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Abstract. RSA Full Domain Hash (RSA-FDH) is a digital signature scheme, secure
against chosen message attacks in the random oracle model. The best known security
reduction from theRSAassumption is non-tight, i.e., it loses a factor ofqs ,whereqs is the
number of signature queries made by the adversary. It was furthermore proven by Coron
(Advances in cryptology—EUROCRYPT 2002, Lecture notes in computer science, vol
2332. Springer, Berlin, pp 272–287, 2002) that a security loss of qs is optimal and cannot
possibly be improved. In this work, we uncover a subtle flaw in Coron’s impossibility
result. Concretely, we show that it only holds if the underlying trapdoor permutation is
certified. Since it is well known that the RSA trapdoor permutation is (for all practical
parameters) not certified, this renders Coron’s impossibility result moot for RSA-FDH.
Motivated by this, we revisit the questionwhether there is a tight security proof for RSA-
FDH. Concretely, we give a new tight security reduction from a stronger assumption,
the Phi-Hiding assumption introduced by Cachin et al. (Advances in Cryptology—
EUROCRYPT’99. Lecture notes in computer science, vol 1592. Springer, Berlin, pp
402–414, 1999). This justifies the choice of smaller parameters in RSA-FDH, as it is
commonly used in practice. All of our results (positive and negative) extend to the
probabilistic signature scheme PSS (with message recovery).
Keywords. Digital signatures, Full domain hash, Lossiness, Security reduction.

1. Introduction

Among all digital signatures schemes based on the RSA problem, arguably among the
most important ones is RSAFull DomainHash (RSA-FDH) byBellare andRogaway [4].
It is extensively used in a wide variety of applications and serves as the basis of several
existing standards such as PKCS#1 [29]. It has been demonstrated bymeans of a security
reduction that, in the random oracle model [3], breaking the security of RSA-FDH (in
© International Association for Cryptologic Research 2017
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the sense of existential unforgeability against chosen message attacks) is asymptotically
at least as hard as inverting the RSA function.
The seminal work by Bellare and Rogaway introduced the concept of concrete secu-

rity [4] and highlights the importance of considering the tightness of a security reduction.
A security reduction is tight if an adversary breaking the scheme yields another adversary
breaking the underlying hardness assumption with roughly the same success probability
and running time. The current state of RSA-FDH is as follows. Coron’s reduction [12]
(which improves on earlier results by Bellare and Rogaway [4]) bounds the probability
ε of breaking RSA-FDH in time t by ε′ · qs , where ε′ is the probability of inverting
RSA in time t ′ ≈ t and qs is the number of signature queries by the forger. In other
words, the security reduction for RSA-FDH is loose (it loses a factor of qs), which can
have great negative impact on the practical parameter choices of the scheme. As a nu-
merical example, for 80 bits of security and assuming that an adversary can make up to
qs = 230 signature queries [4], one should use a large enough RSA modulus N such
that inverting the RSA function cannot be done in fewer than 2110 = 230 · 280 opera-
tions. Concretely, using the recommended key sizes from [31], this leads to a modulus
N of about 2432 bits, compared to 1248 bits if RSA-FDH had a tight reduction. We
further refer to [23] for a recent discussion on the practical impact of non-tight security
reductions in cryptography.
It is an interesting question of great practical impact whether or not there is a tight

security reduction for general FDH signatures (based on any trapdoor permutation TDP)
and, in particular, for RSA-FDH. Unfortunately, this question was already answered to
the negative exactly 10 years ago by Coron [13,14] who showed that the above non-tight
security reduction is essentially optimal. That is, every security reduction from inverting
the TDP (i.e., RSA in the case of RSA-FDH) to breaking FDH signatures will inevitably
lose a qs factor. Consequently, for RSA-FDH a large RSA modulus seems unavoidable
to obtain a meaningful security proof.

1.1. An Overview of Our Results

Revisiting Coron’s Impossibility Result.We uncover a gap in Coron’s result about
the impossibility of a tight security reduction for FDH signatures [14]. As acknowledged
by the author of [14], his impossibility result only holds if the underlying trapdoor
permutation (i.e., RSA in the case of RSA-FDH) is a certified trapdoor permutation. A
trapdoor permutation is certified [6,25] if one can publicly verify that it actually defines
a permutation. However, in the case of the RSA trapdoor permutation, it is only known
to be certified if the exponent e is a prime number larger than N 1/4 [21], and therefore,
the impossibility result does not apply to all instances of RSA-FDH. In particular, it is
common practice to use either e = 3 or e = 216 + 1, which are less then N 1/4.

A Tight Security Reduction for FDH Signatures. In light of the above, we revisit
the question whether there exists a tight security reduction for FDH signatures. Unfortu-
nately, we are not able to give such a tight security reduction from the assumption that the
TDP is one-way, but from a stronger (yet still non-interactive) assumption, namely that
the TDP is lossy (in the sense of Peikert and Waters [28]). Our main result (Theorem 3)
shows that there is a tight security reduction from the lossiness of the TDP to breaking
security of FDH, in the random oracle model. Our results also extend to the probabilistic
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signature scheme (PSS) (with message recovery) [4]. We obtain a tight reduction for
TDP-PSS with arbitrary (possibly zero) size random seed from the assumption that the
TDP is lossy.

Applications to RSA-FDH and RSA-PSS. Recently, Kiltz et al. [22] showed that
the RSA trapdoor permutation is lossy under the Φ-Hiding Assumption. The Φ-Hiding
Assumption was introduced by Cachin et al. [10] and it states that, roughly, (N , e) with
gcd(ϕ(N ), e) = 1 and e < N 1/4 is computationally indistinguishable from (N ′, e′)with
e′ |ϕ(N ′). (Here,ϕ(N ) is Euler’s totient function.) This give a tight security reduction for
RSA-FDH from the Φ-Hiding Assumption. We remark that the Φ-Hiding Assumption
(or, more generally, the assumption that RSA is lossy) is a stronger assumption than
the assumption that RSA is one-way. However, it dates back to 1999 [10] and has ever
since been used in a number of cryptographic applications (e.g., [9,15,17,19,22,26]).
It has been cryptalanyzed (e.g., [9,10,30]), and for the parameters of interest there is
no known algorithm that breaks it without first factoring, the modulus N = pq. The
common interpretation is that the Φ-Hiding Assumption can in practice be viewed as as
hard as factoring and hence gives a theoretical justification as to why RSA-FDH with a
small modulus N is secure in practice.

We also obtain a tight reduction for RSA-PSS (with message recovery) from the
Φ-Hiding Assumption for arbitrary (possibly zero) size random seed. Assuming again
that the Φ-Hiding Assumption is as hard as factoring, we get a signature scheme (with
message recovery) with only 160 bits of overhead for 80 bits security.

1.2. Full Domain Hash and Coron’s Impossibility Result

Recall that a FDH signature on a message m is σ = f −1(H(m)), where f is the public
description of the TDP and H is a hash function modeled as a random oracle.
A reduction R that reduces inverting the TDP to breaking FDH inputs a challenge

instance ( f, y = f (x)) of the TDP and generates a public key for FDH that is passed
to a forger F attacking FDH signatures. Next, F makes a number of signature queries
(which are answered by R) and finally outputs a forgery. Finally, R uses the gathered
information to invert the TDP, i.e., to compute x = f −1(y). ReductionR is tight if the
success probability of R is roughly the same as the one of F .

Coron’s impossibility result shows that any reductionR from inverting the TDP f to
breaking FDH which is tight (then, does not lose more than a factor qs) can be turned
into an efficient inverting algorithm I for the TDP f (that works without forger F). In
a nutshell, the argument is as follows. Given an instance of the TDP, the inverter I runs
reductionR providing it with a simulated forger F by making a number of hash queries
and then signature queries to R. Next, I rewinds reduction R to an earlier state (after
the hash queries) and uses one of the signed messages/signature pairs [say (m∗, σ ∗)]
obtained before the rewind as its forgery. ToR, this counts as a valid forgery since after
the rewind, I did not make a signing query on m∗. The central argument is as follows:
Consider a real forger that is provided with the same view as the simulated forger who
outputs a forgery σ ′ on the same message m∗. FDH has unique signatures1, and hence,

1A signature scheme has unique signatures if for each message there exists exactly one signature that
verifies w.r.t. a given (honestly generated) public key.
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we can argue that σ ∗ (provided by R before the rewind) equals σ ′ (provided by a real
forger). Hence,R is convinced and interacts with a real forger and outputs a solution to
the TDP instance.
Consequently, from R, we were able to construct an algorithm I that inverts the

TDP without using any forger. It is shown by a combinatorial argument that the success
probability of I is nonnegative as long as the reduction R does not loose more than a
factor of qs , the number of signature queries.

The Gap in the Proof. During the proof of [13, Th. 5] it is silently assumed that the
public key pk generated by reduction R is a real public key, honestly generated by the
key-generation algorithm of FDH, i.e., it contains f which describes a permutation.2

However, that does not necessarily hold, and the public key generated by R could be
anything. In fact, it is possible that the public key generated by the reduction R is fake
in the sense that the FDH signatures are no longer unique relative to this fake pk. Once
signatures are no longer unique (with respect to the fakepk), it is possible that a real forger
outputs a forgery σ ′ on m∗ which is different from σ ∗, the one provided by reductionR
before the rewind. In fact, it could be possible that σ ∗ �= σ ′ is no longer useful for R
in order to solve the RSA instance after the rewind, and hence, the impossibility result
breaks down.
In Sect. 3, we restate (and prove) a corrected version of Coron’s impossibility result.

Fortunately, it turns out that Coron’s argument can be salvaged by requiring the trapdoor
permutation in FDH to be certified. Note that in case of a certified trapdoor permutation
it is not possible for the reduction R to generate a fake public key without detection,
and hence, signatures are guaranteed to be unique.

1.3. A Tight Security Reduction for FDH Signatures

It is precisely the non-uniqueness of FDH signatures with respect to a fake public key
that will allow us to prove a tight security from the lossiness of the TDP [i.e., the Φ-
Hiding Assumption in the case of RSA-FDH]. Our proof is surprisingly simple and is
sketched as follows. In a first step, we substitute the trapdoor permutation in public key
with a lossy one. We use the programmability of the random oracle to show that this
remains unnoticed by the adversary assuming lossiness of the TDP. Note that once the
TDP is lossy, FDH signatures (i.e., σ with f (σ ) = H(m)) are not longer unique since,
by the definition of lossiness, each H(m) has many pre-images under a lossy f . In the
second step, we show that any successful forger will be able to find a collision in the
TDP, i.e., two values x �= x̂ with f (x) = f (x̂), which is again hard assuming lossiness.
The full proof is given in Sect. 3.
For the important case of RSA-FDH, this gives a tight security reduction from the Φ-

Hiding Assumption, in the random oracle model. TheΦ-Hiding Assumption is believed
to be true for sufficiently small publicRSAexponents e < N 1/4−ε [10]. This in particular
includes the important low-exponent cases of e = 3 and e = 216 + 1 since they allow
efficient verification of RSA-FDH signatures.3

2Such restricted reductions were called key-preserving reductions in [27].
3 We stress that our tight proof technically does not give a counter-example to Coron’s impossibility

result since our reduction is from the Φ-Hiding Assumption, not the RSA assumption. However, as corollary
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It is interesting to remark that, at a conceptual level, FDH is the first signature scheme
with unique signatures and a tight security reduction (from a non-interactive assump-
tion).4 Previously, only tight security reductions for randomized signatures were known
(e.g., [4,7,16,18]).

1.4. The Probabilistic Signature Scheme PSS

Our observations can also be applied to the probabilistic signature scheme (PSS) [4]
which is contained in IEEE P1363a [20], ISO/IEC 9796-2, and PKCS#1 v2.1 [29].
Improving an earlier result by Bellare and Rogaway, [4] Coron proved that, if at least
log2(qs) bits of random salt are used in PSS, then there is a tight security reduction from
the one-wayness of the TDP [13,14]. Furthermore, Coron also proved that log2(qs)
bits of random salt are essentially optimal for a tight security reduction. Our results for
PSS are similar to the ones for FDH. We note that Coron’s impossibility proof for PSS
contains the same gap as the one in FDH, i.e., it is only correct if the underlying trapdoor
permutation is certified. We show a tight security proof from lossiness to the security of
PSS, with random salt of arbitrary (possibly zero) length.
Our results also apply to PSS with message recovery (PSS-R), where the signature

encodes (parts of) the message. We show that PSS-R with arbitrary-length salt is tightly
secure assuming lossiness of the TDP. Concretely, our security reduction shows that
PSS-R with zero-length salt has an overhead (signature length minus message length) of
only 2k bits, where k is the security parameter. Interestingly, this matches the overhead
of BLS short signatures [8] over bilinear maps.

1.5. Related Work

There is a lot of work on FDH and tightly secure signature schemes, we try to summarize
part of it relevant to this work.

Tight Security Reduction for RSA-FDH from an Interactive Assumption. Ko-
biltz and Menezes [24, Sec. 3] show a tight reduction from an interactive assumption
they call the RSA1 assumption (which is related to the one-more-RSA assumption RSA-
CTI [2]): Given N , e, and a set of qs + qh values yi chosen uniformly from ZN , the
adversary is permitted adaptively to select up to qs of those yi for which he is given solu-
tions xi to xei = yi mod N . The adversary wins if he produces a solution xei = yi mod N
for one of the remaining yi . Even though the RSA1 assumption looks plausible, it is an
interactive assumption and almost a tautology for expressing that RSA-FDH signatures
are secure in the random oracle model. In fact, our tight security proof for RSA-FDH
also serves to show a tight reduction from Φ-Hiding to RSA1.

Non-unique Signatures with Tight Reductions. There exists several previous
works that build digital signature schemes with a tight security reduction. We stress that

Footnote 3 Continued
the impossibility result would exclude any (even non-tight) equivalence between the Φ-Hiding and the RSA
assumption.

4Here, we do not count tight security proofs from “tautological assumptions” which are essentially as-
suming that the signature scheme is secure.
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all of them have, in contrast to FDH, a randomized signing algorithm, i.e., signatures
are not unique. Goh et al. [18] show that adding one single bit of random salt to the
hash function of FDH allows to prove a tight security reduction from the RSA assump-
tion. Bernstein [7] shows a tight security reduction for (a certain randomized variant of)
Rabin–Williams signature scheme from the factoring assumption. More generally, Gen-
try et al. [16] introduce the concept of pre-image samplable trapdoor functions which are
non-injective trapdoor functions with an efficient pre-image sampling algorithm. They
further propose a probabilistic variant of FDH and prove it tightly secure. In fact, their
proof technique is reminiscent to the second step in our proof of FDH from the lossiness
but FDH can not be viewed as an instance of their probabilistic FDH variant.

RSA-OAEP. Recently, [22] used the Φ-Hiding Assumption to show that the RSA func-
tion is lossy and used this fact to prove positive instantiability results of RSA-OAEP in
the standard model.

1.6. Open Problems

On the one hand, the Φ-Hiding Assumption is believed to be true for public exponents
e ≤ N 1/4−ε, and hence, for these values, we get a tight security reduction for RSA-
FDH. On the other hand, Coron’s impossibility results hold for prime e with e > N .
This leaves the interesting open problem whether for public exponents N 1/4 ≤ e ≤ N
there exists a tight security reduction for RSA-FDH (under a reasonable assumption).

2. Definitions

2.1. Notations and Conventions

We denote our security parameter as k. For all n ∈ N, we denote by 1n the n-bit string
of all ones. For any element x in a set S, we use x ∈R S to indicate that we choose
x uniformly random in S. All algorithms may be randomized. For any algorithm A,
we define x ←$ A(a1, . . . , an) as the execution of A with inputs a1, . . . , an and fresh
randomness and then assigning the output to x . We denote the set of prime numbers
by P and we denote the subset of k-bit primes as P[k]. Similarly, we have the integers
denoted by Z and Z[k]. We denote by Z

∗
N the multiplicative group modulo N ∈ Z.

2.2. Games

Agame (such as in Fig. 1) is defined as a collection of procedures, as per themodel of [5].
There is an Initialize procedure and a Finalize procedure, as well a procedure for each
separate oracle. Executing a gameGwith and adversaryAmeans running the adversary
and using the procedures to answer any oracle queries. The adversary must first make
one query to Initialize. Then, it may query the oracles as many times as allowed by the
definition of the game. After this, the adversary must then make 1 query to Finalize,
which is the final procedure call of the game. The output of Finalize is denoted by GA.
In particular, we write GA ⇒ 0 and GA ⇒ 1, when Finalize outputs 0 respectively 1.
Where the Finalize procedure simply returns the output of the adversary, we omit the
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procedure Initialize
(pk, sk) ←$ KeyGen(1k)
return pk

procedure Hash(m)
if (m, ·) ∈ H then fetch (m, y) ∈ H; return y
else y ∈R Dom; H ← H ∪ (m,y); return y

procedure Sign(m) Game UF-CMA
M ← M ∪ (m)
return σ ←$ Sign(sk, m)

procedure Finalize(m∗, σ∗)
if Verify(pk , m∗, σ∗) = 1 ∧ m∗

then return 1
else return 0

Fig. 1. Game defining UF-CMA security in the random oracle model.

Finalize procedure. We use a strongly typed pseudo-code with implicit initialization.
Which means all variables maintain their type throughout the execution of the games
and they are all implicitly declared and initialized. Boolean flags are initialized to False,
numerical types are initialized to 0, and sets are initialized to ∅.

2.3. Signature Schemes

A digital signature is a message-dependant bit string σ , which can only be generated by
the signer, using a secret signingkey sk and is transmittedwith themessage. The signature
can then be verified by the receiver using a public verification key pk. A digital signature
scheme is defined as a triple of probabilistic algorithmsSIG = (KeyGen,Sign,Verify),
which we describe below:

1. KeyGen takes as an input the unary representation of our security parameter (1k)
and outputs a signing key sk and verification key pk.

2. Sign takes as input a signing key sk, message m and outputs a signature σ .
3. Verify is a deterministic algorithm, which on input of a public key and a message-

signature pair (m, σ ) outputs 1 (accept) or 0 (reject).

We say thatSIG is correct if for all public key and secret key pairs generated byKeyGen,
we have:

Pr[Verify(pk,m,Sign(sk,m)) = 1] = 1.

We now defineUF-CMA (unforgeability under chosenmessage attacks) assuming the
signature scheme SIG contains a hash function h : {0, 1}∗ → Dom which is modeled
as a random oracle.
We say a signature schemeSIG is (t, ε, qh, qs)-UF-CMA secure in the random oracle

model, if for all adversaries A running in time upto t , making at most qh hashing and
qs signing oracle queries, they have an advantage of at most ε, where the advantage of
A is defined as:

AdvUF-CMA
SIG (A) = Pr

[
UF-CMAA ⇒ 1

]
.

Here, we assume wlog that A always makes a query to Hash(m) before calling
Sign(m) or Finalize(m, ·). What this means is that we always have qh > 0, as at least
one hash query must be made before calling Finalize. Furthermore, we see that we
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have qh ≥ qs + 1, as the adversary must call Finalize(·, ·) with a value not previously
submitted to Sign(·).

2.4. Trapdoor Permutations

We recall the definition of trapdoor permutation families.

Definition 1. A family of trapdoor permutations TDP = (Gen,Eval, Invert) consists
of the following three polynomial-time algorithms.

1. The probabilistic algorithm Gen, which on input 1k outputs a public description
pub (which includes an efficiently sampleable domainDompub) and a trapdoor td.

2. The deterministic algorithm Eval, which on input pub and x ∈ Dompub, outputs
y ∈ Dompub. We write f (x) = Eval(pub, x).

3. The deterministic algorithm Invert, which on input td and y ∈ Dompub, outputs
x ∈ Dompub. We write f −1(y) = Invert(td, y).

We require that for all k ∈ N and all (pub, td) output by Gen(1k), f (·) = Eval(pub, ·)
defines apermutationoverDompub and that for all x ∈ Dompub, Invert(td,Eval(pub, x))
= x .

We want to point out that f (·) = Eval(pub, ·) is only required to be a permutation for
correctly generated pub, but not every bit string pub necessarily yields a permutation.
A family of trapdoor permutations TDP is said to be certified [6] if the fact that it is a
permutation can be verified in polynomial time given pub.

Definition 2. A family of trapdoor permutations TDP is called certified if there exists
a deterministic polynomial-time algorithm Certify that, on input of 1k and an arbitrary
(polynomially bounded) bit string pub (potentially not generated by Gen), returns 1 iff
f (·) = Eval(pub, ·) defines a permutation over Dompub.

We now recall security notion for trapdoor permutations. A trapdoor permutationTDP
is hard to invert (one-way) if given pub and f (x) for uniform x ∈ Dompub, it is hard
to compute x . More formally, it is (t, ε)-hard to invert if for all adversaries A running
in time t,Pr[A(pub,Eval(pub, x)) = x] ≤ ε, where the probability is taken over
(pub, td) ← Gen(1k), x ∈R Dompub and the random coin tosses of A. The following
security notion, lossiness [28], is a stronger requirement than one-wayness.

Definition 3. Let l ≥ 2. A trapdoor permutation TDP is a (l, t, ε) lossy trapdoor
permutation if the following two conditions hold.5

1. There exists a probabilistic polynomial-time algorithm LossyGen, which on input
1k outputs pub′ such that the range of f ′(·) := Eval(pub′, ·) under Dompub′ is at
least a factor of l smaller than the domain
Dompub′ : |Dompub′ |/| fpub′(Dompub′)| ≥ l. (Note that we measure the lossiness
in its absolute value l, i.e., the function has log2 l� bits of lossiness.)

5We deviate in two ways from the original definition of lossy trapdoor functions Peikert and Waters [28].
First, we define the permutation over arbitrary domains Dom, rather than {0, 1}k ; second, we measure the
absolute lossiness l, rather than the bits of lossiness � = log2(l).
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procedure Initialize Game L0 procedure Initialize Game L1

(pub, td) ←$ Gen(1k) (pub , ⊥) ←$ LossyGen(1k)
return pub return pub

Fig. 2. The lossy trapdoor permutation games.

2. All distinguishers D running in time at most t have an advantage AdvLTDP(D) of
at most ε (cf. Fig. 2), where:

AdvLTDP(D) = |Pr[LD1 ⇒ 1] − Pr[LD0 ⇒ 1]|.

We say TDP is regular (l, t, ε) lossy if TDP is (l, t, ε) lossy and all functions f ′(·) =
Eval(pub′, ·) generated by LossyGen are l-to-1 on Dompub′ .

2.5. The RSA Trapdoor Permutation

We define the RSA trapdoor permutation RSA = (RSAGen,RSAEval,RSAInv) as
follows. The RSA instance generator RSAGen(1k) outputs pub = (N , e) and td = d,
where N = pq is the product of two random k/2-bit primes, e is chosen randomly from
the set {e| gcd(e, ϕ(N )) = 1}, and d = e−1 mod ϕ(N ). The domain isDompub = Z

∗
N .

The evaluation algorithm RSAEval(pub, x) returns f (x) = xe mod N , the inversion
algorithmRSAInv(td, y) returns f −1

pub(y) = yd mod N . The standard assumption is that
RSA is hard to invert. We will review the (regular) lossiness of RSA in Sect. 4.

3. Full Domain Hash Signatures

3.1. The Scheme

For a familiy of trapdoor permutations TDP = (Gen,Eval, Invert), we define the Full
Domain Hash (TDP-FDH) signature scheme [4] in Fig. 3.

procedure KeyGen TDP-FDH
(pub, td) ←$ Gen(1k)
Pick a hash function h : {0, 1}∗ → Dompub

return (pk = (h, pub), sk = td)

procedure Sign(sk, m)
return σ = Invert(td , h(m)) // σ = f−1(h(m))

procedure Verify(pk,m, σ)
if Eval(pub, σ) = h(m) then return 1 // f(σ) ?= h(m)
else return 0

Fig. 3. The full domain hash signature scheme TDP-FDH.
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3.2. Classical Security Results of TDP-FDH

The original reduction by Bellare and Rogaway from one-wayness of TDP loses a factor
of (qh + qs) [4], which was later improved by Coron to a factor of qs [12] for the case
of the RSA trapdoor permutation.

Theorem 1. (Coron [12]) Assume the trapdoor permutation RSA is (t ′, ε′)-hard to
invert. Then, for any (qh, qs),RSA-FDH is (t, ε, qh, qs)-UF-CMA secure in theRandom
Oracle Model, where

ε′ = ε

qs
·
(
1 − 1

qs + 1

)qs+1

≈ ε

qs
· exp(−1)

t ′ = t + (qh + qs + 1) · O(k3).

3.3. A Corrected Version of Coron’s Optimality Result

Coron showed that a security loss of a factor qs (times some constant) is essentially
optimal for TDP-FDH [13,14]. To state a corrected version of Coron’s impossibility
result, we first recall the following definitions [13].

Definition 4. We say a reductionR (tF , tR, qh, qs, εF , εR)-reduces inverting a trap-
door permutation to breaking SIG = (KeyGen,Sign,Verify) if after running a forger
F , in a black-box manner, that (tF , qh, qs, εF )-breaks SIG, the reduction outputs a
pre-image of y, with probability at least εR, with running time at most tR.

We now state the corrected version of Coron’s impossibility result which we prove in
Sect. 5.

Theorem 2. Suppose TDP is a certified trapdoor permutation. Let R be a reduc-
tion that (tF , tR, qh, qs, εF , εR)-reduces breaking one-wayness of TDP to breaking
UF-CMA security of TDP-FDH. If R runs the forger only once, then we can build an
inverter I which (tI , εI)-breaks one-wayness of TDP with:

tI ≤ 2 · (tR + tF )

εI ≥ εR − εF · 2 · exp(−1)

qs
.

Hence, given a security reduction fromone-wayness to theunforgeability ofTDP-FDH
which loses less than a factor of qs , one obtains an efficient inverter I for TDP (with
non-negative success probability εI ). It is worth noting that the success probability of a
forger is defined by taking the probability for valid pk only.

3.4. A Tight Security Proof for TDP-FDH

The impossibility result of Theorem 2 only holds for TDP-FDH if TDP is a certified
trapdoor permutation. However, if TDP is not certified, this leaves room for a tight proof
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procedure Initialize Game G0 = (UF-CMA)
(pub, td) ←$ Gen(1k)
Return pk = pub

procedure Hash(m)
if H[m] is defined then

fetch ym = H[m], return ym

else
ym ∈R Dompub

H[m] := ym; return ym

procedure Sign(m)
M ← M ∪ (m)
return σm = Invert(td ,Hash(m))

Procedure Finalize(m∗, σ∗)
if (Verify(pub, m∗, σ∗) = 1) ∧ (m∗ ) return
1

else return 0

procedure Initialize Games G1-G4

(pub, td) ←$ Gen(1k) //G1,G4

(pub, ⊥) ←$ LossyGen(1k) //G2,G3

Return pk = pub

procedure Hash(m)
if H[m] is defined then

fetch (ym, σm) = H[m]; return ym

else
σm ∈R Dompub

ym = Eval(pub, σm)
H[m] := (ym, σm); return ym

procedure Sign(m)
M ← M ∪ (m)
call Hash(m)
fetch (ym, σm) = H[m], return σm

Procedure Finalize(m∗, σ∗)
call Hash(m∗), fetch (ym∗ , σm∗) = H[m∗]
//G3,G4

if σm∗ = σ∗ then BAD = true return 0 //G3,G4

if Verify(pub, m∗, σ∗) = 1 ∧ (m∗ ) return 1
else return 0

Fig. 4. Games for the proof of Theorem 3.

for TDP-FDH. We now state our main result, namely that TDP-FDH is tightly secure
assuming TDP, is regular lossy.

Theorem 3. AssumeTDP = (Gen,Eval, Invert) is a regular (l, t ′, ε′)-lossy trapdoor
permutation for l ≥ 2. Then, for any (qh, qs),TDP-FDH is (t, ε, qh, qs)-UF-CMA
secure in the Random Oracle Model, where

ε =
(
2l − 1

l − 1

)
· ε′

t = t ′ − (qh + qs + 1) · TTDP

and TTDP is the time to evaluate TDP.

Proof. We prove our theorem using a series of games. The description of these games
is found in Fig. 4. LetA be an adversary that runs in time t against TDP-FDH executed
in the UF-CMA experiment described in G0 in Fig. 1 with ε = Pr[GA

0 ⇒ 1]. Recall
that we assume wlog thatA always makes a query to Hash(m) before calling Sign(m)

or Finalize(m, ·).

Lemma 1. Pr[GA
0 ⇒ 1] = Pr[GA

1 ⇒ 1].
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Proof. In G0, we modeled the hash function as a random oracle. In G1 we modify
the random oracle and the signing queries. On any m the random oracle now works by
evaluating the permutation on a random element σm ∈ Dompub. We then modify the
signing oracle to return this element σm . Note that signing no longer requires the trapdoor
td. It can be seen that all our signatureswill verify due to the fact thatEval(pub, σm) = ym
for all m. Thus, our simulation of the signatures is correct. Since TDP is a permutation,
the distribution of our hash queries inG1 is identical to the distribution inG0. Thus, we
have Pr[GA

0 ⇒ 1] = Pr[GA
1 ⇒ 1]. �

Lemma 2. There exists a distinguisher D1 against the lossiness of TDP, which runs
in time t = tA + (qh + qs) · TTDP and such that |Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1]| =

AdvLTDP(D1).

Proof. From G1 to G2, we change the key generation from a normal permutation to
a lossy permutation; however, the oracles are identical in both games. We now build
a distinguisher D1 against the lossiness of TDP, using these games. The distinguisher
will run A and simulates the oracles Sign(·),Hash(·) as described in games G1&G2,
for which it requires time (qh + qs) · TTDP. Note that D1 does not require the trapdoor
td to simulate the oracles. After A calls Finalize,D1 returns the output of Finalize.
Thus, we can see that Pr[LD1

0 ⇒ 1] = Pr[GA
1 ⇒ 1]. Similarly, we have Pr[LD1

1 ⇒
1] = Pr[GA

2 ⇒ 1]. Hence, we have |Pr[GA
1 ⇒ 1] − Pr[GA

2 ⇒ 1]| = |Pr[LD1
0 ⇒

1] − Pr[LD1
1 ⇒ 1]| = AdvLTDP(D1). �

Lemma 3. Pr[GA
3 ⇒ 1] = ( l−1

l

)
Pr[GA

2 ⇒ 1].

Proof. In G3, we introduce a new rule, which sets BAD to true if the forgery σ ∗
provided by A is the same as the simulated signature σm∗ for the target message m∗.
If this is the case, the adversary loses the game, i.e., G3 outputs 0. σm∗ is independent
of A’s view and is uniformly distributed in the set of pre-images of ym∗ . Due to the l
regular lossiness of TDP, the probability of a collision is equal to exactly 1/ l. Thus, we
see that the BAD rule reduces the probability of the adversary winning the game by 1/ l,
hence Pr[GA

3 ⇒ 1] = (1 − 1
l )Pr[GA

2 ⇒ 1] = ( l−1
l

)
Pr[GA

2 ⇒ 1]. �

Lemma 4. There exists a distinguisherD2 against the lossiness of TDP, which runs in
time t = tA + (qh + qs) · TTDP and that |Pr[GA

3 ⇒ 1]−Pr[GA
4 ⇒ 1]| = AdvLTDP(D2).

Proof. From G3 to G4, we change the key generation from a lossy permutation to a
normal permutation; however, the oracles are identical in both games. We now build a
distinguisherD2 against the lossiness of TDP, using these games. The distinguisher will
act as the challenger to A. It will simulate the oracles as described in games G3&G4,
for which it requires time (qh + qs) · TTDP. After A calls Finalize,D2 returns the
output of Finalize. We can see that Pr[GA

4 ⇒ 1] = Pr[LD2
0 ⇒ 1]. Similarly, we have

Pr[GA
3 ⇒ 1] = Pr[LD2

1 ⇒ 1]. Hence, we have |Pr[GA
3 ⇒ 1] − Pr[GA

4 ⇒ 1]| =
|Pr[LD2

1 ⇒ 1] − Pr[LD2
0 ⇒ 1]| = AdvLTDP(D2). �
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Lemma 5. Pr[GA
4 ⇒ 1] = 0.

Proof. In G4 we again use the original KeyGen such that Eval(pub, ·) defines a per-
mutation. This means that our signing function is now a permutation, and thus, any
forgery implies a collision. Therefore, whenever the adversary is able to make a forgery,
the game outputs 0 due to the BAD rule. Whenever they are unable to make a forgery,
the game outputs 0. Thus, we can see that in all cases, the game will output 0, hence
Pr[GA

4 ⇒ 1] = 0. �

We combine Lemmas 1 to 5 to get:

Pr
[
GA

0 ⇒ 1
]

= AdvLTDP(D1) +
(

l

l − 1

)
AdvLTDP(D2).

where l is the lossiness of TDP. Because the distinguishers run in the same time, we
know that both distinguishers can have at most an advantage of ε′, giving us:

ε ≤ 2l − 1

l − 1
· ε′.

This completes the proof. �

4. Lossiness of RSA from the Φ-Hiding Assumption

4.1. Lossiness of RSA

The lossiness of RSA for a number of specific instance generators RSAGen was first
considered in [22]. We now recall (and extend) some of the results from [22].
First, we recall some definitions from [22]. We denote by RSAk := {(N , p, q) |

N = pq, p, q ∈ Pk/2, p �= q} the set of all the tuples (N , p, q) such that N = pq
is the product of two distinct k/2-bit primes. Such an N is called an RSA modulus.
By (N , p, q) ∈R RSAk we mean the (N , p, q) is sampled according to the uniform
distribution onRSAk . Let R be some relation on p and q. ByRSAk[R], we denote the
subset ofRSAk such that the relation R holds on p and q. For example, let e be a prime.
Then RSAk[p = 1 mod e] is the set of all (N , p, q), where N = pq is the product of
two distinct k/2-bit primes p, q and p = 1 mod e. That is, the relation R(p, q) is true
if p = 1 mod e and q is arbitrary. By (N , p, q) ∈R RSAk[R] we mean that (N , p, q)

is sampled according to the uniform distribution onRSAk[R].
α-Φ-Hiding Assumption.We recall a variant of the Φ-Hiding Assumption introduced
by Cachin, Micali and Stadler [10], where we build on a formalization by Kiltz, O’Neil
and Smith [22]. Themain statement of the assumption is that given an k-bit RSAmodulus
N = pq and a random α · k-bit prime e (where 0 < α < 1

4 is a public constant such
that α · k ∈ Z), it is difficult to decide if e | ϕ(N ) or if gcd(e, ϕ(N )) = 1. We note that
if e | ϕ(N ) with e ≥ N 1/4, then N can be factored using Coppersmith’s attacks [11],
see [10] for details. Hence, for the α-Φ-Hiding Assumption to hold, the bit length of e
must not exceed one-fourth of the bit length of N .
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procedure Initialize Game P0 procedure Initialize Game P1

e ∈R P[αk] e ∈R P[αk]
R = (gcd(e,ϕ(N)) = 1, N mod e = 1) R = (p = 1 mod e, p = 1 mod e2, q = 1 mod e)
(N, p, q) ∈R RSAk[R] (N, p, q) ∈R RSAk[R]
return (N, e) return (N, e)

Fig. 5. The α-Φ-Hiding Assumption Games.

Consider a distinguisher D which plays one of the games P0 or P1 defined in Fig. 5.
The advantage of D is defined as:

AdvΦH(D) = |Pr[PD
1 ⇒ 1] − Pr[PD

0 ⇒ 1]|.

We say that the α-Φ-Hiding Problem is (t, ε)-hard if for all distinguishersD running in
time at most t have an advantage of at most ε.
Define an RSA instance generator RSAGen as an algorithm that returns (N , e, p, q)

sampled as e ∈R Pαk and (N , p, q) ∈R (gcd(e, ϕ(N )) = 1, N mod e �= 1). (See [22]
for details on the sampling algorithm.)

Lemma 6. If the α-Φ-Hiding Problem is (t, ε)-hard, then the RSA = (RSAGen,

RSAEval,RSAInv) defines a (2α, t, ε)-lossy trapdoor permutation.

Proof. If (N , e) is sampled usingRSAGen, then gcd(e, ϕ(N ) = 1) and (N , e) defines
a permutation RSA(x) = xe mod N over Z

∗
N . We define LossyGen to be an algorithm

that returns (N , e) sampled as e ∈R P[αk] and (N , p, q) ∈R (p = 1 mod e, p �= 1
mod e2, q �= 1 mod e). If (N , e) is sampled using LossyGen then e | ϕ(N ), and
hence, the RSA function is exactly e-to-1 on the domain Dompub = Z

∗
N . We note in

particular that e2 � | (p− 1), and thus, we have exactly an e-to-1 function. By definition,
the outputs ofRSAGen andLossyGen are indistinguishable if theα-Φ-HidingProblem
is hard. �

Remark 1. We use the classical definition of lossiness here, due to the fact that our
public exponent e is not a parameter, and thus, we cannot give the exact regular lossiness
of the RSA trapdoor permutation.

Fixed-PrimeΦ-HidingAssumption. In practice, e is chosen to be small and is generally
fixed to some specific numbers, such as e = 3 or e = 216 + 1, which allows for fast
exponentiation. We now show a minor variant of the α-Φ-Hiding Assumption for fixed
primes e, where our formalization relies on discussions from [10] and [22, Footnote 9].
First,wediscuss the special case of e = 3.WedefineourRSA instanceRSAGen3 gen-

erator as an algorithm that samples (N , p, q)uniformly fromRSAk[p = 2 mod 3, q =
2 mod 3], which is equivalent to RSAk[gcd(3, ϕ(N )) = 1]. We note that N mod 3
is always 1. This means that for the lossy case, we must also ensure the N mod 3 = 1,
otherwise there would be a simple distinguisher. To ensure this is to have 3 divide both
p − 1 and q − 1. Thus, our lossy keys are sampled from the (p, q = 1 mod 3, p �= 1
mod 9, q �= 1 mod 9).
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procedure Initialize Game 3F0 procedure Initialize Game 3F1

R = (gcd(3, ϕ(N)) = 1) R = (p, q = 1 mod 3, p = 1 mod 9, q = 1 mod 9)
(N, p, q) ∈R RSAk[R] (N, p, q) ∈R RSAk[R]
return (N, e = 3) return (N, e = 3)

Fig. 6. The Fixed-Prime Φ-Hiding Assumption Games.

procedure Initialize Game F0 procedure Initialize Game F1

R = (gcd(e,ϕ(N)) = 1, N mod e = 1) R = (p = 1 mod e, p = 1 mod e2, q = 1 mod e)
(N, p, q) ∈R RSAk[R] (N, p, q) ∈R RSAk[R]
return (N, e) return (N, e)

Fig. 7. The Fixed-Prime Φ-Hiding Assumption Games.

Consider a distinguisher D which plays one of the games in Fig. 6. The advantage of
D is defined as

AdvFΦH(D) =
∣∣∣Pr[3FD1 ⇒ 1] − Pr[3FD0 ⇒ 1]

∣∣∣ .

We say that the Fixed-Prime Φ-Hiding Problem, with e = 3, is (t, ε)-hard if all distin-
guishers running in time at most t have an advantage of at most ε.

Lemma 7. If the Fixed-Prime Φ-Hiding Problem, with e = 3, is (t, ε)-hard, then the
RSA3 = (RSAGen3,RSAEval,RSAInv) defines a regular (9, t, ε)-lossy trapdoor
permutation.

Proof. If (N , p, q) ∈ (gcd(3, ϕ(N )) = 1), then (N , 3) clearlymakes theRSA function
a permutation. If (N , p, q) ∈ (p, q = 1 mod 3, p �= 1 mod 9, q �= 1 mod 9), then
9 | ϕ(N ) and, hence, the RSA function is 9-to-1 on the domain Dompub = Z

∗
N . �

We now consider the general case of fixed e > 3. For this case, we define our RSA in-
stancegeneratorRSAGene as an algorithm that samples (N , p, q) from (gcd(e, ϕ(N )) =
1, N mod e �= 1). We note that N mod e will be some value between 2 and e − 1.
This means that for the lossy case, we require e to divide p − 1 and not q − 1, other-
wise we would have a simple distinguisher. Our lossy keys are sampled from (p = 1
mod e, p �= 1 mod e2, q �= 1 mod e).

Consider a distinguisher D which plays one of the games in Fig. 7. The advantage of
D is defined as

AdvFΦH(D) = |Pr[FD1 ⇒ 1] − Pr[FD0 ⇒ 1]|.

We say that the Fixed-Prime Φ-Hiding Problem, with e > 3, is (t, ε)-hard if for all
distinguishers running in time at most t have an advantage of at most ε.

Lemma 8. If the Fixed-Prime Φ-Hiding Problem, with e > 3, is (t, ε)-hard, then
RSAe = (RSAGene,RSAEval,RSAInv) defines a regular (e, t, ε)-lossy trapdoor
permutation.
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Proof. If (N , p, q) ∈ (gcd(e, ϕ(N )) = 1, N mod e �= 1), then (N , e) clearly defines
a permutation. If (N , p, q) ∈ (p = 1 mod e, p �= 1 mod e2, q �= 1 mod e), then
e | ϕ(N ), and hence, the RSA function is e-to-1 on the domain Dompub = Z

∗
N . We note

in particular that e2 � | (p − 1); thus, we have exactly an e-to-1 function. �

5. Proof of Coron’s Impossibility Results (Corrected)

5.1. Meta-reductions

We now proceed to present a corrected version of Coron’s proofs. These proofs use a
technique know as a meta-reduction, in which we perform a proof by reduction on a
extant reduction. In a normal setting, a reductionR would interact with an adversaryA
in a somewhat black-box manner. WhileR is unable to modify or even view the internal
state ofA, it is still able to rewindA to a previous state. In particular, this means thatR
can rewind the randomness tape of A.

On the other hand, the reduction R normally interacts with a challenger C for some
(non-interactive) hard problem. After having received an input from C and possibly some
pre-computations,R begins to interact withA. At some point,A gives some final output
toR, whichR uses to compute a solution for C. The reduction then sends this solution
to C. We represent this pictorially in Fig. 8.

The meta-reductionM’s interaction withR will be twofold. In the first instance,M
will simulate an adversary A′ for R to interact with as described above. This means
that A′ will simulate all the queries of A and will behave in an expected manner when
having its state and/or randomness tape rewound. In the second instance, M will not
only simulate a challenger C′, but will also interact with R in the same way that R
interacted with A. That is to say M can rewind R to a previous state, which includes
rewinding R’s randomness tape. We represent this pictorially in Fig. 9.
It is worth noting at this juncture that the running times ofA,R andM do not consider

the running time of the other algorithms that they are running with. What this means is
that we assume that an query to another algorithm is answered instantly, that is to say, in
1 time unit. We do this in order to eliminate any “waiting time”, wherein an algorithm
is waiting for a response from another algorithm, which is superfluous for our analysis.

C R A

Fig. 8. Visualization of a reduction.
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C
C R A

M

Fig. 9. Visualization of a meta-reduction.

5.2. Proof of Theorem 2

Proof. Assume R is a reduction that (tF , tR, qh, qs, εR, εF )-reduces inverting TDP
to breaking TDP-FDH. We will now build an adversary I against the one-wayness of
TDP. I receives pub and y = Eval(pub, x) ∈ Dompub′ for unknown x ∈R Dompub.
The goal of I is to compute x .

1. Adversary I runs the reductionR providing it with (pub, y) and in reply receives
a public key pk = pub′ for TDP-FDH. Note that pub′ provided by R may be
different from pub. I verifies that pub′ defines a permutation on Dompub′ by
running Certify(1k, pub′). If not, then I outputs ⊥ to R. Otherwise, I continues
by simulating a forger Fsim for R. Recall that the success probability of a forger
is defined for valid pk only, hence we abort if we receive an invalid pk. (We note
that it may be the case that pub′ �= pub, in particular we do not know if pub′ was
correctly generated but this does not matter for what follows.)

2. Let q = max(qh, 2·qs). The adversaryI picks a setX of q arbitrarymessages (e.g.,
at random or the lexicographically first). I then picks i ∈R {1, . . . , qs},m∗ ∈R X
and (m1, . . . ,mqs ) ∈R (X \{m∗})qs . This defines the following two sequences of
messages:

Mrw = (m1, . . . ,mqs ), Mfirst = (m1, . . . ,mi−1,m
∗).

3. Adversary I queries the signing oracle, with implicit hash queries, on the mes-
sages in Mfirst (i.e., (m1, . . . ,mi−1,m∗)) and receives the response list Sfirst =
(σ1, . . . , σi−1, σ

∗), if the reduction does not abort. We stress that these are all
valid signatures, which we can check using the public verification key. If any of
the signatures is not valid, and the reduction does not abort, then we would abort.

4. AdversaryR is then rewound back to its initial state.6 NowI queries the signing or-
acle on the messagesMrw (i.e., (m1, . . . ,mqs )) and receives Srw = (σ1, . . . , σqs ),
if the reduction does not abort. We stress that these are all valid signatures, which

6More formally,R is run again with the same random tape. Hence, upto this pointR behaves exactly the
same as in its first execution.



Optimal Security Proofs for Full Domain Hash, Revisited 293

we can check using the public verification key. If any of the signatures is not valid,
and the reduction does not abort, then we would abort.

5. Adversary I then makes a hash query on m∗ and qh − qs − 1 additional messages
from the set X . This means that I has made exactly qh hash queries, including the
implicit hash queries from signing, so that it matches what the reduction expects.

6. Adversary I then tosses a biased coin τ with probability εF of returning 1, and if
τ = 0, then I sends ⊥ toR. If τ = 1, then I submits (m∗, σ ∗) as a forgery. Note
that this is done in time tF in order to correctly simulate a forger.

7. Because the reduction was rewound, this constitutes a valid forgery, asm∗ was not
queried to the signature oracle and σ ∗ is indeed a valid signature on m∗. R will
then return x (with probability εR) which I submits as its solution to one-way
experiment.

We now analyze I’s success probability in breaking one-wayness of TDP. To this end
we defineQ as the set of all sequences of indices such that the corresponding signature
queries are correctly answered by R, after the hash queries (in time less than tR). If a
sequence of signature queries is correctly answered by R, then also the same sequence
of signature queries without the last message is correctly answered by R, so for any
sequence (m1, . . . ,m j ) ∈ Q, we have (m1, . . . ,m j−1) ∈ Q.
Consider (as a thought-experiment) a (possibly non-efficient) real forger Freal who

inputs arbitrary pub′ such that Certify(pub′, 1k) = 1, makes hash queries to the mes-
sages from U (receiving answers H), signature queries to the messages from sequence
Mrw (receiving answers Srw) and outputs a valid forgery σ ∗ on the message m∗ with
probability εFreal . This is a valid forger so by the assertion of the theorem reduction R
(interacting with Freal) outputs x = Invert(pub, y) with probability at least εR. After
the rewind,R (interacting with I) sees exactly the same transcript as he would interact
with Freal, except ifMfirst �∈ Q (R does not answer all the signature queries before the
rewind) andMrw ∈ Q (R answers all the signature queries after the rewind). In that case
the forger Freal would output a valid forgery (with probability εFreal ) but our simulated
forger does not. Here, we are relying on the fact that Eval(pub′, ·) is a permutation, and
hence, the forgery σ ∗ onm∗ output byFreal is the same as the simulated one. (Otherwise
it could be the case that the simulated forgery is useless for the reduction.)
LetRFreal denote the execution ofR with the above real forger and letRFsim denote

the execution ofRwith the forgerFsim simulated by I. The two gamesRFreal andRFsim

are identical unlessMrw ∈ Q andMfirst �∈ Q, and τ = 1, where all three “bad events”
are defined in the game involving inverter I. By the above we get

|Pr[RFsim (pub, y)= x] − Pr[RFreal(pub, y) = x]|≤εF · Pr[Mrw ∈ Q ∧ Mfirst �∈ Q]

We need the following combinatorial lemma due to Coron [13, Appendix D].

Lemma 9. Let Q be a set of sequences of at most qs integers in X , such that for any
sequence (m1, . . . ,m j ) ∈ Q, we have (m1, . . . ,m j−1) ∈ Q. Then:

Pr
i∈R {1,...,qs }

(m1,...,mqs ,m
∗)∈RX qs+1

[(m1, . . . ,mqs ) ∈ Q ∧ (m1, . . . ,mi−1,m
∗) �∈ Q] ≤ exp(−1)

qs
.
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By Lemma 9 we have

Pr[Mrw ∈ Q ∧ Mfirst �∈ Q] ≤ exp(−1)

qs

(
1 − qs

q

)−1

.

(We note that our mi are drawn from X \{m∗} instead of X , as stated in the Lemma.

This leads to the term
(
1 − qs

|X |
)−1

, which is the bound on the probability that mi �=
m∗,∀i{1, . . . , qs}, which then allows us to use the Lemma.) Overall, we obtain for the
success probability εI of I:

εI = Pr[RFsim (pub, y) = x]
≥ Pr[RFreal(pub, y) = x] − εF · exp(−1)

qs

(
1 − qs

q

)−1

≥ εR − ·εF · 2 · exp(−1)

qs
.

The last inequality is due to the fact the q ≥ 2 · qs , which gives
(
1 − qs

q

)−1 ≤ 2. The

time bound comes from running the reduction once, plus the rewind and the additional
time for at most qs additional signing queries and the rewind. This is essentially equal
to running the reduction twice and simulating the forger twice. �

5.3. Impossibility for Any Certified Unique Signature Scheme

Coron also showed that an analogue of this result can be shown to hold in the standard
model [13]. This result gives essentially the same bound, with the number of hash queries
qh replaced by the size of the message space 2�. Above and beyond moving the standard
model, we further extend Theorem2 in two directions, simultaneously. Firstly, we extend
it to reductions from any non-interactive hard problemΠ to forging any certified unique
signature scheme SIG. Secondly we allow the reduction to run the forger F multiple
times.
We first define a unique signature scheme and then we define a certified unique sig-

nature scheme.

Definition 5. A signature scheme SIG is said to be a unique signature scheme if for
all (pk, sk) ←$ KeyGen, for any message m, there exists exactly one valid signature σ

such that Verify(pk,m, σm) = 1.

Definition 6. A signature schemeSIG is said to be a certified unique signature scheme
if it is a unique signature scheme and there exists a polynomial-time algorithm Certify,
that on input 1k and a public key pk, which may have been generated adversarially, will
output 1 iff pk defines a unique signature scheme.

We will now recall the definition of a non-interactive problem instance generator
due to Abe et al. [1]. This definition is very generic and encompasses both search and
decisional problems.



Optimal Security Proofs for Full Domain Hash, Revisited 295

Definition 7. A non-interactive problem instance generator consists of a triple of PPT
algorithms Π = (Gen,Verify,U) such that:

– Gen(1k) outputs an instance I and a witness w.
– Verify(I, S, w), where S is a candidate solution and outputs 1 or 0 that represents
acceptance or rejection, respectively.

– U(I ) outputs a candidate solution S.

U can be seen as a trivial guessing algorithm against which the advantage of an adversary
A is measured. Concretely, we define the advantage of an adversary A as:

AdvNIPΠ (A) = Pr[(I, w) ←$ Gen(1k), S ←$ A(I ) : Verify(I, S, w) → 1]
−Pr[(I, w) ←$ Gen(1k), S ←$ U(I ) : Verify(I, S, w) → 1].

We say that Π is (t, ε)-hard if for all PPT adversaries A running in time at most t have
and AdvNIPΠ (A) ≤ ε.

Examples of Non-interactive Problems.We now give a description of some known
problems, both search and decisional, in terms of non-interactive problems. Firstly, we
have theRSAproblemwhich states that it is hard to invert the RSA trapdoor permutation.
An instance of the RSA problem is given as I = (N , e, y = xe mod N ), where (N , e)
are taken from the output ofRSAGen, as defined in Sect. 4.1, x ∈R ZN , and the witness
isw = x . If the RSAproblem is (t, ε)-hard, then this defines a (t, ε)-hard non-interactive
problem, where the trivial guessing algorithm U simply picks a random element in Z

∗
N .

Secondly, we consider the Φ-Hiding Problem, as described in Sect. 4.1. An instance of
this problem is given as I = (N , e) and the witness is w = 1 if gcd(e, ϕ(N )) = 1 and
s = 0 if e | ϕ(N ). The Verify algorithm takes as input (I, b, s) and outputs 1 if b = s,
else 0. Hence, if the Φ-Hiding Problem is (t, ε)-hard, then this defines a (t, ε)-hard
problem with U picking a random bit. Note that we can also define the Computational
and Decisional Diffie–Hellman problems in terms of a hard non-interactive problem.
Furthermore, this definition also covers problems with non-unique solutions, such as
computing modular square roots or approximate-SVP. It is due to these types of problem
that we require the Verify function. In these cases, we may not be able to store all the
possible solutions, but we can verify a solution using the witness.
We are now ready to state our main impossibility result which generalizes Theorem 2.

Theorem 4. Suppose SIG is a certified unique signature scheme, where the size of the
message space is at least 2�. Let R be a reduction that (tF , tR, qs, εF , εR, r)-reduces
breaking a non-interactive problem Π to breaking UF-CMA security of SIG, where R
can run the forger at most r times sequentially. Then we can build an adversaryAwhich
(tA, εA)-breaks Π with

tA ≤ 2r · (tR + tF )

εA ≥ εR − εF · exp(−1) · r
qs

(
1 − qs

2�

)−1
.
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Proof. The proof or this theorem is very similar to that of Theorem 2. For 1 ≤ n ≤ r ,
we say that the reductionR is in the nth round when it has already run the forger n − 1
times. We use this reduction to construct and adversary A against the problem Π . The
reduction is initialized by the adversary A sending it and instance I of the problem Π .
We consider the nth round of the reduction below:

1. The reduction R provides the adversary A with a public key pkn . Note that this
public keymaybedifferent to the public keys for the previous rounds.Averifies that
pkn defines a unique signature scheme by running SIG.Certify(1k, pkn). Recall
that the success probability of a forger is defined for valid pk only, hence we abort
if we receive an invalid pk. If not, thenA outputs ⊥ toR. Otherwise,A continues.

2. Adversary A picks 2� messages μn,1, . . . , μn,2� from the message space M
(e.g., at random or the lexicographically first) and defines the universe Un =
(μn,1, . . . , μn,2� ).

3. A picks in ∈R {1, . . . , qs},m∗
n ∈R {μ1, . . . , μ2�} and (mn,1, . . . ,mn,qs ) ∈R

({μ1, . . . , μ2�}\{m∗
n})qs . This defines the following two sequences of integers:

Mrw
n = (mn,1, . . . ,mn,qs ), Mfirst

n = (mn,1, . . . ,mn,in−1,m
∗
n).

4. AdversaryA thenqueries the signingoracle on themessagesMfirst
n (i.e., (mn,1, . . . ,

mn,in−1,m∗
n)) and receives the response Sfirst

n which are the signatures, with the
last σ ∗ being the signature on the message indexed by m∗

n , if the reduction does
not abort. We stress that these are all valid signatures, which we can check using
the public verification key. If any of the signatures is not valid, and the reduction
does not abort, then we would abort.

5. Adversary R is then rewound back to before it answered the signature queries.
NowA queries the signing oracle on the messages indexed byMrw

n (i.e., (m1, . . .

,mqs )) and receives Srw which contains the signatures of the messages indexed by
Mrw

n , if the reduction does not abort. We stress that these are all valid signatures,
which we can check using the public verification key. If any of the signatures is
not valid, and the reduction does not abort, then we would abort.

6. Adversary A then tosses a biased coin τn with probability εF of returning 1, and
if τn = 0, then I sends ⊥ to R. If τ = 1, then I submits (m∗

n, σ
∗
n ) as a forgery.

Note that this is done in time tF in order to correctly simulate a forger.
7. Because the reduction was rewound, this constitutes a valid forgery, asm∗

n was not
queried to the signature oracle and σ ∗

n is indeed a valid signature on m∗
n .

This process is repeated for each round, with n = 1 to r . We note that in each round,
we need to draw a new set of messages for the universe Un , as the message space may
have changed, due to the public key being different. After at most r rounds, the reduction
R outputs a solution Ŝ with probability εR, which A will use as its solution to I .

Wenowanalyze the success probability ofA in breaking the search problemΠ . For the
nth round, we define Qn as the set of sequences of indices such that the corresponding
signature queries are correctly answered by R in the nth round. We can see that if a
sequence is correctly answered by R in the nth round, then the same sequence without
the last query is also correctly answered by R in the nth round. That is to say, for any
sequence (mn,1, . . . ,mn, j ) ∈ Qn , we have (mn,1, . . . ,mn, j−1) ∈ Qn .
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Consider now a real forger Freal, which is run r times and in the nth round it receives
with public keyspkn andmakes signature queries corresponding tomn , receivesSrw

n as an
answer, and then submits (mm∗

n
, σ ∗

n ) as forgery,with probability εFreal . Bydefinition, after
at most the r th round, the reduction will output a candidate solution S with probability
εR. After each nth rewind, the reduction R sees the same transcript, in the nth round,
when interacting with Fsim as it does when it interacts with Freal, unless Mfirst

n �∈ Qn

and Mrw
n ∈ Qn . In this case, the real forger Freal will output a forgery with probability

εFreal ; however, the forger simulated byA will be unable to output a forgery. This relies
on the fact that pkn defines a unique signature scheme, and hence, the forgery output by
the forger Freal would be the same as the simulated one.

We denote the execution of the reduction with the real forger as RFreal and the ex-
ecution of the reduction with the forger simulated by A as RFsim . From above, we
get:

Pr[RFreal(I )→ S : Verify(I, S, w) = 1] − Pr[RFsim (I )→ S : Verify(I, S, w) = 1]

≤
r∑

n=1

εF · Pr[Mrw
n ∈ Qn ∧ Mfirst

n �∈ Qn]

By Lemma 9 we have

Pr[RFreal(I )→ S : Verify(I, S, w) = 1] − Pr[RFsim (I )→ S : Verify(I, S, w) = 1]

≤
r∑

n=1

εF · Pr[Mrw
n ∈ Qn ∧ Mfirst

n �∈ Qn]

Overall, we obtain for the success probability εA of A:

εA ≥ Pr[RFsim (I ) → S : Verify(I, S, w) = 1]
≥ Pr[RFreal(I ) → S : Verify(I, S, w) = 1] − εF · r · exp(−1)

qs

(
1 − qs

2�

)−1

= εR − εF · r · exp(−1)

qs

(
1 − qs

2�

)−1
.

Now we consider the case where the reduction can rewind the forger to some state
St . This is equivalent to restarting the forger with the same random coins and giving it
the same input as before until it reaches the required state St . If the reduction rewinds
the forger in the (n + 1)th round and sends the same public key to the forger, the forger
will make the same signature queries and submit the same forgery as in the previous
round. This can be simulated by A by setting Un+1 = Un,m∗

n+1 = m∗
n,Mrw

n+1 =
Mrw

n ,Mfirst
n+1 = Mfirst

n and proceeding as before. However, in the case where the re-
duction sends a new public key, then the forger will make different queries and submit
a different forgery. Adversary A can simulate this by picking new messages and new
values for m∗

n+1,Mrw
n+1,Mfirst

n+1, as it normally does, and proceeding as before. We see
that in both cases the transcript the reduction sees in the (n + 1)th round when inter-
acting with A is the same as when interacting with a real forger Freal, except when
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Mrw
n+1 ∈ Qn+1 ∧ Mfirst

n+1 �∈ Qn+1. By a similar argument as above, we get the same
bound.
We see that the adversary runs each round of the reduction twice and simulates the

forger twice, thus giving us our time bound. �

Remark 2. We need that the forgers are run sequentially, otherwise the proof might not
go through.When the reduction is allowed to run the forgers in parallel, it may interleave
the executions of the forgers and make the replies to one dependant on the queries of
the others. If this is the case, then real forgers would not have a problem producing a
forgery. However, the simulation of the forger as described above may not be able to do
so. Due to the fact that the reduction may change its responses based on the queries, the
simulated forgers may never be able to get a forgery and then submit it.
As an example, consider the following execution of the adversary described above,

with only 2 parallel forgers. The adversary sends the instance I to the reduction. The
reduction in reply sends a public key pk1 for the first forger F1. The first forger de-
fines the universe U1 and sequences Mrw

1 ,Mfirst
1 as defined above. It then proceeds

to make signing queries on messages indexed Mfirst
1 . Based on these queries, R com-

putes a public key pk2 for a second forger F2. The second forger begins by defining
its universe U2 and sequences Mrw

2 ,Mfirst
2 . Forger F2 then proceeds to make signing

queries on the messages indexed byMfirst
2 . Based on this the reductionR computes the

responses Sfirst
1 and sends it to forger F1. Having received this, adversary A rewindsR

to before it answered the signature queries. At this point forger F1 will make signature
queries to the messages indexed by Mrw

1 . Using these new queries, the reduction R
will compute a new public key p̂k2 and use it to initialize forger F2. Due to the fact
that p̂k2 �= pk2, forger F2 will have to define a new universe Û2 and new sequences
̂Mfirst

2 ,M̂rw
2 . At this point forger F2 will make signature queries on the messages in-

dexed by ̂Mfirst
2 . Based on these queries, the reductionR will compute the responses to

forgerF1. At this point it is not clear how to proceed, as the internal state of the reduction
has changed. In particular the setQ′

1 may now excludeMrw
1 , which would mean that we

can no longer apply Lemma 9. Extending Theorem 4 to parallel forgers remains an open
problem.

6. The Probabilistic Signature Scheme

6.1. The Scheme

Let TDP = (Gen,Eval, Invert) be a trapdoor permutation. For simplicity we assume
that Dompub = {0, 1}k , for all pub output by Gen. (If that is not the case and we have,
e.g., Dompub = Z

∗
N , the scheme can be adapted accordingly [4].) We now recall the

Probablistic Signature Scheme (PSS) [4] PSS is parametrized not only by the security
parameter, but also by two additional integers k0 and k1. The first parameter k0 defines the
size of randomness in bits and the second defines the domains of the two hash functions.
PSS uses two hash functions H : {0, 1}∗ → {0, 1}k1 and F : {0, 1}k1 → {0, 1}k−k1 . We
also require two additional functions F1 and F2. F1(ω) returns the first k0 bits of the
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procedure KeyGen TDP-PSS
(pub, td) ←$ Gen(1k)
Pick hash functions H : {0, 1}∗ → {0, 1}k1 , F : {0, 1}k1 → {0, 1}k−k1

return (pk = (H,F, pub), sk = td)

procedure Sign(sk, m)
r ∈R {0, 1}k0

ω ← H(m||r)
r∗ ← F1(ω)⊕r
y = ω r∗ F2(ω)
return σ = Invert(td , y //) σ = f−1(y)

procedure Verify(pk,m,σ)
y = Eval(pub, σ)
parse y as ω||r∗||γ
r = r∗⊕F1(ω)
if H(m||r) = ω ∧ F2(ω) = γ

return 1
else

return 0

Fig. 10. The trapdoor permutation probabilistic signature scheme TDP-PSS.

output of F(ω) and F2(ω) returns the remaining (k − k1) − k0 bits of F(ω). The scheme
TDP-PSS[k0, k1] is defined in Fig. 10.

6.2. Classical Security Results of TDP-PSS

Theoriginal reductionbyBellare andRogaway fromone-wayness ofTDPwith a security
loss of qh [4] was later improved by Coron to a factor of qs [14] for the case of the RSA
trapdoor permutation.

Theorem 5. (Coron [14]) Assume the trapdoor permutation RSA is (t ′, ε′)-hard to
invert. Then for any (qh, qs),RSA-PSS[k0, k1] is (qh, qs, t, ε)-UF-CMA secure in the
Random Oracle Model, where

ε = ε′ (1 + 6 · qs · 2−k0
)

+ 2 · (qh + qs)
2 · 2−k1

t = t ′ − (qh + qs + 1) · k1 · O(k3).

6.3. A Tight Security Proof for TDP-PSS

We now present a tight reduction which reduces breaking TDP-PSS to the lossiness of
the underlying trapdoor permutation TDP.
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procedure Initialize Games G0 − G4

(pub, td) ←$ Gen(1k //) G0,G1,G4

(pub, ⊥) ←$ LossyGen(1k) //G2,G3

Return pk = pub

procedure H(m, r emaG) G0

if H[m, r] is defined then
fetch ωm,r = H[m, r]

else
ω(m,r) ∈R {0, 1}k1

H[m, r] := ω(m,r)

end if
return ω(m,r)

procedure Sign(m emaG) G0

M ← M ∪ (m)
r ∈R {0, 1}k0

ω =H(m,r)
r∗ = F1(ω)⊕r
y = ω r∗ F2(ω)
return σm = Invert(td , y)

Procedure Finalize(m∗, σ∗) Game G0 − G4

y = Eval(pub, σ∗); parse y = ω||r∗||γ
r = r∗⊕G1(ω); Call H(m,r)
Fetch H[(m∗, r] = (ω(m,r), σ(m,r)) //G3,G4

if σ(m∗,r) = σ∗ then BAD = true then return 0 //G3,G4

if (H(m∗, r) = ω) ∧ (G2(ω) = γ) ∧ (m∗ )
then return 1

else
return 0

procedure F(ω) Game G0 − G4

if W[ω] is defined then
fetch α = W[ω]

else
α ∈R {0, 1}k−k1

W[ω] := α
end if
return α

procedure H(m, r) Games G1 − G4

if H[m, r] is defined then
fetch (ω(m,r), σ(m,r)) = H[m, r]

else
σ(m,r) ∈R Dompub

y(m,r) = Eval(pub, σ(m,r))
Parse y(m,r) = ω(m,r)||r∗

(m,r)||γ(m,r)

αm,r = (r∗
(m,r)⊕r)||γm,r

if W[ω(m,r)] is defined then
if W[ω(m,r)] = αm,r then return ⊥
endif

W[ω(m,r)] := αm,r

H[m, r] := (ω(m,r), σ(m,r))
endif

end if
return ω(m,r)

procedure Sign(m) Games G1 − G4

M ← M ∪ (m)
r ∈R {0, 1}k0

Call H(m, r)
Fetch H[m, r] = (ωm,r, σm,r), return σm,r

Fig. 11. Games for the proof of Theorem 3.

Theorem 6. AssumeTDP = (Gen,Eval, Invert) is a regular (l, t ′, ε′)-lossy trapdoor
permutation for l ≥ 2. Then, for any (qh, qs, k0, k1),TDP-PSS[k0, k1] is (t, ε, qh, qs)-
UF-CMA secure in the Random Oracle Model, where

ε =
(
2l − 1

l − 1

)
· ε′ + (qh + qs + 1)2

2k1

t = t ′ − qh · TTDP,

and TTDP is the time to evaluate TDP.

Remark 3. We stress that the security reduction of Theorem 6 is independent of the
size of the randomness k0. In particular, this allows to set k0 = 0.

Proof. We prove our theorem using a series of games. The description of these games
is found in Fig. 11. LetA be an adversary that runs in time t against TDP-PSS executed
in the UF-CMA experiment described in G0 in Fig. 11 with ε = Pr[GA

0 ⇒ 1] =
Pr[UF-CMAA ⇒ 1].

Now consider Game G1 from Fig. 9.
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Lemma 10. Pr[GA
1 ⇒ 1] ≥ Pr

[
GA

0 ⇒ 1
] − (qh+qs+1)2

2k1
.

Proof. InG0, we modeled the hash functions as a random oracle. InG1, we modify the
H oracle and the signing oracle. On any (m, r), the H oracle now works by evaluating
the permutation on a random element σ(m,r) ∈ Dompub. The result is then parsed as
ω(m,r)||r∗

(m,r)||γ(m,r) and we check whether ω(m,r) has been previously queried to the F
oracle. If it has, then we abort, otherwise we store the randomness and the values ω(m,r)

and σ(m,r). Then, we compute the output of F(ω(m,r)) and store it. The signing oracle
is then modified to pick a random value r , for which we have already have computed
H(m||r), and return the element σ(m,r). Note that signing no longer requires the trapdoor
td. It can be seen that all our signatures will verify due to the manner in which we
compute the responses to queries to H and F. Thus, our simulation of the signatures is
correct. Since TDP is a permutation, the distribution of our H-Oracle queries in G1 is
the same as in G0, except when the reduction aborts, due to a collision in the F-Oracle.

The probability of a collision is at most (qs+qh+1)2

2k1
, since the adversary makes at most

qh + qs + 1 queries, implicit or explicit, to the F-oracle, giving at most (qh + qs + 1)2

possible collisions from a total of 2k1 possible choices. Furthermore, we do not abort
if collision matches the value already set, which happens with a probability 1 − 1

2k−k1
.

Hence, the total probability that we about is
(
1 − 1

2k−k1

) (
(qh+qs+1)2

2k1

)
. Thus, we have

Pr[GA
1 ⇒ 1] ≥ Pr[GA

0 ⇒ 1] − (qh+qs+1)2

2k1
. �

Lemma 11. There exists a distinguisher D1 against the lossiness of TDP, which runs
in time t = tA+(qh+qs)·TTDP and thatPr[GA

1 ⇒ 1]−|Pr[GA
2 ⇒ 1]| = AdvLTDP(D1).

Proof. From G1 to G2, we change the key generation from a normal permutation to
a lossy permutation; however, the oracles are identical in both games. We now build a
distinguisherD1 against the lossiness of TDP, using these games. The distinguisher will
run A and simulates the oracles Sign(·),H(·, ·),F(·) as described in games G1&G2,
for which it requires time (qh + qs) · TTDP. Note that D1 does not require the trapdoor
td to simulate the oracles. After A calls Finalize,D1 returns the output of Finalize.
Thus, we can see that Pr[LD1

0 ⇒ 1] = Pr[GA
1 ⇒ 1]. Similarly, we have Pr[LD1

1 ⇒
1] = Pr[GA

2 ⇒ 1]. Hence, we have |Pr[GA
1 ⇒ 1] − Pr[GA

2 ⇒ 1]| = |Pr[LD1
1 ⇒

1] − Pr[LD1
0 ⇒ 1]| = AdvLTDP(D1). �

Lemma 12. Pr[GA
3 ⇒ 1] = ( l−1

l

)
Pr[GA

2 ⇒ 1].

Proof. In G3, we introduce a new rule, which sets BAD to true if the forgery σ ∗
provided by A is the same as the simulated signature σm∗,r for the target message m∗
and randomness r . If this is the case, the adversary loses the game, i.e.,G3 outputs 0.σm∗,r
is independent ofA’s view and is uniformly distributed in the set of pre-images of ym∗,r .
Due to the l regular lossiness of TDP, the probability of a collision is equal to exactly
1/ l. Thus, we see that the BAD rule reduces the probability of the adversary winning
the game by 1/ l, hence Pr[GA

3 ⇒ 1] = (1− 1
l )Pr[GA

2 ⇒ 1] = ( l−1
l

)
Pr[GA

2 ⇒ 1]. �
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Lemma 13. There exists a distinguisher D2 against the lossiness of TDP, which runs
in time t = tA+(qh+qs)·TTDP and that |Pr[GA

3 ⇒ 1]−Pr[GA
4 ⇒ 1]| = AdvLTDP(D2).

Proof. From G3 to G4, we change the key generation from a lossy permutation to a
normal permutation; however, the oracles are identical in both games. We now build a
distinguisherD2 against the lossiness of TDP, using these games. The distinguisher will
act as the challenger to A. It will simulate the oracles as described in games G3&G4,
for which it requires time (qh + qs) · TTDP. After A calls Finalize,D2 returns the
output of Finalize. We can see that Pr[GA

4 ⇒ 1] = Pr[LD2
0 ⇒ 1]. Similarly, we have

Pr[GA
3 ⇒ 1] = Pr[LD2

1 ⇒ 1]. Hence, we have |Pr[GA
3 ⇒ 1] − Pr[GA

4 ⇒ 1]| =
|Pr[LD2

1 ⇒ 1] − Pr[LD2
0 ⇒ 1]| = AdvLTDP(D2). �

Lemma 14. Pr[GA
4 ⇒ 1] = 0.

Proof. In G4, we again use the original KeyGen such that Eval(pub, ·) defines a
permutation. This means that our signing function is now a permutation, and thus, any
forgery implies a collision. Therefore, whenever the adversary is able to make a forgery,
the game outputs 0 due to the BAD rule. Whenever they are unable to make a forgery,
the game outputs 0. Thus, we can see that in all cases, the game will output 0, hence
Pr[GA

4 ⇒ 1] = 0. �

We combine Lemmas 10 to 14 to get:

Pr
[
GA

0 ⇒ 1
]

≤ AdvLTDP(D1) +
(

l

l − 1

)
AdvLTDP(D2) + (qs + qh)2

2k1
.

where l is the lossiness of TDP. Because the distinguishers run in the same time, we
know that both distinguishers can have at most an advantage of ε′, giving us:

ε ≤ 2l − 1

l − 1
· ε′ + (qh + qs + 1)2

2k1
.

This completes the proof. �

6.4. PSS with Message Recovery

Wenow recall the PSSwithmessage recovery (PSS-R) scheme, which a digital signature
scheme with message recovery based on PSS.

Definition 8. A digital signature scheme with message recovery is a triple of proba-
bilistic algorithms SIG-R = (KeyGen,Sign,Recover), where:

1. KeyGen takes as an input the unary representation of our security parameter (1k)
and outputs a signing key sk and verification key pk.

2. Sign takes as input a signing key sk, message m and outputs an “enhanced signa-
ture” σ .
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procedure KeyGen TDP-PSS-R
(pub, td) ←$ Gen(1k)
Pick hash functions H : {0, 1}∗ → {0, 1}k1 , F : {0, 1}k1 → {0, 1}k−k1

return (pk = (H,F, pub), sk = td)

procedure Sign(sk, m)
r ∈R {0, 1}k0

ω ← H(m||r)
r∗ ← F1(ω)⊕r
m∗ ← F2(ω)⊕m
y = ω||r∗||m∗

return σ = Invert(td , y //) σ = f−1(y)

procedure Recover(pk, σ)
y = Eval(pub, σ)
parse y as ω||r∗||m∗

m = m∗⊕F2(ω)
r = r∗⊕F1(ω)
if H(m||r) = ω

return m
else

return ⊥

Fig. 12. The trapdoor probabilistic signature scheme with recovery TDP-PSS-R.

3. Recover is a deterministic algorithm, which on input of a public key and an
“enhanced signature” σ outputs either the corresponding message m (accept) or
the special symbol ⊥ (reject).

We say that SIG-R is correct if for all public key and secret key pairs generated by
KeyGen, we have:

Pr[Recover(pk,Sign(sk,m)) = m] = 1.

We describe TDP-PSS-R in Fig. 12 using the same notation as in Sect. 6. The
overhead of signature scheme with recover is defined as the difference in size between
the message and the signature. With PSS-R, we can sign and recover messages of size
at most n = k − k0 − k1 bits long with a k bit signature. Thus, we have a total overhead
of k1 + k0 bits.

Theorem 7. Assume TDP = (Gen,Eval, Invert) is a regular (l, t ′, ε′)-lossy trap-
door permutation for l ≥ 2. Then, for any (qh, qs, k0, k1),TDP-PSS-R[k0, k1] is
(t, ε, qh, qs)-UF-CMA secure in the Random Oracle Model, where
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ε =
(
2l − 1

l − 1

)
· ε′ + (qh + qs + 1)2

2k1

t = t ′ − qh · TTDP,

and TTDP is the time to evaluate TDP.

The proof of security for PSS-R is similar to that of PSS, and hence, we do not present
it.
We now discuss the choices of parameters k0, k1. First off, we notice that the security

of TDP-PSS-R does not depend at all on the size of the randomness k0. Hence, we can
simply pick k0 = 0. We note that this does not contradict the result of Coron [14] that
states if we use k0 = 0, then our reduction must lose a factor of qs . This is due to fact
that this only holds if TDP-PSS is instantiated with a certified trapdoor permutation.

For the choice of k1, we need the notion of time-to-success ratios, also sometimes
referred to as “work factor”, whose definition we now recall.

Definition 9. The work factorWF of an adversaryA with a success probability of εA
and running time tA is given by:

WF(A) = tA
εA

.

We say that a scheme achieves κ bit security if for all adversariesA, we haveWF(A) ≥
2κ , that is to say, the adversary must perform at least 2κ expected operations to win the
security game. We remark that if we assume any problem is (t, ε)-hard, we have that for
all adversaries A against the problem, we have WF(A) ≥ 2κ .

The condition thatWF ≥ 2κ determines our choice of parameters for a given security
level κ . Using this and the formulae from Theorem 7, we can compute the value for k1
such that TDP-PSS has κ-bit security. Using the values from Theorem 7, we get:

t

ε
= t ′ − qh · TTDP(

2l−1
l−1

)
· ε′ + (qh+qs+1)2

2k1

≥ 2κ

If we rearrange this expression, we see that in fact we need:

t ′

ε′
l − 1

2l − 1
≥ 2κ and

t · 2k1
(qs + qh)2

≥ 2κ .

The first requirement is satisfied by our assumption that we have a regular (l, t ′, ε′)-lossy
trapdoor permutation, which means t ′/ε′ ≥ 2κ by assumption. If we look at the second
inequality, we see that we require k1 ≥ κ + 2 log(qh + qs) − log t . However, we also
have that t ≥ qs + qh , hence giving us k1 ≥ κ + log(qh + qs).
We can perform similar calculations for the proofs of Bellare-Rogaway and Coron,

but we omit them here. We compute some concrete figures for the overhead imposed
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Table 1. Total overhead using RSA-PSS-R for 80 bit security.

Security proof k0 k1 Total overhead

Bellare-Rogaway [4] 160 160 320
Coron [14] 30 160 190
This work 0 160 160

by each security proof and present them in Table 1. We take κ = 80, qh = 280,
qs = 230.
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