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Abstract 

We model a selection process arising in certain storage problems. A 

sequence (X1, - - -, X,) of non-negative, independent and identically distrib- 
uted random variables is given. F(x) denotes the common distribution of the 

Xi's. With F(x) given we seek a decision rule for selecting a maximum number 
of the Xi's subject to the following constraints: (1) the sum of the elements 
selected must not exceed a given constant c >0, and (2) the Xi's must be 

inspected in strict sequence with the decision to accept or reject an element 

being final at the time it is inspected. 
We prove first that there exists such a rule of threshold type, i.e. the ith 

element inspected is accepted if and only if it is no larger than a threshold 
which depends only on i and the sum of the elements already accepted. Next, 
we prove that if F(x) - Ax ' as x -- 0 for some A, a > 0, then for fixed c the 

expected number, En(c), selected by an optimal threshold is characterized by 

A(+ 1 
as/1+ 

En(c) 
- [A cn as n--. 

Asymptotics as c 
--- 

and n 
--- 

with c/n held fixed are derived, and 

connections with several closely related, well-known problems are brought out 
and discussed. 

DECISION RULE; ON-LINE DECISION; SELECTION POLICY 

1. Introduction 

Independent, identically distributed random variables are to be selected one 

at a time from a sequence of length n ?1, subject to the constraint that their 

sum not exceed a given constant c > 0. The random variables are non-negative 
and can be interpreted as interval lengths. For a given distribution, F(x), of 

interval lengths, the problem is to find a decision rule which maximizes the 

expected number selected, E,(c). For the problem of most interest to us, it is 

understood that in the selection sequence the decision to reject or accept an 
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interval is made at the time it is inspected, and that such decisions are final. 
Rules satisfying this constraint are called on-line. 

Consider an on-line decision rule which selects an interval if and only if it is 

no larger than the value of a given threshold function z,(x), where m _5n is 

the number of intervals not yet inspected, and 0 
_5x 

_ c is the difference 

between the constraint c and the sum of the lengths of the intervals already 
selected. In our first result we prove that there exists a threshold rule which is 

optimal among all on-line selection policies. This is done by analyzing a 

Bellman equation which defines E,(c) recursively. 
We also characterize the asymptotics of E,,(c) as n --oo. Assuming that 

F(x) --Ax•as x ---*0, where A, a > 0, we prove that 

[ A +( 
1 

\n1/1l+a 
E-(c) [A- c) as n--> oo. 

Later, we discuss related problems where F(x) is assumed to be the uniform 

distribution on [0, 1], i.e. A = a = 1. In this case the above function simplifies 
to E,( c) - V2~ . 

The proof of the general result is based chiefly on Chernoff estimates [5]. 
While the precise threshold function of an optimal policy appears to be difficult 

to find, we shall exhibit a sequence of policies whose threshold functions 

approach optimality as n - ->oo. 
It is interesting to compare our results with the naive rule by which an 

interval is accepted if and only if its length does not increase the sum of 

selected interval lengths beyond c. While the problem of finding the function 

E,(c) explicitly remains difficult in general, results for the special case c = 1 

and F(x) = x uniform on [0, 1] can be found rather easily. Indeed, the results 

can be obtained from the analysis of the well-known record-breaking problem 

(a survey can be found in [7]). In a sequential scan of n i.i.d. numbers uniform 

on [0, 1], how many times is a number encountered which is larger than all 

previously inspected numbers? It is easy to verify that the two problems are 

equivalent and that the equivalence breaks down if in our selection problem 

F(x) is not uniform on [0, 1]. An analysis shows that as n -->oo the number 

selected is normally distributed with mean and variance log n. The mean log n 

is to be compared with our corresponding V2 result. 

If we were to allow an initial re-ordering of the i.i.d. sequence, then an 

optimization rule could simply select the intervals in increasing order of length. 
This rule will be called the smallest-first rule. For given n and c let N, N,c,,, 
denote the number selected by the smallest-first rule. In Section 5 we derive an 

explicit formula for E(N,). Clearly, E(N ) 
= 

E,(c) for all n and c. However, we 

prove in Section 4 that asymptotically E(N,) - E,(c) as n 
-- 

oc. Thus, the effect 

of the on-line constraint is asymptotically negligible. In the more picturesque 
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language of Samuels and Steele [11] we have another instance of the fact that 

'many stochastic tasks can be performed almost as well by someone unable to 

see the future (i.e. on-line) as by a prophet. (The smallest-first rule in our 

case.) 
The asymptotics discussed thus far have kept c fixed while n - oo. We also 

obtain results for the limit c - oo, n - oo with c/n = 0 held fixed. These limit 

laws are easier to derive, since they are based only on the law of large 
numbers. 

The problem studied by Samuels and Steele in [11] becomes equivalent to 

ours in the special case where F(x) is uniform on [0, 1] and c = 1. Their 

problem is to sequentially select from a given i.i.d. sequence a monotone 

increasing subsequence of maximum expected length. We shall verify this 

equivalence in the next section by inspection of the Bellman equation for our 

problem. 
As in our case, Samuels and Steele obtain the asymptotic results in two 

steps: by exhibiting an upper bound and then a sequence of policies which 

achieves it. In our analysis, the prophet (described by E(N,)) provides the 

upper bound, but in their problem the prophet does too well, i.e. the prophet's 
result derived by Logan and Shepp [9] cannot be achieved by any on-line 

policy. Thus, our simpler upper-bound analysis provides an alternative proof 
of the Samuels-Steele result. 

A problem having a dual relationship with ours is the secretary problem [4], 
[10] (for other variants see [3], [6]); the difference is essentially in what is 

adopted as an objective function. The given i.i.d. sequence is now assumed to 
be infinite and the objective is to minimize the expected number of intervals 
that have to be inspected in order to find j that sum to at most c. (Here, the 
interval lengths are the salary demands of secretaries and c is the capital 
available to pay the j that need to be hired.) 

The simple duality of these two problems belies major differences in their 

analysis. Indeed, whereas the Bellman equation for our primal problem 

appears to be intractable, the corresponding equation for the dual (secretary) 
problem can be solved for all n, when c : 1 and F(x) = x , a > 0. Once again 
there is a threshold rule that is optimal among the class of on-line policies. 

Our asymptotic results are based on less restrictive assumptions about F(x) 
and c. After formalizing the relationship between the two problems, we show 
in Section 6 how to use the asymptotic results for the primal problem to obtain 
new asymptotic results for the dual problem. 

Our problem can also be viewed as a special case of a bin-packing problem. 
In this setting, c is an integer, the intervals are called pieces or items, and the 

process of selecting is called packing. To our problem one further requirement 
is added: it must be possible to partition the set of selected intervals into 
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c blocks, called bins, such that the sum of the lengths of the intervals (packed) 
in each bin does not exceed 1. 

Bruno and Downey [2] have recently analyzed the smallest-first rule 
extended to this problem under the assumption that interval lengths are 
uniform random draws from [0, 1]. The extended rule simply selects intervals 
smallest-first for the bins taken one at a time, i.e. intervals for the ith bin are 
selected smallest-first from the subset of intervals not selected for the first i - 1 
bins. 

In contrast to our problem without the partitioning constraint, the smallest- 

first algorithm does not necessarily maximize the number of intervals selected. 

However, in the uniform case Bruno and Downey prove that the algorithm is 

asymptotically optimal in probability as n -- oo. They also give detailed results 

on the rate of convergence. It is easy to verify that, without the partitioning 
constraint, at most c more intervals can be selected smallest-first from a given 

sequence. Thus, for fixed c the partitioning constraint has a negligible effect as 
n -- >o, and our asymptotic result specialized to the uniform case (i.e. 

E(N,) -~2n) also applies to the bin-packing version. 

Extension of our asymptotic results for on-line rules is also easily worked out 

for the bin-packing problem. In particular, it is easy to modify the threshold 

selection rule so as to satisfy the partitioning constraint and sacrifice at most c 

items in so doing. 
A principal application of our model is to problems of storage. Such 

problems exist within a large variety of industrial settings, whenever objects 
must be packed efficiently in one dimension. As a concrete example, in a 

computer system it may be required to allocate to main memory a maximum 

subset of some collection of records or files. 

2. The Bellman equation and an optimal threshold rule 

Let E,(x) denote the maximal expected number of selected intervals which 
sum to no more than x, where x- 0 and n? 0 are real and integer-valued, 
respectively. We develop a Bellman equation for E,(x) as follows. If the first 
of n + 1 intervals has a length exceeding x, which happens with probability 
1 - F(x), then it must be rejected, and the maximal (conditional) expected 
number of selected intervals must be E,(x). But if the first of the n + 1 
intervals has length t, O t 5 x, then the maximal (conditional) expected 
number of selected intervals will be E,(x) or 1 + E,(x - t) according as the 

interval is rejected or accepted, respectively. Hence, for x, n ?0 

(1) E,,+1(x) 
= 

(1 - F(x))E,,(x) 
+ max 

(E,,(x), 
1 + 

E,,(x 
- t)) dF(t). 
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We note here that if E,(x - t) is replaced by E,(t) then we have the Bellman 

equation for the monotone subsequence problem of Samuels and Steele (see 

(2.5) in [11]). This replacement is valid if F(x) is uniform on [0, 1], so the 

equivalence of the two problems is immediate in this case. 

Now assume that F(0) = 0, and F(x) is continuous for F(x) ?0 and strictly 

increasing wherever F(x) < 1. 

Theorem 1. Let n 
- 

1 and x ? 0. Then E,(x) satisfies the following: 

(i) En(0) = 0. 

(ii) E,(x) is continuous for x - 0. 

(iii) If F(x) < 1 for x ? O, then E,(x) is strictly increasing for x - 0. 

If F(x) < 1 for x - s and F(x) = 1 for x ? s, then E,(x) is strictly increasing for 

0 - x -5 ns and E,(x) = n for x > ns. 

The proof of Theorem 1 follows in a straightforward manner from the 

Bellman equation (1), and we omit it. 

The threshold function z,+l = zn+(x), x 
>= 

0, is defined by 

x, if E,(x)1-l, 

(2) Zn+l(X)= unique solution to 

E, (x) - E,(x 
- t) = 1, O - 

t 
- x, if 

En(x) 1l. 

Observe that the uniqueness of t in (2) is guaranteed by Theorem 1. We have 

E,(x) < 1 + E,(x - t) if 0 - t < 
zn+l(x), 

and 1 + E,(x - t) < En(x), if zn+1(x) < 

t 5 x. Thus we have a threshold rule under the optimal policy: the first of the 

(n + 1) intervals is accepted if its length is not greater than zn,+(x), and 

rejected if its length exceeds zn,+(x). We may rewrite (1) as 

En.+(x) = (1 - F(x))E,(x) + f (1 + E,(x - t)) dF(t) 

(3) + E,(x) dF(t) 
Zn+1 

= (1 - 
F(zn+l))En(x) 

+ 
F(zn+l) 

+ En(x - t) dF(t). 

E, and z, are obtained recursively from (2) and (3). Unfortunately, the 

computations become difficult even for small n. We list below the first few 
values of E, and z, in the uniform case: 

F(x) ={1, 
0'x-1 Ill x i>1, 

E(x)= 0, 
E 

{(x)'= 
E?) 
0x1 2x-x2/2, 

0-x_2 1, x 
= 

1 2, x 2, 

z1(x) = Z2(X) = X. 
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For the uniform case it is easy to prove that 
zn(x) 

is increasing in x and 
En(x) 

is concave in x. In general, however, z,(x) need not be monotone in x. 

Heuristically, the asymptotic formula for E,(c) may be derived as follows. 

Think of the threshold zn(c) as being practically constant in n and denote it by 
E > 0. Thus, we accept only those of the n intervals whose length is at most E. 

The number of such intervals is N- nF(E) and the average length of an 

accepted interval is M(E)IF(E), where L(E) = f'x dF(x). Thus, the sum of the 

lengths of accepted intervals is S - ny(E). Since they are to sum to no more 

than c, we must have nps(E) - c, and so 

E'Cp-1 (c), E(N) - nF(E) 

Thus, it becomes plausible to choose E = -l1(c/n) and to conjecture that 

(4) 
En(c) 

~ n(F. -1)( 
- 

) 

We shall in fact verify the above asymptotic formula for a large class of 

distribution functions. However, we have no proof that the formula holds for 

all distribution functions, nor do we have a counterexample. 

Apart from the general results in Theorem 1, it seems difficult to obtain 

further properties of E,(c), e.g. asymptotics as n ---oo, directly from the 

Bellman equation in (1). We have found it necessary to follow another 

approach based on the Chernoff estimates provided in the next section. The 

approach is indirect in the following sense. We analyze the smallest-first rule, 
which is obviously optimal in the class of all rules, and we find in Section 4 the 

asymptotics of E(N,). We then define a threshold rule and show that the 

expected number it selects is asymptotically the same as E(N,). Thus, the given 
rule must be asymptotically optimal in the class of on-line policies, and its 

asymptotic behavior the same as that of E,(c). This approach can also be 

applied to the secretary problem, as shown in Section 6. 

3. Chernoff estimates 

Let X1, - 
? 

- , X, be the lengths of the n i.i.d. intervals with F(x) = P(X, 
-5x), and recall the notation (E))= f•x dF(x). For E > 0 the following random 

variables will be useful in acquiring information about N, and E,(c): 

N6 = the number of Xi's not exceeding E 

S, = the sum of the Xi's counted by N, 

S = the sum of the X,'s, given that N, = n. 
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We shall show in Sections 4 and 6 that for a large class of distribution 

functions, it is very likely that the above random variables are close to their 

expected values when E = -l1(c/n) and n is large. These results will follow 
from the probability estimates of Theorem 3 later in this section. 

We have 
n n n 

(5) N6=> Xi, S = Zi, S, = 
i=1 i=1 i=1 

where the random variables in each sum are i.i.d. and 

P(X, = 1)= F(E), P(X, = 0) = 1 - F(E) 

P(z, 
- 

1 - F(E) + F(z), 05 z 5 E 

P(W) 

F(w)/F(E), 05 w 5 E 

The expectations of Xi, Zi, Wi are given by 

E(Xi) = F(E), E(Z) = (E) = Fx dF(x), E() = v(E) = 
'o 'F(E) 

Theorem 2. Let Y1,, , Y, ... 
be i.i.d. with E(Y) =0 and suppose 

IE(Y#)I 
5 Mr", 2 5 n < 0o, for some M, r > 0. Then 

(6) P Y, >m 5 
2exp( 

m 
, if 

0O_5m 
52Mrn. 

i=- 
4Mr2n 

Proof. Let Y= E1 Yi and let A and m be two arbitrary non-negative 
numbers. Since exp (A(Y - m)) ? 1 when Y - m 

= 
0, we have the Chernoff 

bound 

(7) P[Y > m]i E[exp (A(Y - m))] = (/(A))" exp (-Am) 
= 

y(A), 

where 

(8) 4 (A) = E(exp 

(AY.)) 

= 1 + 0(A), O(A) =- 
AnE(Y) 

n=2 n. 

We have 

(9) (A)M r) M(Ar)2, if Arl, n=2 n! 

so that 

(10) Vp(A) _ (1 + Mr2A2)n exp (-Am) 
_ 

exp (Mr2 2- Am), if Ar 1 

Letting A = m/2Mr2n, we conclude from (7) and (10) that 

(11) P[Y > m] exp 
4-r2n 

, if 

0, 

m2Mrn 
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Replacing Y, by - Y1, we conclude from (11) that 

(12) P[Y < -m] - exp 4Mrn 
, if 0 m -5 2Mrn. 

The inequality in (6) now follows from (11) and (12). 

We remark in passing that there is a sizeable literature on bounds of the type 

given in Theorem 2. The bounds we have chosen are reasonably simple and 

adequate for our needs. For refinements we refer the interested reader to [1], 

[8]. 
For n ? 2, we have the following central moment estimates 

E(IX, - EX, l) 5 E(IX, - EXi12) = F(E)(1 - F(E)) - F(E) 

(13) E(IZj - EZ, I) = (1 - F(E))(y(E))n + 
Iz - _(E)In dF(z) 

- 
(1 - F(E))(EF(E))n + EnF(E) 

- 
2F(E)En 

E(IW, - EWj ) 5 En 

In Theorem 2 let Y, successively be Xi - EX1, Z, - EZ, and W - EW . From 

(13) we find that the hypotheses of Theorem 2 hold when we replace (M, r) by 
(F(E), 1), (2F(E), E), and (1, E), respectively. Thus, the following result is 

proved. 

Theorem 3. We have the bounds 

(14) P[IN - F(E)nI> m] 5 2 exp 4F(E)n if 0 5 m -2F(E)n 

(15) P[IS 
- 

(E)nI >m] 5 2 exp 
- 7 ) if O 5m 

F5 

4F(E)En 
8F(E)E2n 

m 
2 

) 
(16) P[IS - v(E)nI >m] 52exp 4E if 05m 52En. 

4. Limit laws for N,, E(N,) and E,(c) 

Let Y ~Y-- 
- 5 Y be the order statistics of X1, - - - , X. For given 

c > 0, let N, be the largest 
j--5n 

such that Y" + - + Y7 - c; i.e. N, is the 

number of intervals summing to no more than c as selected by the smallest-first 

policy. We shall now derive limit laws for Ns and E(N,). 
We assume that F(x) is continuous and strictly increasing wherever 

F(x) <1, and that F(x) -Ax" as x-* 0, where A, a > 0. Under these 

assumptions we have the following result. 
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Lemma 1. 

Aa 1 a + 1 /+1 

P(x) 

• 

1 X 
-1(x) 

~ - xx 

( a 1(x )( lx) as x-*O, 

(F. -1')(x) ~-f(x) =(A 1/A'+l • 
as x-0, 

(17) 
a a+l 

v(x) - x, v-1(x)~- x as x-*O, 
a+l 1 

(F. v-1)(x)- (f(x))1+c as x-O0. 

Proof. Integration by parts gives M(x) = xF(x) - fx F(t) dt. The asymptotics 
follow from this formula by routine calculus. It is easy to verify that the 

assumption that F(x) is continuous and strictly increasing implies the same 

property for M(x) and v(x); thus C-l(x) and v-'(x) are well defined for small 

x - 0. 

Let E = L-1(c/n), p = F(E). These are well defined for n large, say 
n- 

no, 
so let us assume from now on that n - no. By Lemma 1 

(f(c) 
/A)1/ 

a 
f(c) 

(18) E 1/1+ 
ac 

' P /l c+a as n ooa 

Let N':=N, and S',=S,. In (14) and (15) choose m to be (pn)2 and 

E(pn)4, respectively. From (18), pn --- oo as n --- oo, so that the conditions 

m 5 2pn and m -4Epn of (14) and (15) are fulfilled for large n. We have 

nt(E) 
= c, and conclude from Theorem 3 that the following bounds apply. 

Theorem 4. For given c > 0 and n sufficiently large, 

(19) 
P[INc, 

-pnl > (pn)2] 5 2 exp ( - (pn)1) 

(20) P[IS',, - cl > E(pn)2] - 2 exp ( - (pn)?). 

With the help of Theorem 4 we can now prove the following. 

Theorem 5. 

(i) For given c > 0, 6 > 0 and f = 1/3(1 + a) we have 

(21)-OPe nNs 
(21) [ 

f(c)n11,? 
- -1 > 6] = O(exp (-n)), 

where the multiplicative constant hidden in the O(.) notation depends on 6 

and c but not n. 

(ii) For given c > 0, 

(22) E(N,) 
-f(c)n"'1/c 

as n - oo. 
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Proof. The idea of the proof is as follows. From (18)-(20) we conclude that 

it is very likely that N',,~-f(c)n1'i+1 and 
S,'n -c as n---oo. Since S', 

Y + 
" 

+ 
Y??v,, 

it follows that it is very likely that N, 
-f(c)n"1•+ 

as n - oo. 

The argument below formalizes this idea. 

Proof of (i). Choose 0 < < c1 <C <c2 so that 

(23f(c) (23) f(ci)1 <6, i=1, 2. 

Let 

(24) Ei = Pi= 
F(E,) 

and for i = 1, 2 define the events 

(25) Di D,,, = 
[IN',, 

- pn I (pin)2] n [ISl,,, - cil Ei(pin)3]. 

From (18) we have 

(26) E1(pin) ~ 0, (pin)~ f(ci)n 1+1 
as n--* , i = 1, 2. 

Hence, if D1 occurs and n is large, then Sc',~ < c and 

(27) N, 
- 
N~,, >=pin - (Pin)' > (1 - 

6)f(c)n1?+1 

Similarly, if D2 occurs and n is large, then S2,, > c and 

(28) 
N• -N'c, 

np2n + (p2n)l < (1 +6)f(c)n1+1 

For any event D, let D denote its complement. From (19) and (20) 

(29) P(Di n D2) = O(exp (-n n)). 

The result in (21) now follows from (27)-(29). 

Proof of (ii). Define the event 

D = [I(N,/f(c)n11/+1) - 11 < 6]. 

By (27) and (28) D1 n D2 c D for n large. Using N, 5 n, we can write 

(30) (1 - 6)f(c)l/l+"c[1 
--p(D))] 

- E(Ns) 
5 (1 + 6)f(c)n 1+1 + nP(D). 

Together, (29) and (30) imply 

E(N ) E(N,) 
(31) 1 - 6 - lim inf 1/E(N) limsup ( 1/1+ n--of(c)n1/+ n-- f(c)n 

Letting 6 -- 0, we obtain (22). 

Theorem 6. 

i Em(c) 
f (c)n 

ita+1 
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Proof. Let 0 < c1 < c and define E, and p, as in the proof of Theorem 5. Let 

T be the threshold policy that accepts only intervals of size at most E1 and 

selects these whenever the sum of the intervals selected does not exceed cl. 
Let D1 be defined by (25). By Theorem 4 

(32) P(D1) > 1 - 4 exp ( - 1(pin)3), if n is large. 

If 
D1 

occurs and n is large, then 
S'l,, 

< cl so the 
Nc,,, 

intervals sum to no more 

than cl. Hence, 

(33) NT = 
N' 

,, 
pln - (pln)2 if D1 occurs and n is large. 

Together (32) and (33) yield 

(34) E(NT) 
- 

(pin - (pln)')(1 - 4 exp ( - l(pln)?)), if n is large, 

and therefore 

E(NT) f(cl) 
(35) lim inf T) f(c 

n---oo f(c)n1+l -- f(C) 

Since E(NT,) E,(c) 5 E(N,), we conclude from (22) and (35) that 

f(clm) E(c) ?En(c) (5 lim inf 
,( 

limsup , 
1. f(c) 

n-mn 
f(c)n1/+ 

n--- 
f(c)n1/c+1 

The limit c1 -+c produces the desired result. 

5. A formula for E(N,) in the uniform case 

We begin with the following general lemma. 

Lemma 2. Let Pnk = P(Y+ " 
+ Y" 5 c). Then 

n 

(36) E(N,) = P 
pnk 

k=1 

Proof. Define the indicator function Xk = 1 if Yn 
+.'' 

+ Y n- c, and Xk = 0 

otherwise. Then 
n n n 

(37) E(N,) 
= E( Xk = E(xk) = Pnk* 

k=1 k=l k=1 

We shall now obtain an explicit formula for the Pnk, and hence E(N,), in the 
uniform case: F(x) = x, O - x - 1, and F(x) = 1, x > 1. 

Theorem 7. Let F(x) be uniform on [0, 1] and assume c - 1. Then 

(38) E(N,) = 11 i - c + 

(k=1 i=1 (i- 1)! (k- i)! c 

Remark. The proof determines the pk by using a well-known relation 
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between the uniform distribution and the Poisson process. For this reason, the 

proof cannot be generalized to distributions other than the uniform. For c > 1 
it is also possible to obtain a formula for pnk, but it is more complicated. Since 
the methods are similar, we leave the calculations to the interested reader. We 

remark that we have not been able to deduce the asymptotics of E(N,) from 

formula (38). 

Proof. Let Tk denote the time of the kth event in a Poisson process with 

parameter 1. Let Zk denote the duration of the kth interevent interval. Then 

Tk = Z + - - + Zk, where P[Zk - t] = exp (-t), t - 0. Since F(x) is uniform on 

[0, 1], we know that the order statistics Y", - - - , Y" and the random variables 

T1/Tn+l, ..., T,/Tn+1 have the same joint distribution. Hence, 

Pnk = P(T1 + ' ' ' + Tk CTn+l) 
(39) 

= 
P[kZ1 + (k - 

1)Z2 + 
. 

+ Zk 5 

c(Zl 

+ - 
" 

+ 
Zn.l)]. 

Renaming the i.i.d. random variables Z1, - - - , Zk as Zk, -., Z1 we can write 

Pnk = P[Z1 + 2Z2 + - - - + kZk 5 
c(Z1 

+ - + 
Zn.+l) 

(40) p[(1 
- 

c)Z 
( k-c) ] 

= P[ 
Z 

+.)+ 
Zk :5 

Z 
k + 

-- - ++Zn.1 

l 

Now denote Z1, -, Zk by U1, 
? 

, Uk and Zk+l, ..., Zn+1 by 

V1, ? 
, Vn-k+l, respectively. Let 

k _ n-k+1 

i=1 C i=1 

The U,'s and V1's are i.i.d. with P(U, > t) = P(V, > t) = e-', k 0, and by (40) 

(41) Pnk = P(U - V). 

The density function for V is well known and is given by 

Un-ke- v 

(42) g(v) n- v O0. 
(n 

- 
k)! 

Let f(u) be the density function for U. Then 

exp (Au)f(u) du = E(exp (A U)) =f E(exp (A U) 

(43) k 1 c 
H / , A< k- 
i=1 ( i-c) k- 

Expanding into partial fractions and taking inverse Laplace transforms we 



466 E. G. COFFMAN, JR., L. FLATTO AND R. R. WEBER 

conclude that 
k 

c 

exp( 
c 

(44) f(u) = .-cRexp - u), u0. 
i=11-CC 

where 

Ri=(i-c)k-1 
1 

_(-1)i-1(i 

- c)k-1 

l1_jki-J 

(i- 1)! (k- 1)! 
poi 

From (41), (42) and (44) we obtain 

pnk 
= 

fff(u)g(v) du dv 

(45)_0c 

S(-l)k-(i 
_ 

c)k-1 n-k+ 

i=1 (i 
- 

1)! (k 
- 

i)! 

n+ 

whereupon (38) follows by summing over k. 

6. The dual (secretary) problem 

Recall that in the dual problem the i.i.d. intervals of an infinite sequence are 

to be inspected one at a time until j are found which sum to no more than c. 

The objective is to minimize the expected number of inspections, 
4.(c), needed. In [4] a threshold rule is proved optimal among on-line selection 

policies. 
Let X1, 

... , ... denote the interval lengths and, for a fixed 1 5 n < o, 
let Y :5... 5 

-_ 

Y" denote the order statistics of X,, - - -, X,. Define 

M = smallest n >j such that Y' + 
? ? 

+ Y 
5= 

c, 1 5j <C 

N,= largest j, 1? j 5- 5n, such that Y' +. + Y7 
= 

c, 15 n< o . 

Observe that N, is the random variable called N, in Section 4; it is the number 

of intervals out of the first n which sum to no more than c under the 

smallest-first rule. Mj is the number of intervals which need to be inspected so 

that at least j of them sum to at most c. Clearly, E(Mj) 
=•.(c), 

just as 

E(N,) 
E,,(c) 

in the primal problem. Simple algorithms achieving E(Mj) are 

easily designed, although they will not satisfy the on-line constraint. 

Even though E(Mj) < Ej(c), we shall show, in analogy with the primal 

problem, that 
E.(c) 

- E(Mj) as j -- . Thus, the sequential threshold rule for 

the dual problem is asymptotically optimal over the class of all selection 

algorithms. 
We begin with the asymptotics of Mj, which are based on the observation 

that 

(46) P(Mj > n) = P(N, <j), P(M2 
- 

n) = P(N, j), 1 j n < 
. 
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Theorem 8. Let 6 > 0. Then 

(47) P 
= 

O(exp (-jt), 

where f(c) is defined as in (17). 

Proof. It suffices to consider 0 < 6 < 1. Let 

n= (1+ 
6)(fj•)) 

+1 

where [x] denotes the greatest integer no larger than x. Then 

(48) j< f(c)(1+ 6/2 nln, jlarge. 

By (21), (46) and (48) we have for large j 

P(M, 
> (1 + 56)Q = P(Mj > n)= P(N < j) 

(49) 
f(c) 

P(N, < 
1+ 6/2) f(c)n•`+) 

= O(exp (-n'))= O(exp (-ji). 

Similarly, let 

L(1fc- ) 

a-+] 

. 
Then 

(50) 

f-(c)(1 
f 2(c) 

1 

n, j large. 
f(c)61- 

( 1-6 

By (21), (46) and (50) we have for large j 

P 
=My5 

(1 - 6) = 
P(Mj -5n)= P(N,, nj) 

f(c) 

(N, 1 
) 

6 

5 f(c)n11+1) 
= O(exp (-n')) = O(exp (-j])), 

and (47) is therefore proved. 

Theorem 9. We have 

(51) 
E(M,) ~E(,(c) ~(f_) 

as n-*. 

Remark. The asymptotic formula for E(M,) is intuitive as it follows from 
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formula (22) by replacing n and E(N,) respectively by E(M,) and n. Similarly, 
the asymptotic formula for E,(c) follows from the one for E,(c). 

Proof. Since E(M,) 
=~ 

_ (c), it suffices to show that 

lim inf E(M) 1 
(52) n-*o ( ~)+a 

and 

lim sup n( 1. 
(53) n-*oo (,) 

To prove (52) define the event 

D = D,,n = ()1l+ -1 56 0<6<1. 

By Theorem 8, we have for fixed 6 

(54) P(D) = O(exp (-ni)), 

and therefore 

(55) 
E(Mn) 

? 
[1 - P(D)](1 - 6)(l 

n 

1+. From (54) and (55) we get 

E (Mn) lim inf E(M) 1-6 
(56) 

n--o• 
(•) 

l+r- 

so that (52) is obtained by letting 6 --+1. 

To prove (53) let 0< c < c2 <c3 < c and E = v-l1(c1n). Let T be the 

following two-stage threshold policy. From the n intervals T begins by 

accepting only those whose lengths do not exceed E, so long as the accepted 
interval lengths do not sum to greater than c2. The second stage of T begins 
when an interval of length no greater than E would increase the sum beyond 

c2. From that point on T only accepts intervals with lengths not exceeding 

(c - c3)/n. Note that at the end of the first stage, the sum of the accepted 
interval lengths is at most c2 + E < c3 (for n large). Hence, n intervals summing 
to no more than c can be selected under policy T. 

Let M be the number of interval inspections required by T to select n 

intervals. To estimate M and E(M), we introduce the mutually independent 
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sequences of i.i.d. random variables {ri}, {r'} and {W,}, where ri and r' have 

geometric distributions with parameters F(E) and F((c - c3)ln), respectively, 
and 

F(x) 

P(W -x) F(x) O x 5 E, P(W x) = 1, x > e. 
F(E) 

Define the event D = [W1 +... 
+ W, c2] and let Xf) be the indicator function 

of D. Then 

M= 1 if D occurs 

(57) i=1 

MM i + ~r ' if D occurs. 
i=1 i=1 

Hence, 

r +i " '- r,+ "- Ti " 
i=1 =1 i=1 

The independence assumption implies 

E(M) (5E 
i, 

+E + 
i• d X 

i=1 i=1 i=1 

(58) n n n 

=- +I- + - P(D). F(E) FE) (C - C31P( 

We must now estimate P(D). Since nv(E)= c1, we obtain from Theorem 3 

(see (16)) 

(59) P(IS 
- cl m) 5 2 exp 4r ), if 0 5 m 2ne. 

Choose m = enT. From (17) lim,,, En4 = 0, and thus we conclude from (59) 
that 

(60) P(D) - P(S, m + c1) - 
2 exp ( - in), n large. 

Also, from (17) 

n n )1+ n n1+ 
(61) F(E) \f(c1) F(c - 

C3) A(c - c3 

Together, (58), (60), and (61) imply 

E(M) lim sup 

n 

+a- <l 

kf(cl)) 
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and since ,(c) - E(M) we obtain 

lim sup 1+c 
+ 

n- noo n) 

(f(ci) 

Letting c1 -+ c we get the desired result in (53). 

7. Asymptotics for c = nO 

Returning to our original problem it is of interest to consider asymptotic 
results when n - oo and c - oo with c/n = 0 fixed. While the methods of earlier 

sections are adequate to handle the new limit, they are in fact unnecessary; the 

only asymptotic result that we need is the law of large numbers. 

For c = On define the threshold E = M-1(0). As before, let N, be the number 

of intervals no larger than E and let S, be their sum. We now assume the 

existence of the first moment 

m = x dF(x), 

where F(x) is any continuous distribution with F(0) =0 which is strictly 

increasing wherever F(x) <1. Note that, among the distributions having first 

moments, we are dealing with a broader class of distributions than previously. 

Recalling that a(O) = F. M-1(0), we have by the law of large numbers 

N SE 
(62) 

N___ 

(O), 

--- 0 
as 

n-- 
*oo. (62) n n 

The proof of Theorem 5, with obvious modifications, shows that (62) implies 
the following result. 

Theorem 10. Let 0 < 0 <m and c = On. Then 

(63) O)n1 
as n--+, 

(64) E(Ns) - a(O)n as n -+oo, 

(65) En(On)- a(O)n as n -+oo. 

We remark that the theorem also holds for 0 -m provided we take a(0) = 1 

for 0- m. This follows from Ns 5 n, E,(On) - n and a standard continuity 

argument applied to the function a(O). 
It seems to us that a similar result can be proved for M,, E(M,) and 

,(On) introduced in Section 6. However, the modifications of the argument of Section 

6 are not very clear and we have not worked out the details. For another 

approach to this problem see [4]. 
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Figure 1. Plot of r = 
E(c)/52V 

for 
various values of c 
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Figure 2. Plot of r = 
E(Ns,,)I/V- 

for 
various values of c 

8. Final remarks 

We conclude with numerical results designed to assess the approximation 
inherent in asymptotics and the sacrifice made in the on-line constraint. 

Figures 1 and 2 plot the 'performance ratios' r = E,(c)IV/-b and E(N,)IV/-- 
for several values of c under the assumption that interval lengths are uniformly 
distributed over [0, 1]. The results for E,(c) were obtained by iterative solution 

of the Bellman equations in (1). Because of numerical problems encountered 

in evaluating expressions like (38) when n is large, the data for E(N,) were 

obtained by routine Monte Carlo simulations. 

An obvious feature of each of the plots in both figures is the relatively sharp 
'knee', which occurs at approximately n = 2c. If n ' c then all intervals will be 

selected and E,(c) = n. If c <n <2c, then the expected number of intervals 

selected will not be much less than n, since n = 2c items of average length sum 

to no more than c. Thus, in the region [0, 2c] the asymptotic value \/J will 

have little meaning. 

Beyond the knees the curves become rather flat, and show that r increases 

with c as expected. For example, for all c 2 and n i 15 the curves are within 

10% of the asymptotic value 1, but for fixed c very large increases in n are 

required to approach 1 substantially closer than the values just beyond the 

knee. 

Figure 3 compares the smallest-first rule with the optimal threshold policy by 

pairing off three of the plots in Figures 1 and 2. Depending on the performance 
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-n 

Figure 3. Plots of 
E,,(c)/\cn (dashed lines) and E(N,)/V2E (solid lines) 

standards of the application, the sacrifice incurred by the on-line constraint 

may be quite tolerable. Note, however, that although the curves for both the 

smallest-first and the optimal threshold policy have the same asymptotic value 

for the same value of c, the difference between them approaches 0 very slowly. 
A problem left open by our asymptotic analysis is the specification of an 

optimal threshold function, z,(x), for fixed n and x 4_-c. As a numerical 

example, we have shown in Figure 4 a plot of the optimal threshold function 

for c = 1, and items uniformly distributed over [0, 1]. The plot is based on a 

recursive evaluation of the Bellman equation in (1). Although the figure shows 

a monotonic approach from below of 
z,(1)/Vi 

to 1, we have no proof of this 

property. Note that the approach of 
z,(1)/V~72 

to 1 appears to be rather 

faster than the approach of En(1)/V- to 1 in Figure 3. 
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Figure 4. Graph of r = 
z,(1)/VNri 
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