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Abstract—A central issue for verifying the schedulability of hard real-
time systems is the correct evaluation of task execution times. These
values are significantly influenced by the preemption overhead, which
mainly includes the cache related delays and the context switch times
introduced by each preemption. Since such an overhead significantly
depends on the particular point in the code where preemption takes
place, this paper proposes a method for placing suitable preemption
points in each task in order to maximize the chances of finding a
schedulable solution.

In a previous work, we presented a method for the optimal selection of
preemption points under the restrictive assumption of a fixed preemption
cost, identical for each preemption point. In this paper, we remove
such an assumption, exploring a more realistic and complex scenario
where the preemption cost varies throughout the task code. Instead
of modeling the problem with an integer programming formulation, with
exponential worst-case complexity, we derive an optimal algorithm that
has a linear time and space complexity. This somewhat surprising result
allows selecting the best preemption points even in complex scenarios
with a large number of potential preemption locations. Experimental
results are also presented to show the effectiveness of the proposed
approach in increasing the system schedulability.

1 INTRODUCTION

by the preempting task. Additional overhead is due to the
context switch time and to the time needed to invalidate the
instruction pipeline after each preemption. Finding a jsec
estimation of preemption costs is therefore crucial forndeg
tight schedulability conditions.

Less pessimistic WCET bounds can be obtained either by
refining the timing analysis tools, or by adopting suitable
scheduling algorithms to limit the number of preemptions as
much as possible. The first approach has been targeted by
many papers in the timing analysis domain [3], [4], [16],
[20], [23], [27], [28], [32], and will not be discussed here.
The second approach has been introduced in [24], [31] and
consists in deferring a preemption request until a point in
which the resulting Cache Related Preemption Delay (CRPD)
is small, without imposing an excessive blocking on the
preempting job. The knowledge of the deterministic loaatio
of the preemption points can be exploited to simplify the
analysis of the cache state at each point, so improving the
estimation of the preemption overhead. Specific experiment
on CRPD showed that WCET can increase up to 40% in
the presence of preemptions, with respect to a fully non-
preemptive execution [26].

A key element to guarantee the timing constraints of hard rea |, [10], we tackled the problem of finding the best possible

time systems is a precise knowledge of tasks charactetisti§jacement of preemption points under the restrictive agsum
In particular, while periods and deadlines are assignedhby kjon of a fixed context-switch overhead, identical for each

system designer to meet specific performance requiremepjigemption point. The analysis was presented for both Fixed
task computation times depend on the task code and in[psﬂority (FP) and Earliest Deadline FirseOF) scheduling, by
data, and hence may be subject to high variations. To perfopmputing the maximum time-interval for which each task can
feasibility analysis in worst-case conditions, task commfan gayecute in non-preemptive mode without causing any deadlin
times are thus upper bounded by worst-case execution timggs However, the assumption of a fixed preemption cost
(WCETSs), that are typically estimated by appropriate tiningrs out to be very pessimistic, since to be conservative
analysis tools. However, a precise WCET estimation is qui considered that each task experiences the maximum pre-
difficult to achieve, and current tools can only provide ‘Wgemption overhead at all preemption locations, withoutrigki
upper bounds computed under very pessimistic assumptio%antage of points at which a preemption would cause a
dictated by the low-level mechanisms of modern computggquced overhead (e.g., between two frames of an MPEG
architectures. For example, since preemptions destrayrano decoding application).

locality, WCET estimates of preemptive tasks are computedcontributions: In this paper, we improve the task model
by assuming worst-case cache related delays, given by fieremoving the restriction of considering a fixed overhead
extra operations needed for refilling the cache lines edictgy, each preemption point, so obtaining a more realistic and
interesting scenario in which the preemption cost depends
on the particular location at which a task is preempted. The
information on the preemption cost can be provided by exist-
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ing timing analysis tools, along with the worst-case exieeut  Thedeferred preemption modkehs been proposed by Burns
time of each non-preemptive chunk of code. We show haw [15]. According to this model, each task is composed of
to optimally select the preemption points under such a modelsequence of non-preemptive regions separated by a fixed
on a single processor system, in such a way that, if a feasipleemption point. The advantage of this approach is that the
schedule is not found by the proposed method, then no otliening analysis is significantly simplified since a task can b
strategy can lead to a feasible solution. While the problepreempted only at a limited set of pre-defined locations. An
could be solved using an integer programming formulatitsn, iexact schedulability analysis for fixed priority schedglimith
exponential worst-case complexity would make it intratabdeferred preemptions has been presented in [13], deriving a
in typical scenarios, where the number of potential pre@npt pseudo-polynomial test that needs to take into account only
points can be very high. Instead, we managed to findtlee maximum and the last non-preemptive regions of each
much more efficient solution that has a linear complexityhbotask.
in space and time. The final outcome is a fully integrated A different model has been proposed by Baruah [6], who
approach that allows the automatic placement of preemptiproposed a method for computing the maximum amount of
points, without user intervention, for applications thahde time @, for which a taskr; may execute non preemptively
modeled as a sequential flow of basic blocks of code. A setstill preserving feasibility. Under this model, non-presive
experiments is presented to prove the effectiveness ofrthe pregions are not defined a priori, but are triggered by a
posed approach in increasing the system schedulabilitst, Fi preemption request from a higher priority job. In other wsrd
some tasks coming from real applications are characteiizedan executing task will switch taon-preemptivenode as soon
terms of WCETs and preemption costs, using timing analysis a higher priority job arrives, postponing the preempaiter
tools, and the results are used to derive a model for gengrati); time-units (or earlier in case the executing task completes
a synthetic workload with realistic preemption costs. Thebefore). Since the location of the preemption points is not
the proposed placement algorithm is applied to a realistieterministic and non-preemptive regions can be everysvher
set of synthetic tasks, showing that a smart preemptiontpoin the task’s code (excluding the firgd; time-units), this
selection can significantly reduce the WCET of each task, atodel is also calledloating non-preemptive regiomodel.
improving system schedulability. As already mentioned, thn [11] and [35], a method is presented to compute the largest
run-time complexity of the selection algorithm is lineartire non-preemptive region lengths that allow each task to niget i
number of basic blocks, so that the additional computatiordeadline, under bothr and EDF.
cost is negligible when compared to the cost of the classicAn alternative hybrid preemption strategy, based on the
timing analysis. concept ofpreemption thresholdhas been presented in [33].
Organization of the paper: The remainder of the paper isAccording to this policy, each task is assigned a nominal
organized as follows. Section 2 reviews previously prodoseriority and a preemption threshold. A preemption will take
scheduling algorithms that adopt hybrid preemption peéici place only if the preempting task has a nominal priority tgea
Section 3 presents the adopted system model and terminolagyn the preemption threshold of the executing task. Antexac
along with the assumptions made to simplify the analysischedulability analysis foFp with preemption thresholds has
Section 4 reminds some useful results on the schedulabilifgen presented in [22]Although the number of preemptions
analysis of systems scheduled using a deferred preemptioireduced with this method, a preemption can still occur
scheduler. Section 5 illustrates the proposed preemptiant p at any time and position, so that timing analysis techniques
placement algorithm. The complexity of the proposed apannot take advantage of additional information to singplif
proach is evaluated in Section 6, along with implementatighe estimation of the WCETSs.
related issues. Section 7 reports a set of experiments aed Finding tight estimations of the WCET of critical tasks is
evaluating the effectiveness of the method. The validitthef a problem that has been widely considered in the real-time
adopted system model is discussed in Section 8, sugges@@ghmunity (a good survey on timing analysis techniques can
future research directions that relax the assumptions rnradeye found in [34]). As we said, this problem becomes even more

this work. Finally, Section 9 states our conclusions. complex when considering preemptive systems with caches,
for which existing techniques are still far from derivinght
2 RELATED WORK bounds on the preemption overhead. In [16] and [27], two

methods have been presented to integrate the classic Respon
The research on hybrid preemption strategies is receiMing fime Analysis with the penalties associated with CRPD,
increasing attention in the real-time research commuid#y,[ adding a fixed context-switch cost. A complex but more
[11], [29], [10], [31], [24], [15], [33], [30] as well as in precise analysis considering common sets of data between
industrial environments [17], [18]. This is mainly due teeth preempting and preempted tasks has been presented in [23].
problems that fully preemptive approaches create in terins\gith a similar target, Staschulait al. [32] provided safe
cache performance and WCET analysis. On the other si@&timations of the CRPD, analyzing the intersection betwee
non-preemptive schedulers [19], [7] are not able to achieygs set ofusefuldata—Ilocations that might be accessed again

a high utilization, because of the large blocking imposed {8, a preempted task—angseddata—locations that might be
high priority jobs. For these reasons, alternative pre@amnpt

strategies have been i_nveStigated to achieve higherattdizs 1 1pe original analysis in [33] was flawed and has been ctatein [30],
at a reduced preemption overhead. which in its turn has been improved by [22].



accessed by the preempting task. The impact of the data catherefore, the sequence of basic blocks between any two
on the overall preemption overhead has been analyzed in [28hsecutive EPPs forms a Non-Preemptive Region (NPR). The
considering as well the case in which tasks can contain oftdlowing notations are used throughout the paper:

non-preemptive region. While most of the above works were oNP  denotes the non-preemptive WCETof that is, the

based on systems scheduled wih Ju et al. [20] proposed ’ WCET (without preemption cost) estimated when
a CRPD analySiS for SyStemS scheduled vathF. is executed fu”y non preemptive'y_

Closer in scope and motivations to our analysis are the
works described in [31], [24]. Both approaches adoptra i
scheduler with deferred preemptions, with the common targe
of reducing the preemption overhead by properly placing the
preemption points. In [31], each task is divided into a set of T; denotes the period af, or its minimum inter-arrival
intervals, each one shorter than the maximum blocking time time.
tolerated by higher priority tasks. Then, a preemption poin D;  denotes the relative deadline of
is placed in each interval, at the location having the sratlle _
number ofuseful cache blocks.e., cached data that will be ik  denotes thé:-th basic block of tasks;.
accessed again. In [24], instead, preemption points aegtets b, ,  denotes the WCET of; ;, without preemption cost,
at the locations characterized by a number of useful cache that is, whenr; is executed non-preemptively.
blocks below a given threshold. Since both approaches adopt,.
a heuristic strategy for the placement of preemption points
neither method is able to minimize the CRPD to a full extent,

denotes the preemptive WCET of, that is the
WCET (with preemption cost) estimated whenis
executed preemptively.

denotes the number of BBs of task determined by
the N; — 1 PPPs defined by the programmer.

obtaining only suboptimal solutions. Di denotes the number of NPRs of tagsk determined

Our work improves the above results, deriving an optimal by thep; —1 EPPs selected by the algorithm.
preemption point placement algorithm able to minimize the ¢; ;  denotes the WCET of thg-th NPR of 7;, including
CRPD of each task and find a feasible solution, if there the preemption cost.

exists one. In [10], we proposed a simpler algorithm that ...
is optimal when considering a fixed context switch cost at **
each preemption point. Since this cost was set to the largest e = max{qi7j}§.)i:1,

preemption overhead experienced by a task, the analysis was

rather pessimistic. This work improves the analysis, byngk  &i,x  denotes the worst-case preemption overhead intro-
advantage of more detailed information on the preemption duced whenr; is preempted at thé-th PPP (i.e.,
overhead at different locations. This is possible by exjigi betweensy, and dx1).

the features of modern timing analysis tools — as the Alssinlfo evaluate the preemption ca&ty, the following overhead
aiT? tool [5] — that are able to evaluate the maximum blockingontributions need to be considered:

time and the context-switch cost for a set of potential prgem , crpp:

denotes the maximum NPR length fgr

tion points of a given task. « WCET of the scheduler and related RTOS activities;
« cost for flushing the processor pipeline (if there is any);
3 TASK MODEL « bus contention delay.

We consider a set composed ofn periodic and sporadic Assuming a fully timing compositional architecture [21ikd
real-time tasks that are scheduled on a single processoy ushe ARM7, that does not exhibit any timing anomalies and
Fixed Priority ¢P) or Earliest Deadline FirstpF) [25]. Each with no DMA-capable devices, the above costs can be upper
task 7; generates an infinite sequence of jobs, with the firsbunded by timing analysis tools.

job arriving at any time and successive job-arrivals sepdra \We assume tasks to be ordered by decreasing priorities
by at least a minimum inter-arrival timé;, also denoted as in the Fp case, and by increasing relative deadlines in the
period. Each job ofr; is assumed to have a relative deadlingpr case, i.e.vi | 0 < i < n : D;_; < D;. To simplify

D; < T; and to consist of a sequence dF non-preemptive the notation, the task index is omitted from task parameters
Basic Blocks (BBs). Preemption is allowed only at basic kloavhenever the association with the related task is evidemt fr
boundaries, so each task has — 1 “Potential Preemption the context.

Points” (PPPs), one between any two consecutive BBs. &lritic

sections and conditional branches are assumed to be edec S & S S Ss

entirely within a basic block. In this way, there is no need fcri 8, 5, 5, 8, 55 8

using shared resource protocols to access critical saction AR ARRREN SEARERN SARARY S T ST
To limit the preemption overhead, the proposed algorith T 1, S S N 5, T H,

identifies a subset of PPPs that minimizes the overall CRF ‘ i i

still preserving the schedulability of the task set. A PP. 4 % 4

. 1. Example of parameters defined for a task with 6
5 and 3 NPRs. Preemption cost is reported for each
2. http:/Avww.absint.com/ait/ PPPs, but accounted only for the EPPs.

selected by the algorithm is referred to as an Effective Pr :
emption Point (EPP), whereas the other PPPs are disabég



Figure 1 illustrates some of the defined parameters foroa the validity of assumptions Al. and A2. and on the problem
task with6 basic blocks an@ NPRs. PPPs are represented bgf relaxing these assumptions is presented in Section 8.
dots between consecutive basic blocks: filled dots are EPPs
selected by the algorithm, while empty dots are PPPs that
are disabled. Above the task code, the figure also reports e SCHEDULABILITY ANALYSIS
preemption costs; for each PPP, although only the cost for
the EPPs is accounted in the analysis, in the W@E®f the This section briefly summarizes some schedulability result

corresponding NPR. useful for computing the upper bound of an NPR for each
Using the notation introduced above, the non-preemptit@sk. For this purpose, we define treguest bound function
WCET of 7; may be expressed as follows: RBF;(a) and thedemand bound functioof a taskz; in an
N, intervala as
P =Y big. RBF;(a) = [iw Ci,
k=1 Tz

The goal of this work is to minimize the overall worst-5q

case execution tim&; of each taskr;, including the pre- a—D;

emption overhead, by properly selecting the EPPs among all DBF;(a) = (1 + { T ZJ) Ci.

the PPPs specified in the code by the programmer, without !

compromising the schedulability of the task set. To compute the maximum allowed non-preemptive execution depends
the preemption overhead, we make the following simplifying, the adopted scheduler. The following theorem, derived in

assumptions: [10], provides an upper boun@; for the maximum allowed
Al. The cache is cold after each context switch. NPR of a taskr; for FP and EDF.

A2. Each EPP leads to a preemption. . .
. Theorem 1 (from [10]). A task setr is schedulable with
Under these assumptions, the overall worst-case executfon : .
- Imited preemptiorepr or Frif, forall k|1 <k <n+1,
time C; can be computed as follows

Ni—1 g™ < Qr = min {;}, 2
C; =CM+ Y selected(i,k) - & » (1) l<i<k
k=1

where, underFp, j3; is given by
whereselected(i,k) = 1 if the k-th PPP ofr; is selected by the
algorithm to be an EPP, wheresalected(i,k) = 0, otherwise.
Note that Al. and A2. are pessimistic assumptions. In BrP = o <, G*ZRBFJ'(@) ; 3)
particular, if a preempting task has a small cache footprint Gt A j<i
the preempted task might experience a smaller preemption
overhead than that assumed with Al. However, expressiffjh 4 = {kT}j, k € N, 1 <j <n}, whereas, undeeor, f;
the preemption overhead as a function of the preemptiiygiven by
task would significantly complicate the analysis, needing t
evaluate how many cached locations are effectively inasdid EDE . )
at each PPP by each preempting task. gt = acA|Difa<Dis |0 Z DBFj(a) 0o (4)
Regarding Assumption A2., there might be cases in which TET
not all EPPs lead to a preemption. As mentioned in [10], tr\‘/ﬁth A—
fact that an EPP is inserted in the code of a taskoes not
imply that ; will be preempted at that point. For instance, Note that we conventionally sef’# = 0, andD,,; equal
when there is only one higher priority task with a large to the minimum between: (i) the least common multigtex()
period T;, 7; cannot be preempted more than once eveuof Ty, T5,...,T,, and (ii) the following expressicn
T; time units. Considering which EPP can effectively lead
to a preemption would significantly complicate the analysis 1 n
needing again to express the preemption overhead as adoncti ~ ™1aX <D"7 10U Z Ui - max (0’ Ti - Dl)) :
of the preempting task. Moreover, when a taslcan be pre- =1
empted by more than one task, it is difficult to identify when a Notice that, underepr, Condition (2) is necessary and

higher priority instance will cause an additional preemiptio ¢ (iient, whereas, undep, it is necessary and sufficient only
7. In fact, multiple higher priority instances could be extecll o there is no information on the length of the final non-

within one single preemption of;, when all such instances oo htive chunk of code of each task (i.e., in thieating
arrive beforer; resumes the execution. Techniques to deteg,qel” described in [35]).

the worst-case preemption pattern that leads to the largest
overhead forr; are presented in [32], [28], [29]. Adapting _ _ o
3. The expression may in general be exponential in the paeasnefr;

Fhese techniques to the Ii.mited preemption sch_edulir_lg Ian(_ﬂ@wever, it is pseudo-polynomial if the system utilizatisra priori bounded
is beyond the scope of this paper. A more detailed discussi@im above by a constant less than one, as proved in [8].

{(kT; + D;, ke N, 1<j<n}.



5 PROPOSED APPROACH 1 2 33 1

In [10], it was proved that an optimal way for selecting the ‘ 01 ‘ 02 ‘ O3 ‘54‘ 05 ‘ 3 ‘ 0=38
EPPs to minimize the preemption overhead without violating T

Condition (2) is to proceed from task to 7,,, according to Solution with one PP:

the ordering assumed in Section 3. In this way, the chances fo

finding a feasible solution are maximized. Since the preemp-‘ 01 ‘ 02 ‘ o3 ‘54‘ % ds ‘ 6. ‘ CRPD = 3
tion overhead; of a taskr; in [10] is assumed to be constant ~

for all preemption points, the resulting placement aldponit Optimal solution with 2 PPs:

is rather simple, selecting an EPP every (at magt)— &;
units of execution. However, since the cost of each single| 6, | & 6] ds |04 05| E o |
preemption needs to be safely set to the largest preemption ~— ~ ~ ~
cost experienced by each task, the overhead is significa
overestimated.

In this section, we show how to improve the analysi
considering a different preemption overhead for every P
and presenting a placement algorithm that selects the EPPs
to minimize the overall preemption cost, without violatingys 5, yntil the end ofs,. Then, we can express the following
Condition (2). In the following, we implicitly refer to a genc ocursive expression
task ;, with maximum allowed NPR length); = Q. i

It is easy to prove that a naive algorithm, like the one
adopted in [10], that activates a PPP after at m@stinits By =Bj1tq=Bja+&at be' @
of execution from the previous one i®t optimal, since it =4
does not minimize the overall preemption overhead. Whé¥pte that sincely is the last BB, the worst-case execution
a variable preemption overhead is considered, this ahyuorit time C; of the whole taskr; is equal toBy.
does not even minimize the number of EPPMoreover, The proposed algorithm for the optimal selection of preemp-
even an algorithm that minimizes the number of EPPs migh@n points is based on the equations presented above and its
be unable to minimize the overall preemption overhead. pseudo-code is reported in Figure 3. The algorithm evaduate
general, it may be convenient to insert more preemptiontpoirdll the BBs in increasing order, starting from the first onex. F
than the least possible number, to take advantage of poitits weach BBy, the minimumpy, that does not violate Condition 2
a small CRPD. is computed as follows.

Consider, for instance, the task reported in Figure 2, assumFor the first BBs, the minimun;, is given by the sum of
ing Q@ = 8. With the naive algorithm, only one preemptiorthe BB Iengtthf=1 be as long as this sum does not excégd
point is inserted at the end ofy. In fact, Zizlbk = Note thatifb; > Q, there is no feasible PPP activation, and the
2424241 =7<Q, and§4+22=5 by = 3+24+3=8<(Q, algorithm fails. For the following BBsj3; needs to consider
meeting Condition (2). The total preemption overhead.is the cost of one or more preemptions as well. E8tev;, be
However, by selecting two EPPs — one aftgerand another the set of the preceding BB5<;, that satisfy Condition (6),
after 55 — we achieve a feasible solution with a smaller totdle., that might belong to the same NPR &f If this set is
overheads; + & = 14+ 1 = 2. In general, for tasks with a empty, there is no feasible PPP activation, and the algurith
large number of basic blocks with different overhead valueiils. Otherwise, the minimun,, is given by
finding the optimal solution is not trivial.

CRPD =2

r&% 2. Two solutions for selecting EPPs in a task with
@ = 8: the first minimizes the number of EPPs, while the
[gcond minimizes the overall preemption cost.

k
For a generic task, the worst-case execution fjméa NPR _ . , ,
composed of the consecutive basic bloéksy; 1, . . ., d;, can Bi 5,6 Prevs Bi-1 &1+ ; be (- ®
be expressed as -
k Let 6*(dx) be the basic block for which the rightmost term of
g=& 1+ b (5) Expression (8) is minimum
=)

k
conventionally settingéy, = 0. Note that the preemption §5*(6%) = argmin { B;_; +&_1 + be . 9)
overhead is included ig. Since any NPR of a feasible EPP 5;€Preuy, ‘

=y
selection has to meet the conditigr< @@, we must have ) L ! .
If there are many possible BBs minimizing (8), the one with

b the smallest index is selected. L&t (0 ) be the basic block
§i-1+ Zbe <Q. ©6) precedingd* (8 ), if there exists any. The PPP at the end of
=i dprew(0r) — Or, equivalently, at the beginning of (6x) — is
Now, let By be the WCET, including the preemptionmeaningful for the analysis, since it represents the last oP
overhead, of the first basic blocks, i.e., from the beginningactivate for minimizing the preemption overhead of the first
. . . . . . basic blocks.
the naive algoriim describec in 0] s able to minimize chenber of EPPs, A feasible placement of EPPs for the whole task can then
and, consequently, the total preemption overhead. be derived with a recursive activation of PPPs, startindy wit



the PPP at the end @f,...,(0n), which will be the last EPP until a feasible PPP activation pattern has been produaed fo
of the considered task. The penultimate EPP will be the oa#t tasks in the considered set. If the computgd ; is too

at the end ofé per, (0prew(0n)), @and so on. If this recursive small to find an EPP feasible allocation, the only possibilit
lookup of functiondp,.., (k) reaches the start of the programto reach schedulability is by removing tasks from the system
a feasible placement of EPPs has been detected, with a woastno other EPP allocation strategy would produce a feasible
case execution time, including preemption overhead, egualschedule.

By. This is guaranteed to be the placement that minimizes

the preemption overhead of the considered task, as provquipFLSELECT(Q, 7)

the next theorem. Initialize: Previ < {01}, By < 0

Theorem 2. Under assumptions Al. and A2., the PPP ac-1 for (k : 1<k <N)

tivation pattern detected by proceduRPP_SELECT(Q;, ;) 2 Remove fromPrev;, all §; violating (6)
minimizes the preemption overhead experienced by azsask 3 if (Prev, = 0)
without compromising the schedulability. 4 return (I nf easi bl e)
Proof: First, we prove that if procedure g%Te%iéB’(cé:)s ing Equation (8)
PPP SELECT(Q;, ;) fails, there is no other feasible Prev, 1’2 Preve U {64}
EPP placement. For the procedure to fall, it is necessaty tha endfor +
the condition at line 3 is satisfied. This means that therg .  Spres(Sn)
exists a BBJ; for which Condition (6) is violated for any g th”e (5;8; 0)
j < k; Thats, 10 Select the PPP at the end&f,..,(d;)
k 11 (5j — 6P're'u(6j)
GGa+Y b>Q  Vi<k endwhile
1=j 12 return (Feasi bl e)

This means that with any possible PPP activation pattern, ] ] ]
the length of the NPR containing, will be larger thanQ, Fig- 3. Algorithm for the optimal selection of PPPs of a
violating Condition (2) and leading to a deadline rhiss task.
We now consider the minimization of the preemption
overhead. LetC; be the WCET, including the preemp-
tion overhead, resulting from the EPP allocation given byl Example

PPR SELECT(Q;, 7). Suppose there exists another feasibley petter clarify how the proposed algorithm works, we
EPP allocation that results in a smaltef < C;. We prove by jjjystrate an example of EPP selection using the task posi§o

induction that this is not possible. The proof inducts oV& t gescribed in Figure 2. The execution steps of the algoritten a
index j of the basic blocks;, proving thatB; is minimized reported in Figure 4.

forall j,1 <j<N.

Base case. For j = 1, B; = by by definition. This is the 1 2 33 1
minimum possible value of the WCET of the first BB, since ‘ 5 ‘ 5o ‘ 53 ‘54‘ S5 ‘ 56 ‘ Q=3
it does not experience any preemption. T -
Inductive step. Assume allB,, ¥/ < j are minimized (%] Prevg [ 6pr00(01) | By |
by procedure PPFSELECT(Q;, 7;). We prove thatB; is also 0 0
minimized. By Equation (8), procedure PPSELECT(Q;, 7;) T o 7 5
computesB; as 5 {51,152} 7 I
J 3 {61, 92,03} [ 6
Bj :5 en}?ilrrévv {BEI +€Zfl+ me} 4 {51,52,53,54} @ 7
‘ ! m={ 5 {52,(53,54,55} (51 10
Since, by induction hypothesis, alt,_; terms are minimal, 6 {05, 06} Js5 14
also B; is minimized, proving the statement. SinCe = By, Place an EPP at the end &f and d;
a contradiction is reached, proving the theorem. O
As we mentioned in Section 4, the feasibility of a given taskig- 4. Sample  execution  of  procedure

set is maximized by applying procedure PBBLECT(Q;, ;) PPRSELECT(Q, 7).

to each task, starting fromr; and proceeding in task order.

Once the optimal allocation of EPPs has been computed for &\t the beginning,B, = 0, by definition, andPrev; is
taSkTi, the value of the overall WCECL — BN can be used initialized to the first 8851 For the first4 BBs 51, ey 54, it

for the computation of the maximum allowed NER, ; of the IS possible to accommodate the overall WCET from the start

next taskr; 1, using Equation (2). The procedure is repeate’f the program without any preemption. In fagh + b1 +
by +b3+bs=0+2+2+2+1=7<Q = &, without
5. Note that Theorem 1 is necessary and sufficient only irethecase.  Vviolating the @ bound. This means thatk,1 < k& < 4 the



smallestBy, is obtained with a NPR spanninyg, ..., ;. Since 6.2 Run-time complexity
no preemption penalty is paid at the beginning of the exeauti
(&0 = 0), Equation (8) gived3y, = 2521 be,Vk,1 < k < 4, as
shown in the figure. Moreovet;*(d;) = §; by Equation (9),
so thatvk,1 < k < 4 there is no BB preceding*(dx), and
5Prev (5k> = @

For k = 5, the start of the task is no more in thewindow

Regarding the run-time complexity, a naive implementation
of the algorithm would search, at each step, within the set
Prevy, the element generating the minimum value to compute
dprev(9x). This requiresO(Q) time for each BB, yielding to

a time complexity ofO(N x Q). A smarter implementation

) . ._could maintain the sePrev; in an ordered queue, where the
(01 ¢ Prevs), becausg the nor)—pgr)eempnve execuuon_ t'm&ementzsj generating the minimun;_; +¢,_; is always in
from the start to the fifth PPP i5,_, b, = 9 > Q. ThiS 0 hoad To maintain this ordered queue, the implementatio

means that at least one EPP should be inserted betdeery, 14 4t each step, do the following for the considered BB
and 5. To decide which PPP to activate, the minimupg

is computed with Equation (8), evaluating all € Prevs i ) )
and exploiting the values,, ..., B, derived at the previous ° Remove_lnfeasuble gl_ements from the hegd, i.e., elements
steps. Note thaPrevs = {0s, 83, 04.05}, sincevk,2 < k < d; that violate Condition (6) for the considerégl.
5, &1+ So_, by < Q. The minimumB; is obtained with ~ * COMPUteS,_1 + &1 for d. _
§*(65) = s, giving Bs = 10 anddpe, (65) = ;. This means ~ * Remove from talil a.II elements; for which Bj,_l .+.
that the minimumBs is obtained by placing an EPP at the -1 = Bi—1+&-1, i.e., elements that cannot minimize
end of ;. Note thatno EPP is inserted at this point of the By. . )
program The decision on the EPPs will be taken only at the * NSertd; in the tail.
end of the procedure, when the final BR is reached. What Since, at each step, only elements at the head and tail of the
has been decided at this step is just thah EPP is placed at ordered list are considered, the run-time complexity isioedl
the end ofjs, then the overall WCET is minimized by placingto O(N).
another EPP aftef;.
For k = 6 = N, the last BBds has been reache®revg _ _ )
is derived by addings to Prevs, and removing all BBs that 6-3 Implementation of preemption points

cannot be in the same NPR o6f. Note thatd; is too far, One last consideration concerns the implementation of PPPs
even without considering the preemption overhéag: , b = and EPPs. Since the preemption overhead upper bognds
2+2+1+2+3 =10 > Q. Fords, & + Y5 = are computed a priori by timing analysis tools, it is impatta
2+2+1+4+2+3 =10 > Q. Forédy, &3+ > ,_,b¢ = for the PPP activation procedure not to modify the code
3+1+4+2+3=9>Q. Therefore,Prevs = {J5,06}. Using that has been analyzed. Therefore, it is not possible to add
Equation (8), the minimumB; is obtained by selecting thea scheduler invocation at a selected EPP, when this system
smallest value betweeB, +&,+bs+bs = 7+3+2+3=15 call was not included in the initial code considered by the
and Bs + &5 + bg = 10 + 1 + 3 = 14. Therefore,Bs = 14, timing analysis tool. Similarly, it is not possible to rengoa
6*(d6) = d¢ and dp,ev(ds) = d5. Since the end has beenscheduler invocation at a PPP that is not selected by proeedu
reached,Bg = 14 represents the minimum WCET, includingPPP SELECT(Q, 7), if this call was included in the code
preemption overhead, that can be obtained for the consideggalyzed by the tool. These changes in the code would cause
task without violating the NPR bound d@). This value is a shift in the memory locations that could modify the cache
obtained by placing an EPP at the enddgf..,(ds) = J5. states derived in the timing analysis, potentially invatidg
Looking up recursively, another EPP is placed at the end @fe derived bounds on the preemption overhead. A posgibilit
dprev(05) = 01. SinCedprey (61) = 0, No other EPP needs toto sidestep this problem is to add a modified scheduler invo-
be placed, and PPBELECT(Q, 7) returns a feasible result. cation at each PPP in the code analyzed by the tool. This call
contains a boolean parameter that is set if the PPP is setlecte
by procedure PPFSELECT(Q, 7). The scheduler can then
6 IMPLEMENTATION CONSIDERATIONS check this argument to decide whether to return immediately
to the calling task, or to take a scheduling decision. Aniothe
We now present some considerations about the implememntatadternative, that does not require any modification to the
of procedure PPESELECT(Q, 7) and its complexity. scheduler, is to add annotations for the compiler at each PPP
specifying whether the point is selected or not. The compile
will then replace a selected EPP with a call to the scheduler,
6.1 Memory requirements and an unselected PPP withN@P instruction.

For each BBJg, the algorithm has to store thBrev, set.

In later steps, only information about elemenjsof this set 7  EyvpERIMENTAL RESULTS

are needed, such ds;, b; and¢;. Since the size of this set

depends o), the memory requirements af§ (). Moreover, This section presents some experimental results aimed at
it is necessary to maintain a trace of &M, (0x), Vk,1 < k < measuring the preemption cost of real tasks and at evaduatin
N, for the final recursive lookup of the PPPs to select. Thhe performance of the proposed algorithm in terms of task se
overall memory requirement is therefat§ N + Q). schedulability, as a function of different task set chagastics.



7.1

A first set of experiments has been carried out to measure the A
overhead costs due to preemption and evaluate the coherence™
of the task model proposed in Section 3. To deal with |, /
realistic cases, we considered two control tasks produged b / N

the

generates sequences of code blocks:

All timing parameters were measured using a cycle-accurate o

Meas u r| n g p reem pt| on costs Preemption cost: Automotive Task
16

g

Simulink automatic code generator, which intrinsicall 10 /
A \

o 8 Y
the Matlab U.S. Navy F-14 Tomcat aircraft control & \
task [1], which guarantees the aircraft to operate at a ° / \
high angle of attack with minimal pilot workload, and 4
the Matlab automotive task that models an automatic / \
transmission controller [2]. 2 \

20 40 60 80 100

platform emulator [9] of an ARM7TDMI processor running ’ task execution time [usec]
at 200 MHz and equipped with a 4Kb Harvard I/D caches. Preemption cost: US Navy F14

Measures have been obtained by placing a preemption point *
in the task code in different positions corresponding toehe » .
of a basic block. Preemption is enforced by creating a higher f«/’\/ ™~
priority task that evicts all cache lines. Then, preemptiost T AR I
is computed as the difference between the execution times / \z/
measured with and without preemptions. Note that measured @

values include the costs related to cache misses, conteg:t / \
switches and pipelines flushes. The results achieved on the ° / T
two considered tasks are reported in Figure 5. Thaxis .

represents the time at which a preemption takes place, while / ‘
the y-axis represents the increase in the execution time caused :

by a preemption at that place.

7.2

0 50 100 150 200

Evaluation of the algorithms sk execution time [usec]

A second set of experiments has been carried out on synthé&lig. 5. Preemption costs for two real control tasks.

task sets, to evaluate the performance of the proposed algo-

rithm against other approaches in improving the schediithabi

of the system. The following scheduling algorithms havenbee ~ non preemptive case, which provides a lower bound for
considered in the comparison, under the Rate Monotonic the task set schedulability.

priority assignment: Task parameters were randomly generated to produce both

FuP-nocost: Fully preemptive scheduler with no costthe basic blocks execution times and the preemption cost
Under this scheduler, a task can be preempted evefgr each preemption point. The number of basic blocks was
where within its code without extra penalty. Althoughtandomly generated in an intervét0,200] with uniform
unrealistic, this algorithm has been considered to provigéstribution, while their WCET was generated according to
a reference for an ideal behavior. In this case, the tagkGaussian distribution with mean equal to 4000 time units
set schedulability is computed using the Response Tiragd variance of 3000 time units. Notice that in the ARM7
Analysis technique. architecture used in the previous experiments, a time unit
FuP. Fully preemptive scheduler with preemption costorresponds to 5 nanoseconds. The utilization of each task
The cost accounted for each preemption is the maximums been generated using the approach proposed in [12].
among the costs of all potential preemption points ifthe task periods were then computed dividing the WCET by
the task. The schedulability test is performed using tibe utilization of each task. Preemption costs were rangoml
CRT A algorithm proposed by Busguets-Mataix et al. igenerated using the following function, to achieve a réalis
[16]. distribution similar to the one shown in Figure 5:

LiP-naive. Limited preemption approach with variable _ A

cost, using the naive algorithm adopted in [10]. This i =&+ AL
algorithm activates a PPP after at magt time-units where A¢; = gaugm;, o), and
of execution from the previous one, starting from the

beginning of the task. B —% 'I & > &max
LiP-opt. Limited preemption approach with variable cost, Mit1 = JFA o ! tﬁi < &min
using the optimal algorithm proposed in this paper. SgN(AE;) otherwise

NoP. Non-preemptive algorithm. For the sake of comThe variances determines the degree of variability of the
pleteness, we also evaluated the performance of a fufyeemption overhead between any two consecutive PPPs. An



example of values generated by this function is shown inFigure 8 illustrates the results of another test, where the
Figure 6 for different values of the varianeesettingM = 20, percentage of schedulable task sets is shown as a function of
Emin = 1000, &nqe = 55000. Note that the requirement forthe number of tasks. In this setup, the task set utilizatias w
positive CRPD values introduces an asymmetry that makiesed at U = 0.9. Note that the fully preemptive approach
them to increase with the varianee In the following exper- presents a very poor performance, because the cost of such

iments, we adopt a varianee= 3000. a high number of preemptions leads to a total computation
time higher than the one achieved using limited preemptive
60 * * algorithms. The graph shows that the impact of the preemptio
5 P ogmacioo . cost awareness is higher for a small number of tasks, because
50 - x 2:32::333 T under this condition, each task presents more effective pre
I P L T empti(_)n points_, amplifying the advantages of the proposed
10 x — - selection algorithm.
Ju) * % * X [a)
F) + VRS * %&X |
S o Ak Plmea o W e gt 09 . . T T
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i X 03 LiP-opt ---*---
Fig. 6. CRPD of the same task as a function of the CRPD LiP-naive o
. 0.2 |- NoP & =
variance. o .
. . 01 - .
In a first test, we monitored the percentage of schedulable pom
task sets for every algorithm as a function of the task set ° s 10 15 20 2

number of tasks

utilization. In Figure 7, we report the achieved results tfoe

case withn = 7 tasks. Each point in all the graphs has beefig 8. percentage of schedulable task sets as a function
obtained as the average upon 2000 simulation runs. of the number of tasks.

: i The next experiment is aimed at showing the effects of the
maximum preemption cost,,... on the task set schedulability.
0 We show here the case with= 7 and total utilizationU =
. 0.95, in order to have a large number of generated task sets
k that are close to the schedulability border. Figure 9 shinas t
06 R even the Fully Preemptive algorithm without preemptiontcos
AN is able to schedule less than one half of the generated ttsk se
>, The performance of th&iP-opt algorithm are significantly
R b i’ better than the.iP-naive algorithm, which has a performance
LiP-naive L degradation that is twice as fast. TReP algorithm, which
02 b - takes preemption costs into account, performs very poorly,
while the non-preemptive algorithm is never able to produce
S B a feasible schedule with the generated tasks.
05 06 07 08 "0 1 Such a big difference between the two limited preemption
Vrllzaton algorithms can be explained by considering a cascade efffect
fact, selecting the EPPs with smaller cost reduces the bloba
WCET of the task. This leads to a reduced task utilization,
but also to a larger value a@ for tasks with lower priority,
The non preemptive algorithm exhibits the worst perfowhich causes a reduction of preemption points to achieve
mance for utilizations smaller tham9, while the fully pre- schedulability. Such a cumulative effect is significant aad
emptive scheduler without preemption cost outperformthall be appreciated even with a small task set, like the one used in
others. Note that both limited preemptive approaches havaha experiment.
performance close to the one of the ideal fully preemptive Increasing the variability of preemptions costs produbes t
scheduler, and much better than the one shown by the futBsults reported in Figure 10, which shows that the advantag
preemptive algorithm with preemption cost. Between the paf the proposed algorithm with respect to the others is adway
tially preemptive approaches, the one proposed in this mpapggnificant and improves along with the varianceNote that
outperforms the other. a largeo implies a larger average preemption overhead, as

0.8

schedulability ratio
*

0.4

oot

w3

Fig. 7. Percentage of schedulable task sets as a function
of the utilization.



0% ‘ ‘ ‘ ‘ ‘ ‘ cache before being preempted. As a consequence, relaxing
Assumption Al., the preemption overheadgfat the k-th

0a PPP could be expressed as an arrayi of 1 values¢;,,

FuP-nocost

LIP-opt —x— one for each potential preempting task How to derive an
""""" Lpnave optimal placement algorithm for such an improved model is
03 1 g NoP - -»-- an interesting problem that we leave as a future work.

Another interesting open problem is finding an optimal EPP
selection method relaxing Assumption A2., i.e., consiatgri
which of the selected EPPs will possibly lead to a preemption
For example, there can be cases in which many EPPs need
01 x to be activated for a task; in order to avoid an excessive
blocking to higher priority tasks, but only a few of them
a could effectively lead to a preemption. Consider the follayv

20 30 40 50 60 70 examp|e_

Maximum CRPD [Kcycles]

schedulability ratio

* T
0.2 Koz

) ) Example 1. A task set is composed of two tasksand 7,
Fig. 9. Per.centage of schedulable task sets as a function i, pe scheduled with limited preempti@F or Fp. Taskr
of the maximum CRPD. has deadlineD; = 10, period 7} = 100, and is composed of
a single basic block of length’; = 1. Taskm has deadline
5 = 16, period T, = 100, and is composed of four basic

h din Fi 6. H , it also impli high .
we showed In Hgure owever, It aiso IMples a Mg ;éplocks of lengtht, 4,2, 2, respectively. The three PPPs of

probability of having a PPP with low overhead that will b i head 8f5. 3 fivel
selected by the proposed algorithm. While the other allyorst ave a preemption overnea 815, 3, respective -
suffer the increment of the average preemption cost, o Note that, according to Theorem 1, the maximum allowed

approach compensates it because of its capability of findillgn1 R ofrp is Dy — €1 = 9. Possible EPP selections are

a PPP with lower cost, significantly increasing the number&I actlvgtlng th? flrst_an(_ﬂ third PPP, with a total overhead
schedulable task sets. of 6 units, or (ii) activating only the second PPP, with a

total overhead ob units. All other possible choices are either
05 : : : : : : : : infeasible or redundant. Applying procedupPP SELECT to
5 With Q2 = 9 activates only the second PPP, leading to
a WCETC; = 12+ 5 = 17, and the task set is clearly not
04 FuP-nocost schedulable. However, considering that tagkhas a period of
LPopt e 100, it can preempt each job of, at most once. Therefore, an

LiP-naive -~
S 0s X NP EPP selection that activates only the first and third PPR-of
z %N I leads to a WCETC, of at most12 + 3 = 15. Considering
S N e the additional interference of unit by =, the task set is
§ o2 schedulable.

———————————

In the above example, both the first and the third PPP have
01 . to be activated in order to avoid an excessive blocking;to
However, only one of them will possibly lead to a preemption.
Note that procedure PPBELECT is optimal only under the
2 4 6 8 10 12 4 16 18 assumption that all EPPs lead to a preemption. When this
CRPD varance [keycles] assumption is relaxed, the EPPs activated by FSRPECT
Fig. 10. Percentage of schedulable task sets as a function ~are not guaranteed to minimize the overall WCET. This is
of the variability of the CRPD (variance o). true even for implicit deadline task sets, as could be proved
with simple examples. We leave the problem of finding an
optimal EPP activation relaxing Assumption A2. as a future
work.
8 OPEN PROBLEMS One last open problem that is worth mentioning is con-
The optimality of the proposed algorithm for the activatiosidering applications that are not modeled as a sequential
of the preemption points depends on assumptions Al. afhmlv of basic blocks. Typical applications are composed of
A2. These assumptions have been introduced in order n@ny conditional branches and loops, which could cover
simplify the analysis, ignoring the dependency of preearpti significant portions of the task code. Requiring all loopsd an
overhead on the preempting task, and allowing the WCHFanches to be contained within one BB could be very con-
of a taskr; to be expressed using Equation (1). A morstraining, limiting the applicability of the proposed appch.
detailed analysis is possible if the preemption overhead fierefore, it would be particularly interesting to extere t
7; is considered as a function of the preempting task. Forodel, considering applications that can have a PPP even
instance, tasks that have a small cache footprint will not lieside a conditional branch or a loop. Under this model, it
able to invalidate all the useful blocks that loaded in the is difficult to understand what is the best combination of




EPPs that guarantees the WCET of a task to be minimizeth)
independently of the particular branch of basic blocks ikt

be conditionally executed. We believe that optimal sohaio
with linear complexity are unlikely for this problem, due1s]
to the cross dependencies that might arise between differen
conditional structures of the same application. Desigrang
algorithm that is able to solve this problem with a reasoaaljte]
complexity would be indeed an interesting achievement.

[17]
9 CONCLUSIONS

This paper presented an algorithm for automatically sgtéin [1g]
number of preemption points within the code of each task,
to minimize the overall preemption cost under schedulgbili
constraints. Preemption points are selected among a larger
predefined set of potential preemption points, defined by the
programmer at design time. The adopted task model fits well
with tasks consisting of a sequence of basic function bloaks [20]
those produced by code generators running in standardrdesig
tools, like Simulink. 21]

The algorithm was proved to have a linear complexity and
to be optimal, in the sense that, if a feasible schedule is not
found by the proposed method, then no other strategy can I?gﬁl
to a feasible solution. Extensive experiments demonstrate
the effectiveness of the proposed approach in increasiag th
system schedulability with respect to other algorithms.

[23]
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