
Optimal Security Hardening Using Multi-objective
Optimization on Attack Tree Models of Networks

Rinku Dewri, Nayot Poolsappasit, Indrajit Ray and Darrell Whitley
Department of Computer Science

Colorado State University
Fort Collins, CO 80523, USA

{rinku,nayot,indrajit,whitley}@cs.colostate.edu

ABSTRACT

Researchers have previously looked into the problem of de-
termining if a given set of security hardening measures can
effectively make a networked system secure. Many of them
also addressed the problem of minimizing the total cost of
implementing these hardening measures, given costs for in-
dividual measures. However, system administrators are of-
ten faced with a more challenging problem since they have
to work within a fixed budget which may be less than the
minimum cost of system hardening. Their problem is how
to select a subset of security hardening measures so as to
be within the budget and yet minimize the residual damage
to the system caused by not plugging all required security
holes. In this work, we develop a systematic approach to
solve this problem by formulating it as a multi-objective op-
timization problem on an attack tree model of the system
and then use an evolutionary algorithm to solve it.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Network]: Network
Operations—Network management ; C.2.0 [Computer-Co

mmunication Network]: General—Security and protec-
tion

General Terms

Security

Keywords

Security management, Attack trees, Multi-objective opti-
mization

1. INTRODUCTION
Network-based computer systems form an integral part of

any information technology infrastructure today. The dif-
ferent levels of connectivity between these systems directly
facilitate the circulation of information within an organiza-
tion, thereby reducing invaluable wait time and increasing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...$5.00.

the overall throughput. As an organization’s operational
capacity becomes more and more dependent on networked
computing systems, the need to maintain accessibility to the
resources associated with such systems has become a neces-
sity. Any weakness or vulnerability that could result in the
breakdown of the network has direct consequence on the
amount of yield manageable by the organization. This, in
turn, requires the organization to not only consider the ad-
vantages of utilizing a networked system, but also consider
the costs associated with managing the system.

With cost-effectiveness occurring as a major factor in de-
ciding the extent to which an organization would secure its
network, it is not sufficient to detect the presence or absence
of a vulnerability and implement a security measure to rec-
tify it. Further analysis is required to understand the con-
tribution of the vulnerabilities towards any possible damage
to the organization’s assets. Often, vulnerabilities are not
exploited in isolation, but rather used in groups to compro-
mise a system. Similarly, security policies can have a cover-
age for multiple vulnerabilities. Thus, cost-effective security
management requires researchers to evaluate the different
scenarios that can lead to the damage of a secured asset,
and then come up with an optimal set of security policies to
defend such assets.

Researchers have proposed building security models for
networked systems using paradigms like attack graphs [1,
11, 15, 18, 20] and attack trees [6, 13, 16, 17], and then
finding attack paths in these models to determine scenarios
that could lead to damage. However, determining possible
attack paths, although useful, does not help the system ad-
ministrators much. They are more interested in determining
the best possible way of defending their network in terms of
an enumerated set of hardening options [14]. Moreover, the
system administrator has to work within a given set of bud-
get constraints which may preclude her from implementing
all possible hardening measures or even measures that cover
all the weak spots. Thus, the system administrator needs to
find a trade-off between the cost of implementing a subset of
security hardening measures and the damage that can po-
tentially happen to the system if certain weak spots are left
unpatched. In addition, the system administrator may also
want to determine optimal robust solutions. These are sets
of security hardening measures that have the property that
even if some of the measures within a set fail, the system is
still not compromised.

We believe that the problem should be addressed in a
more systematic manner, utilizing the different tools of op-
timization at hand. A decision maker would possibly make a

better choice by successively exploring the different levels of
optimization possible, rather than accepting a solution from
an “off-the-shelf” optimizer. Towards this end, the current
work makes four major contributions. First, we refine and
formalize the notion of attack trees so as to encode the con-
tribution of different security conditions leading to system
compromise. Next, we develop a model to quantify the po-
tential damage that can occur in a system from the attacks
modeled by the system attack tree. We also quantify the
security control cost incurred to implement a set of security
hardening measures. Third, we model the system adminis-
trator’s decision problem as three successively refined opti-
mization problems on the attack tree model of the system.
We progressively transform one problem into the next to
cater to more cost-benefit information as may be required
by the decision maker. Last but not the least, we discuss
our thoughts and observations regarding the solutions, in
particular the robust solutions identified by our optimiza-
tion process, with a belief that such discussion will help the
system administrator decide what methodology to adopt.

The rest of the paper is organized as follows. We discuss
some of the previous works related to determining optimum
security hardening measures in Section 2. Section 3 gives
some background information on multi-objective optimiza-
tion. In Section 4 we describe a simple network that we
use to illustrate our problem formulation and solution. The
attack tree model formalism and the cost model are pre-
sented in Sections 5 and 6 respectively. The three optimiza-
tion problems and the evolutionary algorithm used to solve
them are presented in Section 7 with results and discussion
following in Section 8. Finally we conclude in Section 9.

2. RELATED WORK
Network vulnerability management has been previously

addressed in a variety of ways. Noel et al. use exploit de-
pendency graphs [14] to compute minimum cost-hardening
measures. Given a set of initial conditions in the graph,
they compute boolean assignments to these conditions, en-
forced by some hardening measure, so as to minimize the
total cost of those measures. As pointed out in their work,
these initial conditions are the only type of network security
conditions under our strict control. Hardening measures ap-
plied to internal nodes can potentially be bypassed by an
attacker by adopting a different attack path. Jha et al. [11]
on the other hand do not consider any cost for the hard-
ening measures. Rather, their approach involve finding the
minimal set of atomic attacks critical for reaching the goal
and then finding the minimal set of security measures that
cover the minimal set of atomic attacks.

Such analysis is meant for providing solutions that guaran-
tee complete network safety. However, the hardening mea-
sures provided may still not be feasible within the finan-
cial or other business constraints of an organization. Under
such circumstances, a decision maker must perform a cost-
benefit analysis to understand the trade-off between hard-
ening costs and network safety. Furthermore, a minimum
cost hardening measure set only means that the root goal
is safe, and some residual damage may still remain in the
network. Owing to these real-world concerns, network vul-
nerability management should not always be considered as
a single-objective optimization problem.

A multi-objective formulation of the problem is presented
by Gupta et al. [10]. They consider a generic set of security

policies capable of covering one or more generic vulnerabili-
ties. A security policy can also introduce possible vulnerabil-
ities, thereby resulting in some residual vulnerabilities even
after the application of security policies. The multi-objective
problem then is to minimize the cost of implementing the
security policies, as well as the weighted residual vulnera-
bilities. However, the authors finally scalarize the two ob-
jectives into a single objective using relative weights for the
objectives.

3. BACKGROUND ON MULTI-OBJECTIVE

OPTIMIZATION
In real world scenarios, often a problem is formulated to

cater to several criteria or design objectives, and a decision
choice to optimize these objectives is sought for. An op-
timum design problem must then be solved with multiple
objectives and constraints taken into consideration. This
type of decision making problems falls under the broad cat-
egory of multi-criteria, multi-objective, or vector optimiza-
tion problem.

Multi-objective optimization differs from single-objective
ones in the cardinality of the optimal set of solutions. Single-
objective optimization techniques are aimed towards finding
the global optima. In case of multi-objective optimization,
there is no such concept of a single optimum solution. This
is due to the fact that a solution that optimizes one of the
objectives may not have the desired effect on the others. As
a result, it is not always possible to determine an optimum
that corresponds in the same way to all the objectives un-
der consideration. Decision making under such situations
thus require some domain expertise to choose from multiple
trade-off solutions depending on the feasibility of implemen-
tation.

Due to the conflicting nature of the objective functions,
a simple objective value comparison cannot be performed
to compare two feasible solutions to a multi-objective prob-
lem. Most multi-objective algorithms thus use the concept
of dominance to compare feasible solutions.

Definition 1. Dominance and Pareto-optimal set

In a minimization problem with M objectives, a feasible
solution vector ~x is said to dominate another feasible solu-
tion vector ~y if

1. ∀i ∈ {1, 2, . . . , M} fi(~x) ≤ fi(~y) and
2. ∃j ∈ {1, 2, . . . , M} fj(~x) < fj(~y)
~y is then said be dominated by ~x. If the two conditions do

not hold, ~x and ~y are said to be non-dominated w.r.t. each
other. The set of all non-dominated solutions obtained over
the entire feasible region constitutes the Pareto-optimal set.

The surface generated by the Pareto-optimal solutions in the
objective space is called the Pareto-front or Pareto-surface.

For a security optimization problem like ours, concentrat-
ing on the minimization of hardening measure costs and the
network damage, the dominance concept plays a crucial role
in evaluating solutions. A solution which reduces one of the
objectives would most likely increase the other. Dominance
based comparison would identify solutions with such trade-
off properties in the two objectives.

Evolutionary algorithms for multi-objective optimization
(EMO) have been extensively studied and applied to a wide
spectrum of real-world problems. An EMO works with a
population of trial solutions, trying to converge on to the

Pareto-optimal set by filtering out the infeasible or domi-
nated ones. A number of algorithms have been proposed in
this context [5, 7]. We employ the Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) [8] for the multi-objective
optimization in this study. NSGA-II has gained wide pop-
ularity in the multi-objective optimization community be-
cause of its efficiency in terms of the convergence and diver-
sity of solutions obtained.

4. A SIMPLE NETWORK MODEL
To illustrate our methodology, we consider the hypothet-

ical network as shown in Fig. 1. The setup consists of four
hosts. A firewall is installed with a preset policy to ensure
that only the FTP and SMTP servers are allowed to connect
to the external network. In addition, FTP and SSH are the
only two services an external user can use to communicate
with these servers. We assume that an external user wants
to compromise the Data Server which is located inside the
firewall. The firewall has a strong set of policies setup to
protect access to the internal hosts. There are six different
attack scenarios possible to achieve the ultimate goal from
a given set of initial vulnerabilities and network topology as
listed in Table 1 and 2.

Figure 1: Example network model.

Host Vulnerability CVE#

FTP Server Ftp .rhost attack 1999-0547
196.216.0.10 Ftp Buffer overflow 2001-0755

Ssh Buffer overflow 2006-2421
SMTP Server Ftp .rhost attack 1999-0547
196.216.0.1
Terminal LICQ remote-2-user 2001-0439

196.216.0.3 “at” heap corruption 2002-0004
Data Server LICQ remote-2-user 2001-0439
196.216.0.2 suid Buffer overflow 2001-1180

Table 1: Initial vulnerability per host in example

network.

To compromise the Data Server, an attacker can exploit
the FTP and SMTP Servers using the ftp/.rhost attack.
Both servers are running ftp server versions that are vul-
nerable to these exploits. In addition, their rhost directories
are not properly write-protected. The consequence of the
ftp/.rhost exploit is that it establishes a trust relation be-
tween the host and attacker machines, and introduces an

Host Host Port

..*.* 196.216.0.1 21,25
..*.* 196.216.0.10 21,22

196.216.0.1 196.216.0.2 ANY
196.216.0.1 196.216.0.3 ANY
196.216.0.3 196.216.0.2 ANY
196.216.0.10 196.216.0.2 ANY

Table 2: Connectivity in example network.

authentication bypassing vulnerability in the victim. An at-
tacker can then log in to these servers with user access priv-
ilege. From this point, the attacker can use the connection
to the Data Server to compromise it. The attacker may also
compromise the SMTP Server, or choose to compromise the
Terminal machine in order to delay an attack. The Ter-
minal machine can be compromised via the chain of LICQ
remote to user attack and the local buffer overflow attack on
the “at” daemon. Finally, the attacker from either the FTP
server, SMTP server, or the Terminal machine can use the
connectivity to the Data Server to compromise it through
the chain of LICQ exploit and “suid” local buffer overflow
attack. Such attack scenarios, as in our example network
model, are represented using an attack tree, discussed in de-
tails in the next section.

5. ATTACK TREE MODEL
Given the complexity of today’s network infrastructure,

materializing a threat usually requires the combination of
multiple attacks using different vulnerabilities. Represent-
ing different scenarios under which an asset can be damaged
thus becomes important for preventive analysis. Such repre-
sentations not only provide a picture of the possible ways to
compromise a system, but can also help determine a mini-
mal set of preventive actions. Given the normal operational
state of a network, including the vulnerabilities present, an
attack can possibly open up avenues to launch another at-
tack, thereby taking the attacker a step closer to its goal.
A certain state of the network in terms of access privileges
or machine connectivity can be a prerequisite to be able to
exploit a vulnerability. Once the vulnerability is exploited,
the state of the network can change enabling the attacker to
launch the next attack in the sequence. Such a pre-thought
sequence of attacks gives rise to an attack scenario.

It is worth noting that such a notion of a progressive at-
tack induces a transitive relationship between the vulnera-
bilities present in the network and can be exploited while
deciding on the security measures. Attack graph [1, 11, 14,
18] and attack tree [16, 17] representations have been pro-
posed in network vulnerability management to demonstrate
such cause-consequence relationships. The nodes in these
data structures usually represent a certain network state of
interest to an attacker, with edges connecting them to indi-
cate the cause-consequence relationship. Although different
attack scenarios are easily perceived in attack graphs, they
can potentially suffer from a state space explosion problem.
Ammann et al. [1] identified this problem and propose an
alternative formulation, with the assumption of monotonic-
ity. The monotonicity property states that the consequence
of an attack is always preserved once achieved. Such an
assumption can greatly reduce the number of nodes in the
attack graph, although at the expense of further analysis re-

quired to determine the viable attack scenarios. An exploit-
dependency graph can be extracted from their representation
to indicate the various conjunctive and disjunctive relation-
ships between different nodes. For the purpose of this study,
we adopt the attack tree representation since it presents a
much clearer picture of the different hierarchies present be-
tween attacker sub-goals. An attack tree uses explicit con-
junctive and disjunctive branch decomposition to reduce the
visualization complexity of a sequence of operations. The
representation also helps us calculate the cost factors we are
interested in efficiently.

Different properties of the network effectuate different ways
for an attacker to compromise a system. We first define an
attribute-template that lets us generically categorize these
network properties for further analysis.

Definition 2. Attribute-Template

An attribute-template is a generic property of the hardware
or software configuration of a network which includes, but
not limited to, the following:

• system vulnerabilities (which are often reported in vul-
nerability databases such as BugTraq, CERT/CC, or
NetCat).

• network configuration such as open port, unsafe fire-
wall configuration, etc.

• system configuration such as data accessibility, unsafe
default configuration, or read-write permission in file
structures.

• access privilege such as user account, guest account, or
root account.

• connectivity.

An attribute-template lets us categorize most of the atomic
properties of the network that might be of some use to
an attacker. For example, “running SSH1 v1.2.23 on FTP
Server” can be considered as an instance of the system vul-
nerabilities template. Similarly,“user access on Terminal”is
an instance of the access privilege template. Such templates
also let us specify the properties in propositional logic. We
define an attribute with such a concept in mind.

Definition 3. Attribute

An attribute is a propositional instance of an attribute-
template. It can take either a true or false value.

The success or failure of an attacker reaching its goal de-
pends mostly on what truth values the attributes in a net-
work take. Its also lays the foundations for a security man-
ager to analyze the effects of falsifying some of the attributes
using some security policies. We formally define an attack
tree model based on such attributes. Since we consider an
attribute as an atomic property of a network, taking either
a true or false value, most of the definitions are written in
propositional logic involving these attributes.

Definition 4. Attack

Let S be a set of attributes. We define Att to be a mapping
Att : S ×S → {true, false} and Att(sc, sp) = truth value of
sp.

a = Att(sc, sp) is an attack if sc 6= sp ∧ a ≡ sc ↔ sp.
sc and sp are then respectively called a precondition and

postcondition of the attack, denoted by pre(a) and post(a)
respectively.

Att(sc, sp) is a φ–attack if ∃non-empty S′ ⊂ S|[sc 6= sp ∧
Att(sc, sp) ≡

V

i

si ∧ sc ↔ sp] where si ∈ S′.

An attack relates the truth values of two different attributes
so as to embed a cause-consequence relationship between the
two. For example, for the attributes sc =“vulnerable to sshd
BOF on machine A” and sp =“root access privilege on ma-
chine A”, Att(sc, sp) is an attack – the sshd buffer overflow
attack. We would like to clarify here that the bi-conditional
logical connective “↔” between sc and sp does not imply
that sp can be set to true only by using Att(sc, sp); rather
it means that given the sshd BOF attack, the only way to
make sp true is by having sc true. In fact, Att(“vulnerable
to local BOF on setuid daemon on machine A”,sp) is also
a potential attack. The φ–attack is included to account
for attributes whose truth values do not have any direct
relationship. However, an indirect relationship can be es-
tablished collectively. For example, the attributes sc1 =
“running SSH1 v1.2.25 on machine A” and sc2 = “connec-
tivity(machine B, machine A)”cannot individually influence
the truth value of sc, but can collectively make sc true, given
they are individually true. In such a case, Att(sc1 , sc) and
Att(sc2 , sc) are φ–attacks.

Figure 2: Example attack tree.

Definition 5. Attack Tree

Let A be the set of attacks, including the φ–attacks. An
attack tree is a tuple AT = (sroot, S, τ, ε), where

1. sroot is an attribute which the attacker wants to become
true.

2. S = Ninternal ∪ Nexternal ∪ {sroot} is a multiset of
attributes. Nexternal denotes the multiset of attributes si for
which ∄a ∈ A|si ∈ post(a). Ninternal denotes the multiset
of attributes sj for which ∃a1, a2 ∈ A|[sj ∈ pre(a1) ∧ sj ∈
post(a2)].

3. τ ⊆ S × S. An ordered pair (spre, spost) ∈ τ if ∃a ∈
A|[spre ∈ pre(a) ∧ spost ∈ post(a)]. Further, if si ∈ S and
has multiplicity n, then ∃s1, s2, . . . , sn ∈ S|(si, s1), (si,s2), . . .
, (si, sn) ∈ τ , and

4. ε is a set of decomposition tuples of the form 〈sj , dj〉
defined for all sj ∈ Ninternal∪{sroot} and dj ∈ {AND, OR}.

Figure 3: Attack tree of example network model.

dj is AND when
V

i

[si ∧ (si, sj) ∈ τ] ↔ sj is true, and OR

when
W

i

[si ∧ (si, sj) ∈ τ] ↔ sj is true.

Fig. 2 shows an example attack tree, with the attribute“root
access on machine A” as sroot. The multiset S forms the
nodes of the tree. The multiset Nexternal specify the leaf
nodes of the tree. These nodes reflect the initial vulnerabil-
ities present in a network and are prone to exploits. Since,
an attribute can be a precondition for more than one at-
tack, it might have to be duplicated, hence forming a mul-
tiset. The attribute “machine B can connect to machine A”
in the example is one such attribute. The set of ordered
pairs, τ , reflect the edges in the tree. The existence of an
edge between two nodes imply that there is a direct or indi-
rect relationship between their truth values, signified by the
decomposition at each node. The AND decomposition at a
node requires all child nodes to have a truth value of true for
it to be true. The OR decomposition at a node requires only
one child node to have a truth value of true for it to be true.
Using these decompositions, the truth value of an attribute
sj ∈ Ninternal∪{sroot} can be evaluated after assigning a set
of truth values to the attributes si ∈ Nexternal. Fig. 3 shows
the attack tree for our example network model. It depicts
a clear picture of the different attack scenarios possible, as
outlined in the previous section. We use an in-house tool to
generate this attack tree.

6. COST MODEL
In order to defend against the attacks possible, a secu-

rity manager (decision maker) can choose to implement a
variety of safeguard technologies, each of which comes with
different costs and coverage. For example, to defend against
the ftp/.rhost exploit, one might choose to apply a security
patch, disable the FTP service, or simply tighten the write
protection on the .rhost directory. Each choice of action can
have a different cost. Besides, some measures have multiple

coverage, but with higher costs. A security manager has to
make a decision and choose to implement a subset of these
policies in order to maximize the resource utilization. How-
ever, given the number of permutations possible in choosing
this subset (2n for n policies), this decision is not a trivial
task.

Security planing begins with risk assessment which de-
termines threats, loss expectancy, potential safeguards and
installation costs. Many researchers have studied risk as-
sessment schemes, including the National Institute of Stan-
dards and Technology (NIST) [19]. For simplicity, the secu-
rity manager can choose to evaluate the risks by consider-
ing a relative magnitude of loss and hardening costs [2, 12,
19]. However, relative-cost approaches do not provide suf-
ficient information to prioritize security measures especially
when the organization faces resource constraints. We adapt
Butler’s multi-attribute risk assessment framework [3, 4] to
develop quantitative risk assessments for our security op-
timization. Butler’s framework enables an aggregated rep-
resentation of the various factors dominating the business
model of an organization.

First we define the notion of a security control in the con-
text of the attack tree definition.

Definition 6. Security Control

Given an attack tree (sroot, S, τ, ε), the mapping SC :
Nexternal → {true, false} is a security control if ∃si ∈
Nexternal|SC(si) = false.

In other words, a security control is a preventive measure
to falsify one or more attributes in the attack tree, so as to
stop an attacker from reaching its goal. Further, in the pres-
ence of multiple security controls SCk, the truth value of an
attribute si ∈ Nexternal is taken as

V

k

SCk(si). Given a secu-

rity control SC, the set of all si ∈ Nexternal|SC(si) = false

is called the coverage of SC. Hence, for a given set of se-
curity controls we can define the coverage matrix specifying

the coverage of each control. For a given set of m security
controls, we use the boolean vector ~T = (T1,T2, . . . , Tm) to
indicate if a security control is chosen by a security manager.
Note that the choice of this vector indirectly specifies which
attributes in the attack tree would be false to begin with.

6.1 Evaluating Potential Damage
The potential damage, Pj , represents a unit-less damage

value that an organization may have to incur in the event
that an attribute sj becomes true. Based on Butler’s frame-
work, we propose four steps to calculate the potential dam-
age for an attribute sj .

Step1: Identify potential consequences of having a true value
for the attribute, induced by some attack. In our case,
we have identified five outcomes – lost revenue (mone-
tary), non-productive downtime (time), damage recov-
ery (monetary), public embarrassment (severity) and
law penalty (severity) – denoted by x1j , x2j , x3j , x4j

and x5j .

Step2: Estimate the expected number of attack occurrence,
Freqj , resulting in the consequences. A security man-
ager can estimate the expected number of attack from
the organization-based historical data or public histor-
ical data.1

Step3: Assess a single value function, Vij(xij), for each pos-
sible consequence. The purpose of this function is to
normalize different unit measures so that the values
can be summed together under a single standard scale.

Vij(xij) =
xij

Max
j

xij

× 100 , 1 ≤ i ≤ 5 (1)

Step4: Assign a preference weight factor, Wi, to each pos-
sible consequence. A security manager can rank each
outcome on a scale of 1 to 100. The outcome with the
most concern would receive 100 points. The manager
ranks the other attributes relative to the first. Finally,
the ranks are normalized and set as Wi.

The potential damage for the attribute can then be calcu-
lated from the following equation.

Pj = Freqj ×
5

X

i=1

WiVij(xij) (2)

When using an attack tree, a better quantitative repre-
sentation of the cost is obtained by considering the resid-
ual damage once a set of security policies are implemented.
Hence, we augment each attribute in the attack tree with a
value signifying the amount of potential damage residing in
the subtree rooted at the attribute and the attribute itself.

Definition 7. Augmented-Attack Tree

Let AT = (sroot, S, τ, ε) be an attack tree. An augmented-
attack tree ATaug = AT |〈I, V 〉 is obtained by associating a
tuple 〈Ii, Vi〉 to each si ∈ S, where

1. Ii is an indicator variable for the attribute si, where

Ii =

(

0 , if si is false

1 , if si is true

2. Vi is a value associated with the attribute si.
1Also known as an incident report published annually in
many sites such as CERT/CC or SANS.ORG.

In this work, all attributes si ∈ Nexternal are given a zero
value. The value associated with sj ∈ Ninternal ∪ {sroot} is
then computed recursively as follows.

Vj =

8

>

<

>

:

P

Vk

k|(sk,sj)∈τ

+ IjPj , if dj is AND

Max Vk
k|(sk,sj)∈τ

+ IjPj , if dj is OR
(3)

Ideally, Pj is same for all identical attributes in the multi-
set. We took a “panic approach” in calculating the value at
each node, meaning that given multiple subtrees are rooted
at an attribute with an OR decomposition, we choose the
maximum value. We do so because an attacker’s capabilities
and preferences cannot be known in advance. The residual
damage of the augmented tree is then defined as follows.

Definition 8. Residual Damage

Given an augmented-attack tree (sroot, S, τ, ε)|〈I, V 〉 and

a vector ~T = (Ti), Ti ∈ {0, 1}; 1 ≤ i ≤ m, the residual
damage is defined as the value associated with sroot, i.e.,

RD(~T) = Vroot

6.2 Evaluating Security Cost
Similar to the potential damage, the security manager first

lists possible security costs for the implementation of a secu-
rity control, assigns the weight factor on them, and computes
the normalized value. The only difference is that there is no
expected number of occurrence needed in the evaluation of
security cost. In this study, we have identified five differ-
ent costs of implementing a security control – installation
cost (monetary), operation cost (monetary), system down-
time (time), incompatibility cost (scale), and training cost
(monetary). The overall cost Cj , for the security control
SCj , is then computed in a similar manner as for potential
damage, with an expected frequency of 1. The total secu-
rity cost for a set of security controls implemented is then
defined as follows.

Definition 9. Total Security Control Cost

Given a set of m security controls, each having a cost
Ci; 1 ≤ i ≤ m, and a vector ~T = (Ti), Ti ∈ {0, 1}; 1 ≤
i ≤ m, the total security control cost is defined as

SCC(~T) =
m

X

i=1

(TiCi)

7. PROBLEM FORMULATION
The two objectives we consider in this study are the total

security control cost and the residual damage in the attack
tree of our example network model. For the attack tree
shown in Fig. 3, we identified 19 different security controls
possible by patching or disabling of different services, as well
as by changing file access permissions. With about half a
million choices available (219), an enumerated search would
not be an efficient approach to find the optima. The security
controls are listed in Table 3. We also tried to maintain some
relative order of importance between the different services,
as in a real-world scenario, when computing the potential
damage and security control costs.

Security Control Action Security Control Action

SC1/SC2 Disable/Patch suid @ 196.216.0.2 SC11 Chmod home directory @ 196.216.0.1
SC3/SC4 Disable/Patch LICQ @ 196.216.0.2 SC12/SC13 Disable/Patch Ftp @ 196.216.0.10

SC5 Disable “at” @ 196.216.0.3 SC14/SC15 Disable/Patch SSH @ 196.216.0.10
SC6/SC7 Disable/Patch LICQ @ 196.216.0.3 SC16 Disconnect Internet @ 196.216.0.10

SC8 Disable Rsh @ 196.216.0.1 SC17 Disable Rsh @ 196.216.0.10
SC9 Disable Ftp @ 196.216.0.1 SC18 Patch FTP/.rhost @ 196.216.0.10
SC10 Disconnect Internet @ 196.216.0.1 SC19 Chmod home directory @ 196.216.0.10

Table 3: Security controls for example network model.

Problem 1. The Single-objective Optimization Problem
Given an augmented-attack tree (sroot, S, τ, ε)|〈I, V 〉 and

m security controls, find a vector ~T ∗ = (T ∗
i), T ∗

i ∈ {0, 1}; 1 ≤
i ≤ m, which minimizes the function

αRD(~T) + βSCC(~T)

where, α and β are preference weights for the residual dam-
age and the total cost of security control respectively, 0 ≤
α, β ≤ 1 and α + β = 1.

The single-objective problem is the most likely approach to
be taken by a decision maker. Given only two objectives, a
preference based approach might seem to provide a solution
in accordance with general intuition. However, as we find in
the case of our example network model, the quality of the
solution obtained can be quite sensitive to the assignment
of the weights. To demonstrate this affect, we run multiple
instances of the problem using different combination of val-
ues for α and β. α is varied in the range of [0, 1] in steps of
0.05. β is always set to 1 − α.

Problem 2. The Multi-objective Optimization Problem
Given an augmented-attack tree (sroot, S, τ, ε)|〈I, V 〉 and

m security controls, find a vector ~T ∗ = (T ∗
i), T ∗

i ∈ {0, 1}; 1 ≤
i ≤ m, which minimizes the total security control cost and
the residual damage.

The next level of sophistication is added by formulating
the minimization as a multi-objective optimization problem.
The multi-objective approach alleviates the requirement to
specify any weight parameters and hence a better global pic-
ture of the solutions can be obtained.

Problem 3. The Multi-objective Robust Optimization
Problem

Let ~T = (Ti) be a boolean vector. A perturbed assignment

of radius r, ~Tr, is obtained by inverting the value of at most
r elements of the vector ~T . The robust optimization problem
can then be defined as follows.

Given an augmented-attack tree (sroot, S, τ, ε)|〈I, V 〉 and

m security controls, find a vector ~T ∗ = (T ∗
i), T ∗

i ∈ {0, 1}; 1 ≤
i ≤ m, which minimizes the total security control cost and
the residual damage, satisfying the constraint

max
~Tr

RD(~Tr) − RD(~T) ≤ D

where, D is the maximum perturbation allowed in the resid-
ual damage.

The third problem is formulated to further strengthen the
decision process by determining robust solutions to the prob-
lem. Robust solutions are less sensitive to failures in security

controls and hence subside any repeated requirements to re-
evaluate solutions in the event of a security control failure.

We use a simple genetic algorithm (SGA) [9] to solve Prob-
lem 1. NSGA-II is used to solve Problem 2 and 3.

NSGA-II for security optimization

NSGA-II starts with a population P0 of N randomly gen-
erated security control vectors ~T . For each trial solution,
the total security control cost is calculated using Def. 9. To
compute the residual damage, the attributes covered by a
security control vector in the attack tree are decided using
Table 3 and set to false. The truth values for the remaining
attributes in Nexternal are set to true. A DFS traversal of
the tree is then used to determine the truth values of the
internal nodes using the decomposition at each node. This
enables us to compute the value Vroot for the root node –
the residual damage – using Eq. 3.

A generation index t = 0, 1, . . . , GenMAX keeps track of
the number of iterations of NSGA-II. Each generation of the
algorithm then proceeds as follows. An offspring population
Qt is first created from the parent population Pt by applying
the usual genetic operations of selection, crossover and mu-
tation [9]. The residual damage and total security control
cost corresponding to each solution in the child population
are also computed.

Figure 4: One generation of NSGA-II.

The parent and offspring populations are combined to
form a population Rt = Pt∪Qt of size 2N . A non-dominated
sorting is applied to Rt to rank each solution based on the
number of solutions that dominate it. A rank k solution
indicates that there are k other solutions of different ranks
that dominate it. For Problem 3, the solutions which vi-
olate the robustness constraint, i.e. an infeasible solution,

are given unique ranks higher than the highest feasible so-
lution rank. The ranking starts in ascending order from the
infeasible solution with least constraint violation.

The population Pt+1 is generated by selecting N solutions
from Rt. The preference of a solution is decided based on its
rank: lower the rank, higher the preference. However, since
not all solutions from Rt can be accommodated in Pt+1, a
choice is likely to be made when the number of solutions of
the currently considered rank is more than the remaining
positions in Pt+1. Instead of making an arbitrary choice,
NSGA-II uses an explicit diversity-preservation mechanism.
The mechanism, based on a crowding distance metric [8],
gives more preference to a solution with a lesser density of
solutions surrounding it, thereby enforcing diversity in the
population. The NSGA-II crowding distance metric for a
solution is the sum of the average side-lengths of the cuboid
generated by its neighboring solutions in objective space.
Fig. 4 depicts a single generation of the algorithm.

The algorithm parameters are set as follows: population
size = 100, number of generations = 250, crossover proba-
bility = 0.9, and mutation probability = 0.1. We ran each
instance of the algorithms five times to check for any sen-
sitivity of the solutions obtained from different initial pop-
ulations. Since the solutions always converged to the same
optima, we dismiss the presence of such sensitivity.

8. RESULTS AND DISCUSSION
We first present the sensitivity results of NSGA-II and

SGA to their parameters. Increasing the population size
from 100 to 500 gives us a faster convergence rate, although
the solutions reported still remains the same. The effect
of changing the crossover probability in the range of 0.7 to
0.9 does not lead to any significant change of the solutions
obtained. Similar results were observed when changing the
mutation probability from 0.1 to 0.01. The solutions also do
not change when the number of generations is changed from
250 to 500. Since we did not observe any significant change
in the solutions by varying the algorithm parameters, the
following results are presented as obtained by setting the
parameters as chosen in the previous section.

It is usually suggested that the preference based approach
should normalize the functions before combining them into
a single function. However, we did not see any change in
the solutions of the normalized version of Problem 1. Fig.
5 shows the solutions obtained from various runs of SGA in
Problem 1 with varying α. A decision maker, in general, may
want to assign equal weights to both the objective functions,
i.e. set α = 0.5. It is clear from the figure that such as
assignment do not necessarily provide the desired balance
between the residual damage and the total security control
cost. Furthermore, such balance is also not obtainable by
assigning weight values in the neighborhood of 0.5. The
solutions obtained are quite sensitive to the weights, and in
this case, much higher preference must be given to the total
security control cost to find other possible solutions. Since
the weights do not always influence the objectives in the
desired manner, understanding their effect is not a trivial
task for a decision maker. It is also not possible to always
do an exhaustive analysis of the affect of the weights on the
objectives. Given such situations, the decision maker should
consider obtaining a global picture of the trade-offs possible.
With such a requirement in mind, we next consider Problem
2.

Figure 5: SGA solutions to Problem 1 with α varied

from 0 to 1 in steps of 0.05.

The two solutions corresponding to α = 0.25 and 0.1 in
Fig. 5, including any other solutions in the vicinity, are likely
candidates for a decision maker’s choice. Unlike the single-
objective approach, where determining such vicinal solutions
could be difficult, the multi-objective optimization approach
clearly revealed the existence of at least one such solution.
Fig. 6 shows the solutions obtained from a single run of
NSGA-II on Problem 2. NSGA-II reported all the solutions
obtained from multiple runs of SGA, as well as three more
solutions. Interestingly, there exists no solution in the inter-
mediate range of [25, 45] for residual damage. This inclina-
tion of solutions towards the extremities of the residual dam-
age could be indicative of the non-existence of much variety
in the security controls under consideration. The number of
attack scenarios possible is also a deciding factor. Most of
the security controls for the example network involve either
the disabling or patching of a service, resulting in a sparse
coverage matrix. For a more “continuous” Pareto-front, it
is required to have security controls of comparative costs
and capable of covering multiple services. A larger, more
complex real-world problem would likely have more attack
scenarios and a good mixture of both local and global se-
curity controls, in which case, such gaps in the Pareto-front
will be unlikely.

Once the decision maker has a better perspective of the
solutions possible, further analysis of the solutions may be
carried out in terms of their sensitivity to security control
failures. Such sensitivity analysis is helpful in not only re-
ducing valuable decision making time, but also to guarantee
some level of fault tolerance in the network. Fig. 6 shows the
sensitivity of one of the solutions to a failure in one of the
security controls corresponding to the solution. This solu-
tion, with security controls SC4 and SC11, will incur a high
residual damage in the event of a failure of SC4. Thus, a de-
cision maker may choose to perform a sensitivity analysis on
each of the solutions and incorporate the results thereof in
making the final choice. However, the decision maker then
has no control on how much of additional residual damage

Figure 6: NSGA-II solutions to Problem 2 and sen-

sitivity of a solution to optimum settings.

would be incurred in the event of failure. Problem 3 serves
the requirements of this decision stage by allowing the deci-
sion maker to specify the maximum allowed perturbation in
the residual damage. It is also possible to specify the scope
of failure – the radius r – within which the decision maker is
interested in analyzing the robustness of the solutions. For
this study, we are mostly interested in obtaining solutions
that are fully robust, meaning the residual damage should
not increase, and hence set D to zero. Also, because of the
sparse nature of the coverage matrix, we set the perturba-
tion radius r to 1. Fig. 7 shows the solutions obtained for
this problem.

Robust-optimum security controls RD SCC

R1 SC9, SC11, SC13, SC15, SC16, SC19 0.0 26.0
R2 SC3, SC4, SC9, SC11, SC18, SC19 10.5 21.0
R3 SC3, SC4, SC7, SC11 13.5 12.0
R4 SC3, SC4 22.8 8.0
R5 SC7, SC11 49.5 4.0
R6 null 58.8 0.0

Table 4: Fully robust solutions obtained by NSGA-

II with r = 1.

The solutions to Problem 3 reveals that none of the op-
timum solutions, except the trivial zero SCC solution, pre-
viously obtained is fully robust, even for a single security
control failure. Such insight could be of much value for a
decision maker when making a final choice. Table 4 shows
the security controls corresponding to the robust solutions.
With the final goal of obtaining a solution with a good bal-
ance between the residual damage and the total security
control cost, the decision maker’s choice at this point can be
justifiably biased towards the selection of solution R3.

We present certain interesting properties exploited by so-
lution R3 from the attack tree. To point out the salient
features, we compress the attack tree for our example net-
work model as shown in Fig. 8. The compressed tree is

Figure 7: NSGA-II solutions to Problem 3 with D =
0 and r = 1. Problem 2 solutions are also shown for

comparison.

obtained by collapsing all subtrees to a single node until
a node covered by a security control from R3 contributes
to the calculation of the residual damage. All such nodes,
represented by rectangles in the figure, is labeled with the
maximum residual damage that can propagate to it from
the child subtree and (+) the damage value that can occur
at the node itself. A triangular node represents the security
controls that can disable that node. The individual damage
value is accrued to the residual damage from the child node
only if the attached security control, if any, fails.

Figure 8: Compressed attack tree showing residual

damage computation with R3 as security control set.

The solution R3 clearly identifies the existence of the sub-
trees ST1 = {{n7, n10}, {n8, n11}, {n9, n12}} and ST2 = {{
n3, n7, n10}, {n6, n9, n12}}. In the event of a failure of SC11,
n7 would collect a value of 10.8. Since n3 has an AND de-
composition with SC7, it will be disabled, thereby not con-
tributing its individual damage value of 12 to the residual

damage at that node (10.8). On the other hand, if SC7 fails,
SC11 will disable n7 which in turn will disable n3. In fact,
in this case the residual damage at n3 would be zero. Simi-
larly, n6 and n8 also never propagates a residual damage of
more than 10.8 to its parent node. Consequently, n2 never
propagates a value more than 13.5. The individual cost of
36 at n1 is never added to this residual damage value of 13.5
from n2 since, owing to the AND decomposition, n1 is al-
ways falsified by security controls SC3 and SC4, only one
of which is assumed to fail at a time. The solution wisely
applies security controls covering multiple attack scenarios,
and at multiple points in those scenarios to keep the damage
to a minimum.

9. CONCLUSION AND FUTURE WORK
In this paper, we addressed the system administrator’s

dilemma, namely, how to select, when needed, a subset of
security hardening measures from a given set so that the
total cost of implementing these measures is not only mini-
mized but also within budget and, at the same time, the cost
of residual damage is also minimized. One important con-
tribution of our approach is the use of an attack tree model
of the network to drive the solution. By using an attack tree
in the problem we were able to better guide the optimiza-
tion process by providing the knowledge about the attributes
that make an attack possible. Further, a systematic analysis
enabled us to approach the problem in a modular fashion,
providing added information to a decision maker to form a
concrete opinion about the quality of the different trade-off
solutions possible.

The cost model that we adopt in this paper is somewhat
simplistic. We assume that, from a cost of implementation
perspective, the security measures are independent of each
other when in real life they may not be so. In addition, we
have assumed that the system administrator’s decision is in
no way influenced by an understanding of the cost to break
the system. Furthermore, the possible decomposition of an
attack tree to divide the problem into sub-problems is an in-
teresting alternative to explore. Finally, there is a dynamic
aspect to the system administrator’s dilemma. During run
time the system administrator may need to revise her de-
cision based on emerging security conditions. In future we
plan to refine our model to incorporate these scenarios.

10. ACKNOWLEDGMENTS
This work was partially supported by the U.S. Air Force

Office of Scientific Research under contract FA9550-07-1-
0042. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of
the U.S. Air Force or other federal government agencies.

11. REFERENCES
[1] Ammann, P., Wijesekera, D., and Kaushik, S.

Scalable, Graph-Based Network Vulnerability
Analysis. In Proceedings of the Ninth Conference on
Computer and Communications Security
(Washington, DC, USA, 2002), pp. 217–224.

[2] Berger, B. Data-centric Quantitative Computer
Security Risk Assessment. Information Security
Reading Room, SANS (2003).

[3] Butler, S. Security Attribute Evaluation Method: A
Cost-benefit Approach. In ICSE 2002: Proceedings of

the 24rd International Conference on Software
Engineering (Orlando, FL, USA, 2002), pp. 232–240.

[4] Butler, S., and Fischbeck, P. Multi-attribute Risk
Assessment. In Proceedings of SREIS02 in conjunction
of 10th IEEE International Requirements Engineering
Conference (Raleigh, NC, USA, 2002).

[5] Coello, C. A. C. An Updated Survey of GA-based
Multiobjective Optimization Techniques. ACM
Computing Surveys 32, 2 (2000), 109–143.

[6] Dawkins, J., Campbell, C., and Hale, J. Modeling
Network Attacks: Extending the Attack Tree
Paradigm. In Proceedings of the Workshop on
Statistical Machine Learning Techniques in Computer
Intrusion Detection (Baltimore, MD, USA, 2002),
Johns Hopkins University.

[7] Deb, K. Multi-objective Optimization Using
Evolutionary Algorithms. John Wiley & Sons Inc.,
2001.

[8] Deb, K., Pratap, A., Agarwal, S., and
Meyarivan, T. A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA–II. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 182–197.

[9] Goldberg, D. E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley,
1989.

[10] Gupta, M., Rees, J., Chaturvedi, A., and Chi, J.
Matching Information Security Vulnerabilities to
Organizational Security Policies: A Genetic Algorithm
Approach. Decision Support Systems 41, 3 (2006),
592–603.

[11] Jha, S., Sheyner, O., and Wing, J. M. Two Formal
Analysis of Attack Graphs. In Proceedings of the 15th
IEEE Computer Security Foundations Workshop
(Cape Breton, Nova Scotia, Canada, 2002), pp. 49–63.

[12] Lee, W. Toward Cost-sensitive Modeling for Intrusion
Detection and Response. Journal of Computer
Security 10, 1 (2002), 5–22.

[13] Moore, A., Ellison, R., and Linger, R. Attack
Modeling for Information Survivability. Technical Note
CMU/SEI-2001-TN-001, Carnegie Melon University /
Software Engineering Institute, March 2001.

[14] Noel, S., Jajodia, S., O’Berry, B., and Jacobs,
M. Efficient Minimum-cost Network Hardening via
Exploit Dependency Graphs. In Proceedings of the
19th Annual Computer Security Applications
Conference (Las Vegas, NV, USA, 2003), pp. 86–95.

[15] Phillips, C., and Swiler, L. A Graph-Based
System for Network-Vulnerability Analysis. In
Proceedings of the 1998 New Security Paradigms
Workshop (Chicago, IL, USA, 1998), pp. 71–79.

[16] Ray, I., and Poolsappasit, N. Using Attack Trees
to Identify Malicious Attacks from Authorized
Insiders. In ESORICS 2005 (Milan, Italy, 2005),
pp. 231–246.

[17] Schneier, B. Attack Trees. Dr. Dobb’s Journal
(1999).

[18] Sheyner, O., Haines, J., Jha, S., Lippmann, R.,
and Wing, J. M. Automated Generation and
Analysis of Attack Graphs. In SP 2002: Proceedings of
the IEEE Symposium on Security and Privacy
(Oakland, CA, USA, 2002), pp. 273–284.

[19] Stoneburner, G., Goguen, A., and Feringa, A.
Risk Management Guide for Information Technology
Systems. NIST Special Publication 800–30 (2002).

[20] Swiler, L., Phillips, C., Ellis, D., and
Chakerian, S. Computer-Attack Graph Generation
Tool. In Proceedings of the DARPA Information
Survivability Conference and Exposition II (Anaheim,
CA, USA, 2001), pp. 307–321.

