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Optimal Selection of Sib Pairs from Random Samples for
Linkage Analysis of a QTL Using the EDAC Test

Conor V. Dolan! and Dorret I. Boomsma!

Received 27 May 1997—Final 20 Feb. 1998

Percentages of extremely concordant and extremely discordant sib pairs are calculated
that maximize the power to detect a quantitative trait locus (QTL) under a variety of
circumstances using the EDAC test. We assume a large fixed number of randomly sam-
pled sib pairs, such as one would hope to find in the large twin registries, and limited
resources to genotype a certain number of selected sib pairs. Our aim is to investigate
whether optimal selection can be achieved when prior knowledge concerning the QTL
gene action, QTL allele frequency, QTL effect size, and background (residual) sib cor-
relation is limited or absent. To this end we calculate the best selection percentages for
a large number of models, which differ in QTL gene action allele frequency, background
correlation, and QTL effect size. By averaging these percentages over gene action, over
allele frequency, over gene action, and over allele frequencies, we arrive at general
recommendations concerning selection percentages. The soundness of these recommen-
dations is subsequently in a number of test cases.

KEY WORDS: Quantitative trait locus (QTL); sib pairs; linkage analysis; random samples; sib

pair selection; EDAC test.

INTRODUCTION

The importance of selective sampling to increase
power in linkage analyses of a quantitative trait lo-
cus (QTL) using on sib pair data has been dem-
onstrated both in Monte Carlo studies (Carey and
Williamson, 1991; Eaves and Meyer, 1994; Cardon
and Fulker, 1994) and analytically (Risch and
Zhang, 1995, 1996; Gu et al.,, 1996). Carey and
Williamson (1991) and Cardon and Fulker (1994)
considered selective sampling on the basis of pro-
band ascertainment, where one sibling is defined as
the proband and is selected from an extreme of the
phenotypic distribution. The cotwin trait scores
vary over the full range of the distribution. Eaves
and Meyer (1994) considered a variety of selection
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strategies, including selection of high and low con-
cordant and discordant sib pairs. Risch and Zhang
(1995) presented an analytic method to derive the
required number of selected sib pairs to achieve a
specific level of statistical power given the alpha
level, background -correlation, QTL allele fre-
quency, QTL gene action, and effect size. Their
power calculations are based of the null hypothesis
that the mean proportion of alleles shared identi-
cally by descent equals .5 (i.e., the expected value
given the absence of linkage). The results are pre-
sented for selection of discordant sib pairs from the
extreme deciles of the phenotypic distribution.
Methods to correct the required number for poly-
morphic information content of flanking markers
and recombination ar¢ provided in Risch and
Zhang (1996). While Risch and Zhang (1995,
1996) concentrate on extremely discordant sib
pairs, Gu et al. (1996) consider the gains in power
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that are achieved by combining extremely high-and
low-scoring concordant sibs with extremely discor-
dant sibs. They present results relating to selection
from random samples and to selection on the basis
of extreme probands. Gu et al. (1996) show that
the inclusion of high- and low-scoring concordant
siblings may increase the power appreciably.

Although these studies have demonstrated the
efficiency of selective sampling in QTL detection
using sib pair data, the problem remains that it is
difficult to arrive at general recommendations con-
cerning selection in the absence of specific knowl-
edge concerning allele frequency and gene action.
Generally a ‘‘mixed’’ selection strategy is advo-
cated involving the selection of both extremely
scoring concordant and extremely scoring discor-
dant sib pairs (Gu et al., 1996; Carey and William-
son, 1994, p. 793; Cardon and Fulker, 1994, p. 831;
Eaves and Meyer, 1994, p. 445).

The aim of the present paper is to investigate
whether more precise recommendations be derived.
These recommendation are formulated in terms of
selection percentages. We base our investigation on
power calculations using the EDAC (extreme dis-
cordant and concordant) test statistic presented by
Gu et al. (1996). We consider selection of extreme
concordant and discordant sib pairs from a large
random sample of phenotyped sib pairs, as avail-
able, for instance, in the large twin registries. The
soundness of our derived recommendations is eval-
uated by calculating the optimal power and the
power realized by following our recommendations
in a number of test cases.

PROCEDURE

We suppose that we have at our disposal phe-
notypic data from a large random sample compris-
ing N sib pairs. From this random sample, we wish
to select the most informative subsample of M sib
pairs for genotyping. Using the methods presented
by Risch and Zhang (1995) and Gu ef al. (1996),
it is possible to determine the combination of ex-
tremely discordant (ED) and extremely concordant
high (ECH)- and low (ECL)-scoring sib pairs that
maximizes the power to reject the null hypothesis
of no linkage using the EDAC test (Gu er al.,
1996).

We adopt the model employed by Risch and
Zhang (1995) and Gu et al. (1996): we assume that
the phenotypic individual differences are attribut-
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able in part to a biallelic QTL. Conditioned on the
genotype of the sibs at the QTL, the bivariate phe-
notypic distribution of the sibs is bivariate normal
with zero means and a possibly nonzero correla-
tion. This correlation, which we refer to as the
background correlations and denote p, is due to fac-
tors other than, and unrelated to, the QTL. These
factor are polygenetic influences and (or) shared
environmental influences.

We partition the marginal phenotypic distri-
butions of the sibs identically into a fixed number
of bins, not necessarily of equal size. We assume
that these marginal distributions are identical. Each
bin is denoted b, (i = 1,...). The probability of
the phenotypic score of a randomly chosen member
of a sib pair falling into a given bin is indicative
of the bin size. Based on the notation in Risch and
Zhang (1995), we denote the outcome of one sib’s
phenotypic score falling in the ith bin and the other
sib’s phenotypic score falling in the jth bin as O(5,,
b).

Information that is central to the EDAC test
is the expected distribution of the number of alleles
that are identical by descent (IBD) at the QTL
within a selected sample of sib pairs [see Black-
welder and Elston (1985) for a discussion of related
tests]. Risch and Zhang (1995) derive the following
formula to compute the expected IBD distribution
in a sample of siblings selected from bins b; and
b

prob [IBD = n | O (b, b)] = D,/D (1)

where n = 0, 1, 2 and D = D, + D, + D,. The
symbol D, denotes

9
n] ¥

k=1

= n] prob [O (b,, b) | G/

D, = prob [IBD
prob [G, | IBD

where prob [IBD = #u] is the unconditional prob-
ability of IBD = n; prob [G, | IBD = n] is the
probability of G,, given IBD = #n; and G, represents
the kth genotype combination of the siblings. There
are nine ordered combinations: A4—-A44, AA—Aa,
AA—aa, Aa—AA, Aa—Aa, Aa—aa, aa—AA, aa—Aa, and
aa—aa. Finally, prob[O(b,, b) | G,] represents the
probability of outcome O(b;, b;) given genotype
combination G,. The probabilities of IBD = 0, IBD
= 1, and IBD = 2 are 1/4, 1/2, and 1/4, respec-
tively. The probability of G, given IBD = n are
tabulated by Risch and Zhang (1995, Table 1; Has-
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eman and Elston, 1972, Table 1). The probability
of O(b,, b)), conditional on G,, is obtained by in-
tegrating the bivariate normal distribution (see
Risch and Zhang, 1995, Eq. 3).

Below we require the probability associated
with the outcome O(b,, b). This equals

prob [O (b;, b))]

= X prob [O (b, b) | G] prob [G,] (2)

n=0

where

2
prob [G,] = Z prob [G, | IBD
n=0

= n] prob [IBD = n]

For a given choice of », the total number of
phenotyped sib pairs, and M, the number of sib
pairs to be genotyped, we want to find the top p.,
percentage of ECH pairs, the bottom p, of ECL
pairs, and the ED pairs from the top p,, and bottom
pa percentage that maximize the power of the
EDAC test. We consider only symmetric selection
in the choice of concordant sib pairs. This means
we employ an identical cutoff point for the mar-
ginal distributions of the sibs. If both members of a
sib pair have scores exceeding this identical cutoff
point, they are labeled ECH. The single percentage
Pa (P determines the number of ECL (ECH) sib
pairs. In identifying ED sib pairs, we allow for
asymmetric selection, hence we have two percent-
ages, py, and p,. So whereas the phenotypic cutoff
points are identical for concordant siblings, this is
not necessarily the case for discordant sib pairs.

Note that we are expressing our recommen-
dations in terms of the selection percentages, not
the actual number of sib pairs to select. Given the
optimal choice of the four percentages, the actual
number of ECL, ECH, and ED sib pairs to select
can be determined from A, the total number of
available sib pairs, and the probability of O(b,, b))
[Eq. 2)].

As mentioned, the EDAC test focuses on de-
partures from the expected value of the proportion
of alleles shared IBD by the sibs in the selected
sample. The expected value of the IBD distribution
equals .5 under the null hypothesis. Under the al-
ternative hypothesis, the proportion of IBD = 0
sibs is >.25 in sib pairs selected for extreme dis-
cordance and <.25 in sib pairs selected for extreme
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concordance. The expected values of the IBD dis-
tributions are <.5 and >.5, respectively. The
EDAC test is based on the difference between the
expected proportion in the concordant and the dis-
cordant pairs. The expected values are calculated
using Eq. (1). The expected value is zero under the
null hypothesis and greater than zero under the al-
ternative hypothesis. Using the method described
by Gu et al. (1996), one can calculate the power
for any choice of the four percentages, given the
specified allele frequency, gene action, heritability,
and alpha level.

Near-optimal values of the selection percent-
ages are obtained in the following manner. We par-
tition the marginal phenotypic distributions
identically into 29 bins of the following sizes:
3.33% (6X), 2.5% (8X), 20% (1X), 2.5% (8X),
and 3.33% (6X). Using a FORTRAN program,? we
seek out the selection percentages p.,, Pa» Pa» and
Pa, that maximize the power of the EDAC test
given a total random sample of N sib pairs from
which no more than M pairs are selected. The se-
lection percentages are found by means of an ex-
haustive search: each possible accumulation of the
top 14 and the bottom 14 bins (14* in total) is eval-
uated. A given choice of the four percentages is
viewed as optimal, if it maximizes power, subject
to the restriction that the number of selected sib
pairs does not exceed M. The partitioning of the
phenotypic distribution (into 29 bins) is relatively
coarse, so that in some cases the number of sib
pairs selected given the selection percentages may
deviate from the maximum of M. Furthermore, the
selection percentages may be suboptimal, because
of the chosen bin sizes and the maximum bin size
of .40. For instance, each percentage may equal
3.33%, 6.66, etc., to the maximum of 40%, but per-
centages cannot assume intermediate values such as
5%, or 21%, or values exceeding the maximum of
40%. Bearing these limitations in mind, we refer to
near optimal selection (percentages) simply as op-
timal selection (percentages) to ease presentation.

Increasing allele frequency was set to equal .2,
3, .4, .5, .6, .7, or .8. The background correlation
attributable to polygenetic and shared environmen-
tal influences, p, equaled .05, .10, .15, .20, or .25.

2 Qur FORTRAN program includes the FORTRAN routine
MULNOR (Schervish, 1984) to integrate the bivariate normal
distribution. The source code of MULNOR and its auxiliary
routines were downloaded from the website http:
//lib.stat.cmu.edu/apstat/.
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If shared environmental influences are absent,
twice p would equal the heritability due to genetic
factors other than the QTL. The percentage of phe-
notypic variance attributable to the QTL equaled
.05, .10, .15, and .20. Finally, additive, recessive
and dominant gene action was specified. Optimal
values of the percentages p., P> Pq» a0d py, Were
found for the 420 cases to which these 4 factors
gave rise (7 X 5 X 4 X 3). By considering both
recessive and dominant gene action and allowing
the allele frequency to range from .2 to .8, we in-
troduce some redundancy into our results. For in-
stance, results obtained for dominant gene action
and a frequency of .3 are essentially same as those
obtained for recessive gene action and a frequency
of .7.

The mean optimal percentages are reported in
the situation of no prior knowledge, of prior knowl-
edge relating to gene action, and of knowledge re-
lating to allele frequency. Mean optimal
percentages are obtained by simply averaging over
frequency, over gene action, or over both gene ac-
tion and frequency. Having obtained recommen-
dations in terms of these mean percentages, we
investigate how well the recommendations fair in
a small number of cases.

The obtained mean values of the percentages
depend on the choice of N and M. To obtain an
indication of how the percentages vary with NV and
M, we carried out the procedure mentioned for an
N of 5,000, 10,000, and 15,000 and an M of 500
and 250. In all we have 420 cases within 6 con-
ditions, i.e., a total of 2520 analyses.

RESULTS

Table I contains the overall means and stan-
dard deviations of the four percentages, pu, Pa> Paw
and py. These values are obtained by averaging
over both QTL gene action, QTL gene frequency,
background correlation p, and QTL effect size. De-
pending on the values of N, the percentage of ED
sib pairs to select exceeds the percentage of ECL
and ECH sib pairs by a factor 1.9 to a factor 2.6.
The mean values of the EC percentages range from
about 4 to 11% and the ED percentages range from
11 to 21%. The standard deviations are quite large.
In the case of p, and p  percentages, the standard
deviation lies between 4.5 and 1.5%; in the case of
the p,, and p,, percentages, the standard deviations
equal about 10. As we are considering overall
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Table 1. Overall Mean Percentages: Grand Means Calculated
Over Gene Action, Allele Frequency, QTL Effect Size, and
Background Correlation p

Pa = P Pan = Pa
N (M = 500)
5,000
Mean 11.0 21.0
SD 4.5 10.0
10,000
Mean 7.6 17.0
SD 34 10.0
15,000
Mean 6.2 15.0
SD 2.5 11.0
N (M = 250)
5,000
Mean 7.6 16.8
SD 3.4 10.0
10,000
Mean 5.3 13.7
SD 2.1 10.0
15,000
Mean 4.2 11.6
SD 1.5 8.6

means, these large standard deviations are not sur-
prising. So on the basis of the results in Table I,
we would recommend, in the case of N = 5000
and M = 500, selecting the concordant sib pairs
whose members both have phenotypic scores in the
top 11% (ECH sib pairs) or the bottom 11% (ECL
sib pairs) of the phenotypic distribution. We would
recommend selection of discordant sib pairs, whose
members have phenotypic scores in the top 21%
and the bottom 21% of the phenotypic distribution.

Table II contains the mean percentages asso-
ciated with each mode of gene action. Average per-
centages are calculated over QTL allele frequency,
QTL effect size, and background correlation. The
mean percentages for codominant action are quite
similar to the overall mean percentages reported in
Table I. In the case of recessive gene action, a
greater percentage of ECH sib pairs than ECL sib
pairs is selected (about a factor of 2). The percent-
age P, exceeds the percentage P, (a factor of 2.5
to 3). The percentages are reversed for dominant
gene action. Table III contains the mean percent-
ages associated with the increasing allele frequen-
cies .2, .5, and .7. Here the averages percentages
are calculated over QTL gene action, background
correlation, and QTL effect size. The means asso-
ciated with the allele frequency .5 are very close to
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Table II. Mean Percentages for Each Mode of Gene Action,
Averaging Over QTL Effect Size, Allele Frequency, and
Background Correlation, p

Model Pen Da Pan Pa

N = 5,000 cod
Mean 13.0 13.0 20.0 20.0
SD 2.5 2.5 7.0 7.0

rec
Mean 13.5 8.2 12.5 30.0

SD 36 4.9 6.3 10.0
dom
Mean 8.2 13.5 30.0 12.5
SD 4.9 3.6 10.0 6.0
N = 10,000 cod
Mean 8.1 8.1 154 154

SD 2.9 29 6.9 6.9
rec
Mean 9.5 53 9.2 26.0

SD 2.7 3.0 5.0 10.6
dom

Mean 5.3 9.5 26.0 9.2

SD 3.0 2.7 10.6 5.0

N = 15,000 cod
Mean 6.4 6.5 13.6 13.3
SD 2.2 2.2 7.3 7.3

rec
Mean 7.6 4.7 7.4 24.0

SD 2.1 2.2 5.1 11.0
dom

Mean 4.7 7.6 24.0 7.4

SD 2.2 2.1 11.0 5.1

N = 5,000 cod
Mean 8.1 8.1 15.5 15.5
SD 2.9 2.9 6.9 6.9

rec
Mean 9.5 53 9.2 25.6

SD 2.7 3.0 5.0 10.0
dom

Mean 53 9.5 25.6 9.2

SD 3.0 2.7 10.0 5.0

N = 10,000 cod
Mean 53 5.5 12.0 12.0
SD 2.1 2.0 6.6 6.7

rec
Mean 6.4 4.1 6.6 22.0

SD 1.8 1.7 4.6 10.8
dom

Mean 4.1 6.4 22.0 6.6

SD 1.7 1.8 10.8 4.6

N = 15,000 cod
Mean 4.2 4.4 11.0 11.0
SD 1.5 1.6 7.6 7.6

rec
Mean 4.8 3.6 5.7 17.8

SD 1.7 1.0 4.7 8.2
dom

Mean 3.6 4.8 17.8 5.7

SD 1.0 1.7 8.2 4.7
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the overall mean values. The mean percentages as-
sociated with the frequency .2 are similar to those
associated with recessive gene action. The mean
percentages associated with the frequency .7 re-
semble those associated with dominant gene action.

Table IV contains the mean percentages as-
sociated with the background correlation p. Aver-
ages are calculated over frequency, mode of gene
action, and QTL effect size. Only the mean per-
centages for the most extreme values (.05 and .25)
are reported. For the values of M and N considered
and the range of p, this correlation has a minor
effect on the mean percentages. Table V, finally,
contains the mean percentages calculated for the
most extreme values of the percentage of variance
accounted for by the QTL. For the range of values
considered, and for the given N and M, we again
find that the mean values of the percentages are
hardly affected by the effect size of the QTL.

To show how the percentages vary, we plot
the values of p, p.., Pa- and pg, against the allele
frequencies for each mode of gene action for the N
= 5000 and M = 500 condition. The relationship
between the percentages and the frequencies are ap-
proximated by means of second-order polynomials.
The plots are shown in Fig. 1. As a measure of
goodness of fit, we report the percentage of vari-
ance explained by the polynomial regression (R?
rendered in the figure). From these values it is clear
that the approximation of the relation between al-
lele frequency and the selection percentages is
quite good when gene action is known. In contrast,
second-order polynomial regressions of the selec-
tion percentages on the background correlation and
on the QTL effect size (not shown) explained no
more than 8% (usually substantially less) of the
variance in the percentages.

Test of Recommendations Based on the Mean
Percentages

It is clear from the results in the tables that
selection based on the overall mean percentages
(Table I) will result in liftle loss of power when the
QTL is codominant and (or) the allele frequency is
about .5. In the present section, we present a more
detailed account of loss of power incurred by sam-
pling in the absence of specific knowledge con-
cerning gene action or allele frequency. We
consider a number of specific cases that are char-
acterized by a given QTL effect size, QTL allele
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Table ITII. Mean Percentages for Frequency Equaling .2, .5,
and .7, Averaging Over Gene Action, QTL Effect Size, and
Background Correlation (p)

Dolan and Boomsma

Table IV. Mean Percentages for the Two Extreme Values of
Background Correlation, p = .05 and p = .25, Averaging
Over QTL Effect Size, Gene Action, and Allele Frequency

Freq. P Pa Pan Pa p Pen = Pa P = Pa
M = 500 M = 500
N= 5000 2 N = 5,000 .05
Mean  13.0 77 100 320 Mean 12.0 19.0
SD 42 3.8 4.8 75 SD 5.0 10.0
5 25
Mean 120 120 208 208 Mean 10.5 22.0
SD 45 45 100  10.0 SD 4.5 10.0
7 N = 10,000 05
Mean 100 13.0 270 140 Mean 8.5 15.0
SD 48 18 100 5.4 SD 4.1 10.0
N = 10,000 2 25
Mean  10.0 4.1 74 280 Mean 6.7 18.0
SD 2.3 1.5 3.2 9.3 SD 3.4 10.0
5 N = 15,000 05
Mean 8.0 8.0 158 162 Mean 7.0 13.0
SD 3.5 3.5 9.0 9.0 SD 3.0 10.0
7 25
Mean 6.3 93 220 11.0 Mean 5.4 16.0
SD 3.2 23 11.0 5.1 SD 1.7 10.0
N = 15000 2 M = 250
Mean 8.0 3.9 57 270 N= 5000 05
SD 1.6 1.3 23 100 Mean 8.5 15.0
5 SD 4.0 10.0
Mean 6.3 6.3 14.6 13.9 25
SD 2.6 2.6 9.2 9.2 Mean 6.7 18.4
7 SD 3.1 10.0
Mean 5.1 75 210 8.6 N = 10,000 .05
SD 22 18 118 5.1 Mean 6.1 11.6
v 250 .2551) 2.7 9.0
N = 5000 2 Mean 4.9 14.6
Mean 9.9 4.1 74 280 <D 7 100
. SD 2.3 1.5 3.2 9.3 N = 15,000 05
Mean 80 80 160 160 g[Dean ‘1‘3 1.0,'8
SD 3.5 3.5 8.8 8.8 s : :
7 Mean 3.3 14.0
Mean 6.3 93 220 110 D 0.0 100
SD 3.2 23 11.0 5.1

N = 10,000 2
Mean 6.7 34 5.3 23.7

SD 1.7 04 2.0 9.3
.5

Mean 52 5.6 13.5 13.1

SD 2.1 2.1 10.0 10.0
i

Mean 4.6 6.1 18.8 7.7

SD 1.9 1.8 10.0 4.2

N = 15,000 2
Mean 4.9 3.3 3.8 20.0

SD 1.7 0.0 1.4 6.0
.5

Mean 4.2 4.5 11.0 11.0

SD 1.5 1.6 8.7 8.7
7

Mean 4.0 4.4 15.1 7.6
SD 1.4 1.6 8.5 5.6

frequency, background correlation, and mode of
QTL gene action. In each case we calculate the
selection percentages and the associated power of
the EDAC test given full knowledge of the under-
lying QTL and background correlation. We refer to
this power as ‘‘full information’’ (f.i.) power. In
addition, we calculate the power using the mean
selection percentages presented in Tables I to III.
We refer to this power as ‘‘realized”’ power. In a
number of these cases we deviate slightly from the
values of the mean percentages to ensure that the
number of selected sib pairs does not differ too
greatly from the given M.
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Table V. Mean Percentages for the Two Extreme QTL
Effect Sizes, 5 and 20% of the Phenotypic Variance,
Averaging Over Gene Action, Allele Frequency, and

Background Correlation

Effect Pen = Pa Pan = Pa
M = 500
N = 5,000 5%
Mean 12.0 20.0
SD 3.8 9.3
20%
Mean 10.8 21.0
SD 5.0 11.0
N = 10,000 5%
Mean 8.2 16.0
SD 3.0 9.5
20%
Mean 7.2 17.4
SD 35 11.0
N = 15,000 5%
Mean 6.5 14.0
SD 2.4 9.8
20%
Mean 6. 15.7
SD 2.5 11.0
M = 250
N = 35,000 5%
Mean 8.2 16.0
SD 3.0 9.5
20%
Mean 7.2 17.4
SD 35 11.0
N = 10,000 5%
Mean 55 12.7
SD 2.3 9.1
20%
Mean 5.0 14.8
SD 1.7 11.0
N = 15,000 5%
Mean 4.5 10.7
SD 1.7 7.5
20%
Mean 4.0 12.0
SD 1.4 9.2

Table VI contains the results for the N = 5000
and M = 500 condition, in which the QTL ac-
counts for 15% of the phenotypic variance and the
background correlation equals .20. The *‘realized”’
power is calculated using the percentages calcu-
lated in the N = 5000 and M = 500 condition (see
Table I). The most serious deviation between re-
alized power and full information power is ob-
served in the case of recessive gene action and a
low increasing allele frequency (or, equivalently,
dominant gene action and a high increasing allele
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frequency). When gene action is dominant (reces-
sive) and increasing allele frequency is low (high),
the loss of power incurred using the overall mean
selection percentages (Table I) is not large. When
QTL gene action is codominant, the realized power
again is close to the full information power.

Table VII contains result for the N = 10,000
and M = 250 condition. The QTL accounts for
10% of the phenotypic variance and the back-
ground correlation equals .1. We assume that our
knowledge is limited to mode of gene action, i.e.
codominant or recessive gene action. The realized
power in Table VII is based on the mean percent-
ages presented in Table II. When gene action is
known, realized power and f.i. power do not differ
greatly. Table VIII, finally, contains results for the
situation in which our knowledge is limited to the
increasing allele frequency (i.e., .7). Realized
power is based on the selection percentages pre-
sented in Table III. Given the known allele fre-
quency, again we observed quite good agreement
between f.i. power and realized power.

DISCUSSION

It is striking that the background correlation,
p, and the effect size of the QTL have little bearing
on the selection per se. The latter finding has im-
portant practical implications. Although recombi-
nation between a marker and the QTL reduces the
effect size (Risch and Zhang, 1996) by rendering
the IBD distribution in a selected sample closer to
the null distribution, this will not greatly affect the
optimal values of the selection percentages. Of
course, the QTL effect size will affect the power
to reject the null hypothesis.

With respect to our comparisons of realized
power and f.i. power (Tables VI-VIII), we may
conclude that sib pair selection based on overall
mean percentages will result in a serious loss of
power only when the gene action is recessive (dom-
inant) and the allele frequency is low (high). This
agrees with previous findings (e.g., Eaves and
Meyer, 1994; Carey and Williamson, 1991). When
either the allele frequency or the gene action is
known, the f.i, power and realized power do not
differ greatly.

It is important to stress that all our results
were presented for fixed values of N and M. We
make no attempt to generalize the results obtained
to other values of N and M. We see no real neces-
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Fig. 1. Second-order polynomial regression of selection percentages on allele frequency for the three modes of gene action (N =
5000, N = 500).

sity to attempt such a generalization, because it is
a relatively small effort to the calculate the optimal
values of the percentages for specific values of N
and M. On a 133-MHz PC, it takes about 7 h to
carry out the calculations for each of the 6 sets of
420 cases.®> This could be speeded up by ignoring
genotype order, as Risch and Zhang (1995) do.
This would reduce the number of G, from 9 to 6.
In addition, we have based or calculations on the

3The FORTRAN program used to carry out the analyses
reorted in the paper is available upon request. It calculates
‘‘optimal’’ selection percentages for a given choice of allele
frequency, QTL gene action, background correlation, QTL
effect size, N (total number of sibs), and M (maximum num-
ber of sibs to be genotyped). The results presented in this
paper were obtained by repeated analyses which were driven
by MSDOS batch files.

full range of frequencies (.2—.8) and both types of
nonadditive QTL gene action (recessive and dom-
inance). As mentioned, this introduces a degree of
redundancy, which can be avoided.

Our maximum bin size of 40% will have in-
troduced some bias into the mean percentages re-
ported in the tables. To assess the seriousness of
this problem, we count the number of cases in
which (1) this bound was hit, (2) the number of
selected sib pairs was 10% below the maximum
(i.e., M < 225 and M < 450), and (3) the power
was less than .80 (o was set to equal .01). In the
N = 5000, M = 250 condition, the N = 5000, M
= 500 condition, the N = 10,000, M = 500 con-
dition, and the N = 15,000, M = 300 condition,
this was found to be so in 4, 8, 1, and 2% of the
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Table VI. Full Information Power and Realized Power Where QTL Effect = 15%, p = .20, N = 5000, M = 500, and o = .01¢

Full
information Realized
Freq. power NO Nl N2 NTOT power NO N1 N2 NTOT
Mode: codominant
2 75 46 218 231 495 .69 107 255 117 480
3 72 93 237 158 488 .69 109 254 115 478
4 71 94 237 156 487 .69 110 253 113 477
.5 71 154 179 154 488 .69 112 253 112 477
Mode: recessive
2 .96 13 76 60 149 .62 90 316 112 518
3 90 13 252 161 426 69 91 306 111 509
4 .84 13 247 228 489 .68 93 299 107 499
5 77 45 225 226 496 .66 94 294 104 493
Mode: dominant
2 72 46 207 227 479 .65 97 206 103 487
3 70 152 183 152 487 .65 100 287 99 486
4 72 224 210 46 480 .65 102 290 97 488
5 77 226 225 45 496 .66 104 294 94 493

« Realized power is calculated using the selection percentages in Table 1. N0, N1, and N2 are the number of ECL, ED, and ECH
sib pairs selected, respectively. NTOT is the total number of selected sib pairs.
> This is a case in which the maximum bin size 40% was hit. Clearly this is not a problem here because the power is .96 given

the selected 148 sib pairs. See the Discussion.

Table VII. Full Information Power and Realized Power When the QTL Gene Action Is Known: QTL Effect =

10%, p = .10, N

= 10,000, M = 250, and o = .01°
Full
information Realized
Freq. power NO N1 N2 NTOT power NO N1 N2 NTOT
Mode: codominant (known)
2 .39 19 140 76 236 32 40 154 46 240
3 34 20 141 74 234 31 41 154 44 239
4 31 70 106 73 249 .30 42 154 43 239
5 30 71 79 71 222 .30 42 154 42 238
Mode: recession (known)
2 91 18 137 88 243 .85 25 166 74 263
3 .70 18 148 80 247 .62 25 162 67 254
4 .50 18 148 76 242 45 26 160 63 248
.5 38 19 145 74 237 .36 26 159 61 246

2 Realized power is calculated using the selection percentages in Table II. NO, NI, and N2 are the number of ECL, ED, and ECH
sib pairs selected, respectively. NTOT is the total number of selected sib pairs.

cases, respectively. In view of these findings, we
are confident that the bias is slight. All cases that
met the inclusion criteria involved either recessive
gene action and a low allele frequency or dominant
gene action and a high allele frequency.

Our power calculations are based on the
EDAC test, which, as mentioned, focuses on the

IBD distribution in selected samples. Several recent
paper have been devoted to the incorporation of
information relating to the IBD distribution in ge-
netic covariance structure modeling (Fulker and
Cherny, 1996; Eaves et al., 1996). The resulting
approach to QTL analysis is more flexible in that
multivariate phenotypes can be accommodated
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Table VIII. Full Information Power and Realized Power When the QTL Allele Frequency Is Known (.7): QTL Effect = 10%, p
= .20, N = 15,000, M = 500, and & = .01=

Full
information Realized
Model power NO N1 N2 NTOT power NO N1 N2 NTOT
cod .63 144 218 137 499 62 155 198 84 471
rec .56 138 186 138 462 .54 149 238 85 471
dom .90 150 222 40 411 .83 161 248 79 488

4 Realized power calculated using the percentages presented in Table ITII. NO, N1, and N2 are the number of ECL, ED, and ECH
sib pairs selected, respectively. NTOT is the total number of selected sib pairs.

quite easily and provides a more powerful test of
the presence of a QTL (Boomsma, 1996; Boomsma
and Dolan, 1998). We are currently investigating
how well our derived optimal selection percentages
fair in this type of genetic covariance structure
analysis.
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