the training of 5 MLF networks were achieved for 7–
10 epochs. Two thousand data points were taken as a testing
sample.

The feed-forward neural networks were formed and
tested for each stage of assembly process. The following
pictures (Figures 6, 7, and 8) present learning of new optimal
stage vibration sets indicated by their respective picture.

The results show that the scope of adjusted vibration
parameters obtained from autonomous learning is extended
in respect to adjusted vibration sets from experimental robot
assembly. We can see that critical moment in assembly
process is second phase, which presents medium clutter
position of optimal vibration parameter sets through stages.
Second phase presents discontinuity between first and third
phases in clutter space.

The search strategy involved in assembly experiments
exploited the technique of blind search of optimal vibration
values in repeated trials in each stage. If selected optimal
value is in discontinuity area, then the path between one
selected optimal stage parameter set and another will be
outside of cone (Figure 9).

In this case, the tolerance compensation is not achieved,
because position tolerance of some stage D is greater than
admitted position tolerance D0. In order to solve this
problem, we introduce optimal search strategy.

5. Optimal Search Strategy

Rather than being satisfied with any sequence of actions that
leads to the goal set, we would like to propose a solution
that would optimize some criterion, such as time, distance,
or energy consumed, that is, we talk about optimal planning
[1].

Consider representing the optimal planning problem in
terms of states and state transitions. Let X be a nonempty,
finite set of states, which is called the state space. Let x ∈ X
denote a specific state, xI denote the initial state, and xG ∈ X
denote a goal states.

For each x ∈ X , let U(x) denote a nonempty, finite set
of actions. Let L denote the function, which is applied to
the sequence u1, . . . ,uK of applied actions and achieved states
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Figure 5: Optimal replanning strategy based on neural learning.
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Figure 6: Results of neural network training for first stage.

x1, . . . , xG. The task is to find a sequence of actions, u1, . . . ,uK
that minimizes cost for each segment Lk, that is,

L∗k = min
uk

(li(sk,uk)). (1)

A path L is defined as a series of linear segments Lk
connecting state points (Pk,Pk+1), k = 1, . . . ,N .

In our research, the problem with applied search strategy
in experiments was in case of behaviour switching (case of
assembly jamming). The search strategy tried to continue
assembly process with another optimal, but blind chosen
parameter state value. But, using Optimal Search Strategy,
we use the transition action with minimal distance between
vibration state sets:

L∗k = min
di

(

di
((

Ak, fk
)

,uk
))

. (2)
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Figure 7: Results of neural network training for second stage.

An algorithm finds minimal distance vector from selected
optimal value (Ai, fi), i = 1, . . . ,N from current extended
vibration state sk gained from learning process towards next
vibration state sk+1. The minimal path between two phases is
in cone, and we have compensated tolerance (D < D0), see
Figure 10.

In case of jamming (in our simulator: error event
signal), we propose recovery parameter algorithm with learned
optimal values, which offers new plan for path tracking
during simulation of robot assembly.

We can explain this with next example. Figure 10 presents
next situation: system detects error event during second state
of assembly and strategy try to continue assembly process
with another optimal set value (A′2, f ′2 ) from state s2. This
value is optimal parameter value, which distance is mean
value of all distances from state s1 to state s2.
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Figure 8: Results of neural network training for third stage.
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We make enough offset from this critical optimal point
to another optimal solution (Figure 11). After that, strategy
establishes action between values (A′2, f ′2 ) and (A′3, f ′3 ).

Backward formulation of the optimal cost of each seg-
ment to the goal:

L∗k = min
d′i

(

d′i
((

A′k, f ′k

)

,u′k

))

. (3)

To demonstrate the validity of this paradigm, we present
test results obtained by implementation of robot assembly
agent in Matlab. Some results of using optimal search
strategy are demonstrated in Table 1.
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Graphical demonstration of optimal search strategy
without jamming (first case) is shown in Figure 12. For sec-
ond and third cases, the replanning is necessary.

We consider the second case (Figure 13). In case of
detecting of error event signal in first level, search strategy
tries instead optimal value (1.28, 1.68) to continue assembly
process with another optimal assembly vibration parameter
stage set value (1.39, 0.85)∗. New transition action is made
from this new optimal value from current state with minimal
path distance towards optimal vibration parameter stage
set in next state (1.42, 0.94). But, replanning is necessary
with new optimal value for the second stage (1.14, 2.25)∗.
Assembly process goes until it reaches the final point in
assembly simulation process.
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Table 1: Examples of using optimal search strategy.

N Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

(1)
(1.32, 1.66) (1.31, 1.59) (0.59, 2.72) (0.59, 2.74) (0.61, 2.67)

— — — — —

(2)
(1.28, 1.68) (1.42, 0.94) (0.53, 2.60) (0.56, 2.58) (0.57, 2.59)

(1.39, 0.85)∗ (1.14, 2.25)∗

(3)
(1.36, 1.70) (1.32, 1.75) (0.47, 2.58) (0.53, 2.74) (0.39, 2.81)

(1.29, 0.72)∗
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Figure 12: Presentation of Optimal search strategy without error
event signals.
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Figure 13: Presentation of Optimal search strategy with error event
signals (backward case).

In third case, agent starts with vibration value (1.36,
1.70). In case of detecting of error event signal in sec-
ond state, deterministic search strategy tries instead opti-
mal value (1.32, 1.75) to continue assembly process with
another optimal assembly vibration parameter stage set value
(1.29, 0.72)∗. New transition action is made from this new

optimal value from current state with minimal path distance
towards optimal vibration parameter stage set in next state,
until it reaches the final point in assembly simulation process.

6. Conclusion

In this paper, the problem of path planning/replanning due
to unexpected events during robot assembly is presented. As
an example of robot assembly, it was researched the complex
assembly of toothed tube over planetary gears. Important
contribution of paper is solving tolerance compensation’s
problem using combination search strategy and neural
learning approach. Namely, we used an approach with task-
dependent knowledge to obtain efficient strategy for specific
task.

The supervised neural-network-based learning is used to
generate wider scope of vibration state parameters in order to
accommodate the uncertainty in complex assembly of tube
over planetary gears in case of jamming. The optimal search
strategy is used to reach a goal matting point with minimum
segment cost, that is, with minimal time of robot assembly.

In order to verify this approach, we have tested the
several model data by computer simulation. The results
show this approach satisfactorily solves the complex problem
of tolerance compensation under uncertainty regardless of
their complexity. This intelligently based path replanner
has evolved to be suitable for number forms of robot
planning/replanning tasks.
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