
LEVE

DTIC

E,
MA 2 1981

DEPARTMENT OF STATISTICS E

The Ohio State University

.Approvccl or puc~i rolease;

COLUMBUS, OHIO DisbuLon Unlimit9d

81 3 i 0o9



7

I

OPTIMAL SELECTION

FROM A FINITE SEQUENCE

WITH SAMPLING COST

by

Ishwari D. Dhariyal

and
Edward J. Dudewicz*

Technical Report No. 1
4
6a

Department of Statistics -:* --

The Ohio State University re-e...;

Columbus, Ohio 43210

J an u a ry 19 8 1 --. .. .

* Supported in part by NATC Research Grant No. 1674. Final revision of

this research was supported by Office of Naval Research Contract No.

N00014-78-C-0543.



Unclassified
SECURITY CLASSIFICATION Or THIS PAGE (ften Data Enlerod) ,

REPORT DOCUMENTATION4 PAGE READ INSTRUCTIONS
__ _ _ _ ____________PAGE UILFORE COMPLETIVG FORM

17. REPORT NUMBER"t GOVT ACCESSION NO. 3. AECIPIENT'S CATALOG NUMSER

PTIMAL ELECTION FROM A FINITE SEQUENCE
" WiTH SAHTKING COST, is •3 .

- . . . PERFORING ORG. REPORT NUMBER

S Ishwar D.iarya CONTRACT OR GRANT.NUMBER(s)

Edward J.;DuewiCZ /5 1NOl-8C54/

9 PERFORMING ORGANIZATION NAME AND ADDRESS 15 PROGRAM ELEMENT. PROJECT. TASK

AREA 6 WORK UNIT NUMBERS

Department of Statisticsv

The Ohio State University NR 042-403

Columbus, Ohio 43210
II. CONTROLLING OFFICE NAME AND ADDRESS _ ' "

Office of Naval Research Janv 81
Department of the Navy NUMBER OF PAGES

Arlington, Virginia 22217 ii + 21

14. MONITORING AGENCY NAME B ADPRESS(il dliferent from Controlling Office) 15. SECURITY CLASS. (of this report)

S .,Unclassified

IS-. DECLASSIFICATION, DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of ihis Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enlered In Block 20, II diffteent from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WOROS (Continue on reverse side if necessry and Identify by block number)

Key Words and Phrases: Sequential decision problem, sampling cost,

stopping variable, maximum of a sequence.

20. ABSTRACT (Conu on.. ee... i. It necear nd lidntify by block number Two variations of the

problem of choosing the largest of N independent and identically distributed

random variables with sampling cost are studied. In the first case it is
assumed that the underlying distribution is continuous and known, but the

information obtained by sampling is whether the sampled variable is larger
or smaller than some given level. In the second case it is assumed that thedistribution of the random variables is continuous but unknown, and the infor-

I mation obtained is the rank of the sampled variable relative to the other
variables already in the sample. in each case both the optimal strategy and
DD I~I~ 1473 the distribution of"the stopping variab e a.d scussed.

DD I -- CM34unclass les s A

SECURITY CLASSIFICATION oF THIS PAG YIf... D-te



OPTIMAL SELECTION FROM A FINITE SEQUENCE WITH SAMPLING COST

by Accesoion For

Niiis CPA3&I
DTIC T''

Ishwari D. Dhariyal

and .

Edward J. Dudewicz -

ABSTRACT

Two variations of the problem of choosing the largest of N independent and

identically distributed random variables with sampling cost are studied. In

the first case it is assumed that the underlying distribution is continuous and

known,but the informatien obtained by sampling is whether the sampled variable

is larger or smaller than some given level. In the second case it is assumed

that the distribution of the random variables is continuous but unknown,and the

information obtained is the rank of the sampled variable relative to the other

variables already in the sample. In each case both the optimal strategy and the

distribution of the stopping variable are discussed.

KEY WORDS AND PHRASES

Sequential decision problem, Sampling cost, Stopping variable, Maximum

of a Sequence.

Supported in part by NATO Research Grant No 1674. Final revision of this

research was supported by Office of Naval Research Contract No. N00014-78-C-0543.



I. INTRODUCTION

Let XI,..., XN be independent and identically distributed continuous random

variables which are to be sampled sequentially, where N is a known fixed positive

integer. The aim is to stop and choose the largest one. Exactly one random

variable is to be selected and if, after any draw, a random variable is rejec-

ted, it cannot be recalled at a later stage. A large number of variations are

possible in framing this, the a-called "Secretary Problem", some of which can

be found in the references listed at the end of this article. Our aim in this

paper is to study the following two variations of the above problem with a

decision-theoretic approach.

PROBLEM I. The random variables are not observed directly. Rather, for

each X. we observe whether X. < L. or X. > L. where L. is a level set,1 1 i .1 i

by the experimenter, I < i < N, and we stop experimentation the first time we

find an Xj > L (and we then select X. ). With certain gain (negative loss) and

cost functions defined later (Sections 2 and 3 below), the aim is to find the

optimal values of L1 ,...,LN, that is, the levels that maximize the expected gain.

It will be assumed that the distribution of X is known and continuous. I

Problem I is discussed in Section 2, where the form of the optimal strate-

gy, the distribution of the stopping variable, and the optimum levels are de-

fined. Optimal levels are numerically calculated for several different costs

per observation and gain structures, for N = 2(1)10. Enns [31 studied

this problem when the sampling cost is zero. Leonardz [6] studied it when one

observes the random variables directly. When one wishes to choose the best

of N items from available stock (e.g. for use in a military or space mission),

testing may well have associated cost (e.g. $ c. per test). In some applications

. ..- --- -%- - . . . ; a
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X1 may be a life-length such that the gain due to functioning for X time units

is aX + b (e.g., communications satellites or other equipment). Then Table 1I
i

below would be used in practice.

Note that in this problem the L1 ,... ,LN are levels fixed in advance, and

not set sequentially. However since (e.g.) we select X 1 if X > L1 (and hence

do not then need to use L2), thus needing L2 iff X1 < L1, the situation when L

will be needed is fully clear in advance of experimentation and it is also clear

(since X1 is not observed directly, but only whether it exceeds L or not) that

no gain can be realized by setting levels sequentially.

II
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PROBLEM I. The random variables are observed directly but it is assumed

that the distribution function is completely unknown. Also as each random

variable is observed, only its rank relative to its predecessors is noted, or

is able to be noted.

Problem II is discussed in Section 3, where the form of the optimal

strategy and the distribution of the stopping variable are given. Optimal

values are tabulated for several different costs per observation for values of

N = 3()50, for two gain functions: gain b > 0 if the maximum of X1 ... ,XN

is selected (0 gain otherwise); and, gain b X )+a if Xj is selected, where

((X.) is the rank of X. among X1,... ,XN . Gilbert and Mosteller [5] studied this

problem, when the sampling cost is zero, for our first gain function. When

one wishes to choose the best of se%2:al candidates for a position (e.g. a faculty

or managerial position), interview cost is often measured in thousands of dcllars.

Table III allows one to rationally choose the number of interviewees in such

settings. Similarly for a seller evaluating multivariate bids on a depreciating

or appreciating asset.

2. CASE OF KNOWN DISTRIBUTION:

RANDOM VARIABLES NOT OBSERVED DIRECTLY

The Optimal Strategy

When the distribution of X. is known and continuous, it suffices to
1

consider the sample as coming from a uniform distribution on the [0,1] interval

(X. is U[0,11) because, if F(x) is the distribution function of X. , then

Y. = F(X.) is distributed uniformly on [0,1]. So if L. is the level used

for Y. thenFI (L) , the L.-th quantile of the distribution of X. , is an

equivalent level for X. . Therefore, suppose that X. are independent and

identically distributed as U[0,11, i l



Let us call a particular sequence of levels 
L = CLl,...,LN), used for

making the selection, a strategy. Not all strategies are equally good. A

strategy will be called optimal if it maximizes the expected gain (taking

into account sampling cost and terminal decision gain) 
of the statistical

decision problem.

Recall that a sequential decision problem consists of five elements: e

the space of the unknown parameter; A , the space of terminal act.ions avail-

able to the statistician; L , the real-valued loss function on e x A

X = (XIX 2 ,-.), the random variables available to the statistician for observa-

tion; and {c (, x ,...,x.), j ,2....), the cost function, a sequenme of real-

valued functions with c. defined on E x 1, X . . where X.is the sam-

ple space of X i , i = 1,...,j , and c (O,X,...,x j ) represents the cost of

taking observations X I = Xl,...,X 
fi 

x. and then stopping, when e is the true

value of the parameter.

Here 8 - max(X,...,XN) and 0 E [0,1] = G. Also, since we are interested

i in selecting one of the random varaibls, let A - {X ,...,XN}. Let the cost per

- observation be c and let the loss function be L(O,a) - -g6(a), where g0(a)

(henceforth denoted g(a) for simplicity of notation) , the gain function, is a

non-decreasing function of a for each 0. Let the decision rule be

d N(LS) = [d (X I ... ,X),S(j),j

where

.j , if X. > L. and X i < Li (i-l, ... , j-l)

Sj) =3 
-

-0, otherwise,

°- and

d X. , when S(j) j.

Ell
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P Thus the expected gain onditional on stopping after the J-th draw is

E (g (Xi) I Sj)-cj.

Therefore, the expected gain in employing levels k is

N

C (d fE(g(X i )ISj)cJiPr(SsJ) 1 E(g(Xj)IS-J)Pr(S-J)-cE(S).
Jul (2.1)

We now show that the optimal strategy must consist of a non-increasing

sequence of levels.

PROPOSITION 2.1. For the sequential decision problem outlined above, the

optimal strategy consists of a non-increasing sequence of levels, L1 > L2 >

PROOF: Let a,..., aN be any levels for Problem I,

0 < a.i < i, i = 1, ..., N.

Since one of the random variables has to be accepted, one of the a.'s is zero.

Let M denote the event that the random variable chosen is > v, and let S beV

- the number of random variables sampled. Then

Pr(M, S = slal,... ,a) = Pr(Xi < ai , i=l, ... s-l; X > a5; X > V )

= f R dxi  dx

""max(as,v) ai=l d

< f f [i] dxi] dx5

max(aIs) v) 0

=Pr(Ms= sla1] > a[2) > ... > a,,,) (2.2)

where a,, I ... <_ all] denote the ordered ai
1 s. Since (2.2) is true for all

v and s, it follows that the risk (2.1) will be minimtzed when the stragey

consists of non-increasing levels.

....... . . . II. .II I. ... . . . . . .. .e " '
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Thus, we may without loss of optimality consider only the strategies which

form a monotone sequence. We compare X. with L. , i - I,...,N. If Xi > L i

we stop sampling and accept Xi ; if Xi < L. , we sample X .i  and compare

it with Li+ . Since one random variable has to be accepted, it must necessar-

ily be true that L. = 0. Let LO .I. Then the optimal strategy forms a mono-

tone sequence,

I I N < LN_1 .. L I < LO I 1

The Stopping Variable

Let S denote the stopping variable, that is, the number of random vari-

ables sampled before one is accepted. Then S G {i,2,...,N}, and

Pr(S=j) --Pr(X I i j -I i- Xj > Lj

Lk I -

-- dx dx =l (-L 1 L , (2.3)

k=O 0 L.

for j = I,...,N , and

N N H- -
V'S) = jPr(S-j) = j(I-L.)E~ ~L~ (2.4)S" j=I j-1 k-O j-91 k-O

The Optimal Levels

We consider two different gain functions g.

(i) Suppose that, for some constant b > 0,

b if X. is maximumg(X.)= "

0 0 otherwise.

Then

CGN (dj) b jlPr(X. is maximum and S=j) - cE(S). (2.5)

Now, from Enns [31 we have, denoting by PN(L) the probability that the

maximum is actually attained using levels L (Ll,...,LN),

..... .-
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S " N

P N Q) Pr(X. is .maximum and S-j)
*. j-l .3

i N-j + r- I

N N-i N N-2 1Njr-

I 1Y Lr L~ N L L jj+I "2f Lk (N 3),(2.6)I I Lr .- - r ] r
j.i rMO Jr k=r+

! Q + L I  2 L
P2L) L

P 1 
(
) = 1.

Therefore

N b N N- b N
N (c Lk -I)j-. k=O j-I

N-2 , N-j + r-I

-b 3 ) 1 II Lk  (N >3), (2.7)
j=I r=l r k=r+l

G2 (d, ) =b(- + - L - c

Gl (djL) = b -c.

(ii) Next, suppose that, for soie constant b > 0,

0 , if S # j
g(X.) =

bX.+a , if S-j , j ,...,N.

Since the gain is now linear in the obeservations, it is more appropriate to

consider the linear gain in the original observations, rather than in the

transformed observations, because if the gain of accepting Y. is taken as

bY. +a , then the gain of accepting X. = F(Y ) is bF- Ix) +a , which is

linear in X. if and only if Y. has a uniform distribution. Let YI'""YN be

the original independent and identically distributed random variables wiLh

distribution function F(.). Let the corresponding set of levels be

"QN 4 QN-I 4 .< Q 1 < Q0

where Q 0 is the smallest x such that F(x) = I for every x > Q0 and QN

is the largest x such that F(x) - 0 for every x < Q N' The gain function

? is (with b > 0)

.......
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g(Y.)i

(bY +a if Ssj, j =,..,N

0 if Y <Q

bY. +a, if Y.>Q. , j, I,....l.

PROPOSITION 2.2. It Y. , j ffi,...,N , are independent and identically

distributed as F(,) and if S is the stopping variahle for the strategy

consisting of levels QN N-I < Q Q 
< 

Q then

j-I

Pr(S-j) = (I-F(Q)) jJ F(Qk), k =I.N (28)

k=O

and

N N-j

E(S) = I I1 F(Qk). (2.9)

j=1 k=O

This proposition's proof is trivial. Now to find the corresponding expected

gain, note that the conditional distribution of Y. given Y. > Qj is

F::(y) =Pr(Yji < ylYj > Q)

O ,if y Qj

y(y) - F(QQ).
F(- P i f y > QjI 1 ( j

Therefore, Q 0

E(Y.FY. > Qj) f ydF::(y) ff= - F (Qj ydF(y).

.3 3 . jI F(Q ) jQ.

Let L. F(Qj). Then theexpected gain in employing levels

Q (Q1 = F- (LI) ...QN F (L))

is

N
GdIL) X E(bY. +afY. > Q)Pr(S =j) -c E(S)
N j]

N

a+b X E(Y.!Y. >Q )Pr(Sj) -c E(S)

N 0-i-j
_ a 4 [b(J yjdF(yj) F1 Lk -c II Lk]. (2.10)

.-.. ..... k-0 k -
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Special Cases

(1) (Uniform) Let Y. be independent and identically distributed as
~j

U[0,1] , j a 1,...,N . Then QN 0 , QO= I and Q L Also

Qo
I yj dF(yj) .. ..= L92 .

7.F y j d y j 2 jf j t2

Q. L.

Therefore

N J1N-jGU(djL)=a+j (b(I-L?)/
2 ) TI Lk - c k • (2.1')N= k=O k k=O k

where GU(dNL) denotes the expected gain when the underlying distribution is U[0,1].
V

(2) (Exponential) Let Y. be independent and identically distributed as

exponential (A = 1). Then QN= 0 , 0 and Q - -log(-Lj). Also

QO

J yjdF(yj) - [I - log(I -L)( -L.).

Q.

Therefore

.Ex N [ J-i N-j ]
G N (d[) a+ b(l-L )[ - log(l-L)] H Lk - c K L k (2.12)

J -- k=O k=0
where CGEX(dIL) denotes the expected gain when the underlying distribution is

exponential.

(3) (Normal) Let Y. be independent and identically distributed as

N(0,1). Then Q - Q = Q 0 and Q = -]L(L). Also

yjdF(yj) = -

Q.

There fore

.. (dl = + .;j ' - -eI LL - c J1 Lk ]Nj 1 V T k .0 k = O ( . 3

where GN (dL) denotes the risk when the underlying distribution is normal

a................ :,... ................................................-
" ".



NOTE: We do not lose generality by assuming Xt I in case (2) or

( 0 - 0, a - 1) in case (3), since the gain function is linear in observations

and a location and scale transformation does not change the linearity. The

corresponding levels when X # 1 or p $0 or a 2 1 can be obtained by

suitable location and scale transformations.

Numerical Results

Table I below gives the optimum levels, V. , and the corresponding maximum

expected gains GN(diL*) for N = 2(1)10 in the case of (2.7). Tables II give the

above quantities in case of (2.11), (2.12), and (2.13). [Note that all of the

tables in this paper were obtained using the sequential simplex program for

solving minimization problems which was developed by Olsson [7].] These tables

- show that for a given N and b (respectivel), c) as c decreases (respec-

tively, as b increases) the optimal levels L:- increase componentwise.

Therefore, if the gain is not much as compared to the cost, we stop and make

the selection earlier.

I ______

fr
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3. CASE OF UNKNOWN DISTRIBUTION:

RANDOM VARIABLES OBSERVED DIRECTLY

Now we consider the case when the distribution function is continuous but

unknown. The random variables are observed directly. As each random variable is

observed, only its rank relative to its predecessors is noted or able to be

noted.

The Optimal Strategy

For choosing the maximum of a sequence of N random variables in this

case the derivation of the form of the optimal strategy and terminology are

well-known from [5]. Call X. , the random variable drawn at the i-th draw, a

"candidate" if X, < X. , j = ,...,i-I . The optimal strategy is to pass, say,

r-l random variables and then choose the first candidate. Thus we want to find

*the optimal value of r. (It is known that this strategy, optimal for gain

functions as in (i) below, is not optimal for gain functions such as that in (ii)

below. However the optimal r for this strategy is of interest in (ii), as is the

* effect of sampling cost, and these are studied below.)

I

. .. ... . ...... . . ....i
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4. .. The Stopping Variable

Let S denote the draw at which we stop after passing r-i random vari-

ables. Then S E {I,2,...,N-r+l. For s I,...,N-r , we have

Pr(S=s) 1 r+1
s +r-I s+r-2

The Optimal Value of r

Suppose that the cost per observation is c and that the gain is g(X.)

if we accept X. Then the expected gain in employing the optimal stategy

conditional on stopping at S-s is E(g(Xs+r.l)IS=s)-(r-l)c-sc, and therefore

the expected gain in using the above strategy is E(g(X s+r-l) S-s)-(r-1)c-sc , and

therefore the expected gain in using the above strategy is

N-r+ I

GN(r) = E (gsr )ISfs]Pr(Sis)-c(r-l)-cE(S). (3.2)

sf]

We now consider two different gain functions g

(i) Suppose that, for some constant b > 0

Ib , if X s+r- is maximum

g0 , otherwise.

.. . . . . .-- LJ II - -77



Here it is well-known that

!. r-I

hence in this case

b, b
GN(r) (-c) + (r-1)(-c) (r-- + + )-.rl (3.4)~~r r+I '

Therefore, the optimal value of r is the smallest r" such that

GN(r) > G(r:-I) and GN(r--) > GN(r:'+I)

+ ... + I G + + ... b

9" brc+I N-I

(ii) Since the distribution of the random varaibles is unknown, let us consider

the gain function
g( S~Ib(Xs+ r  ) + a if S s

0 , if S # s, s 1,...,N-r+l,

where 41(X sr-l) is the rank of Xsr_! among X I ,...'XN  and b > 0. (For c-0.

this reduces to the problem of maximizing expected rank, which has been studied

by Chow, Moriguti, Robbins, and Samuels [1] and De Groot [2]. More general

functions of rank, but with c 0 also, have been studied by Rasmussen (8].)

W

g!1'
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, Here it is well-known that

N(N+I) (s+r-2)(s+r-I)

12(N-s-r+2) 2(N-s-r+2)
E [(X r- )IS-S]-

2- ' S =N-r+i,

hence in this case

N(r) b a 4- (-c) Cr-I) 1 - + ... + + b(N+I) b(r-i)a 2r t2 + +c. (3.6)

Therefore, the optimal value of r is the smallest r:1 such that

G N(r:) > G N (r'-l) and GN(r) > G N(r-"+I):

+b I I- ++ + <+--r + .+ - b > 2c. (3.7)

r V' I~+ N-1 'b-2c r-I rN-
i .- b b

It is interesting to compare (3.5) and (3.7). Since b-2c <
b -N o ' N > 3,

(3.7) yields a smaller value of r, . This is as one could expect on comparing

the two gain functions.

Numerical Results

Table III below gives the optimum values r-: and the corresponding maximum

expected gains GN(r*) for N ft 3(1)50 in case of (3.4) and (3.6). The table

shows that if the gain is much more than the cost of sampling one should ob-

serve a larger number of random variables before making a final selection.

-"----
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TABLE III

Table showing OPtimum r" and the corresponding maximum expected gain.

lb if KS T 1 is =X. 3( ,bda( XM~ i a. if S s

r1 0 atherwise 20 otherwise

bic I 10.0 "00.0 1000.0 b/c " 10.0 100.0 1000.0

C*r-") C .: G (r-)/C r; G.(r:)/c G, (GN(t) r: (GN(r*) r: (CN(r*)

-.,/ - -a) /c
S2 0.02500 2 0.47500 2 4.97500 2 0.20000 2 2.22500 2 2247499

4 2 0.01750 2 0.43000 2 4.55500 2. 0.26333 2 2.88833 2 29.13832

5 2 0.01083 3 0.39167 3 4.29167 2 0,32333 3 3.54167 3 35.-79166

4 3 0.03333 3 0.38211 3 4.23211 3 0.38267 3 4.23767 3 12.78764

7 3 0.04571 3 0.36529 3 4.09358 3 0.44600 3 4.90100 3 9.4097

8 3 0.05750 4 0.34704 4 4.03543 3 0.50743 5.57650 56.33005

0.06889 4 J.33942 4 3.99298 3 0.56743 4.26025 63.20129

10 4 0.08000 4 0.32882 4 3.91703 4 0.62948 6.92358 4 69.8b462

4 (.31685 5 3.90030 5 7.60744 5 76.82883

2 5 0.30805 5 3.86768 5 8.28562 5 83.64337

3 5 0.29994 6 3.82161 5 8.94896 6 90.39590

14 5 0.29093 6 3.81220 6 9.63716 Z 97.31514
3 0.28146 6 3.78568 6 10.31216 6 104.09727

16 6 0.27416 7 3.75876 t 7 10.98259 7 110.92470

2- 6 0.26672 3.74731 7 11.66634 7 117.79596

18 6 0.25892 8 3.72469 7 12.33928 7 124.55713

19 6 0.25093 8 3.70724 8 13.01471 8 131.43558

20 7 3.24346 8 3.69524 8 13.69524 8 138.27399

21 7 0.23668 a 3.67545 8 14.36673 9 145.03487

22 7 0.22974 9 3.66308 9 15.04579 9 151.93581

23 7 0.22272 9 3.65114 9 15.72398 9 158.75037

24 7 0.21568 9 3.63346 9 16.39441 10 165.55797

25 7 0.20867 10 3.62393 !0 17.07622 10 172.42924

26 8 0.20214 10 3.61229 20 17.75261 10 179.22563

27 8 0.19580 10 3.59625 21 18.42470 11 186.06995

28 8 0.18946 11 3.58835 11 19.10617 11 192.91808

29 8 0.18316 I 3.57708 11 19.78117 II 199.70027

i0 8 0.17690 12 3.56291 12 20.45616 12 206.57397

31 8 0.17072 12 3.55538 12 21.13583 12 213.40356

32 8 0.16461 12 3.54451 12 21.80969 13 220 20093

33 8 0.15860 13 3.51215 23 22.48706 13 227.07227

34 8 0.15268 13 3.52439 13 23.16524 13 233.88672

35 8 0.14687 13 3.51391 13 23.83818 14 240.71289

36 8 0.14115 24 3.50278 14 24.51753 14 247.56616

37 8 0.13555 24 3.49492 24 25.19447 14 254.36816

38 8 0.13005 24 3.48480 25 25.86714 I5 261.21851

39 8 0.12466 15 3.47453 15 26.54767 Is 268.05688

40 8 0.11937 15 3.46665 15 27.22357 15 274.64814

41 8 0.11419 15 3.5688 16 27.89828 16 281.71924

42 8 0.10912 16 3.44719 16 28.57756 16 288.54492

43 8 0.10414 16 3.43935 16 29.25256 17 295.35962

44 8 0.09927 16 3.42990 17 29.92906 27 302.21631

45 8 0.09450 17 3.42060 17 30.60724 17 309.03076

46 8 0.08982 17 3.41283 17 31.28146 28 315.86597

47 8 0.08524 17 3.40367 18 31.95950 28 322.71021

48 A 0.08075 18 3.39464 28 32.63673 18 329.51489

49 8 0.07635 18 3.38696 8 33.31027 19 336.36841

5" 2 0.0'204 2s 3.37807 19 33.98972 19 343.2i242

_ , i - ' ! ' ._, LI, .____/*' i' .." , ' i___ '- "__ _ '"
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