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Abstract—An optimum selective transmission scheme for energy-
limited sensor networks where sensors send or forward messages of dif-
ferent importance (priority) is developed. Considering the energy costs,
the available battery, the message importances and their statistical
distribution, sensors decide whether to transmit or discard a message
so that the importance sum of the effectively transmitted messages is
maximized. It turns out that the optimal decision is made comparing
the message importance with a time-variant threshold. Moreover, the
gain of the selective transmission scheme, compared to a non-selective
one, critically depends on the energy expenses, among other factors.
Albeit suboptimal, practical schemes that operate under less demanding
conditions than those for the optimal one are developed. Effort is
placed into three directions: (i) the analysis of the optimal transmission
policy for several stationary importance distributions; (ii) the design of
a transmission policy with invariant threshold that entails asymptotic
optimality; and (iii) the design of an adaptive algorithm that estimates the
importance distribution from the actual received (or sensed) messages.
Numerical results corroborating our theoretical claims and quantifying
the gains of implementing the selective scheme close this paper.

Index Terms—sensor networks, wireless sensor networks, energy-
aware systems, stochastic programming, message sending

1 INTRODUCTION - PROBLEM MOTIVATION

DURING the last years, Sensor Networks have attracted
the attention of many researchers from electronics, signal

processing, communications, and networking communities [1].
The ability of sensors to behave in an autonomous and self-
organized manner using limited energy and computation re-
sources [2] states new challenges that require novel solutions.

In many practical scenarios, sensor node batteries cannot
be (easily) refilled and nodes have a finite lifetime. Since
communication processes are energy-expensive, the cost of
transmitting and receiving information should influence node
decisions; see, e.g., [3] or [4]. Typically, nodes are compelled
to transmit any signal captured by their sensors while batter-
ies are alive. A similar situation occurs in scenarios where
nodes act as relays that have to forward any message upon
request from other neighboring node. This inability to apply
autonomous transmission policies, thus preventing nodes from
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managing their own resources, hinders an efficient utilization
of the network. Some strategies to extend wireless sensor
networks lifetime were early proposed; e.g., by establishing
inactivity periods in node operation lifetime [5] or by adopting
distributed digital signal processing (DDSP) techniques to
reduce the amount of transmitted data [6].

Resource-saving strategies based on the nature of the infor-
mation to be transmitted and the expected available resources
in the sensors that take part in communication at each moment,
have barely been analyzed in the literature. Nevertheless, there
exist many practical scenarios where it is feasible to attribute
a particular significance [7]; priority [8]; relevance [9]; or
utility [10] value to messages transmitted or forwarded by
sensor nodes. Tailored to those scenarios, we will consider
that messages can be valuated through an importance indicator
which reflects the priority of the message, the relevance of
the information conveyed or the required level of quality of
service (QoS). Relevant examples in the context of Sensor
Networks can be found in the fields of: security (attack reports
[7]), medical care (critical alerts [11]), or data fusion (DAIDA
algorithm in [12]), to name a few.

Summarizing, in this paper we address the design of effi-
cient transmission policies for Sensor Networks, constraining
ourselves to applications where: (i) message importance can be
properly quantified, and (ii) low graded messages can be even-
tually discarded. This way, we propose selective transmitters
that save energy by discarding low priority messages with the
expectation of sending more important upcoming messages.

Related ideas have recently been explored in literature. The
IDEALS algorithm [13], built under the concept of message
and power priorities, tries to extend network lifetime for
important messages, discarding all messages except those of
high importance when battery resources are scarce. The PGR
(Prioritized Geographical Routing) algorithm [14] selects the
appropriated routing technique depending on the priority of
the message (low, medium or high). Moreover, a fuzzy logic
approach to deal with message transfer priority arbitration that
considers fifteen different priority levels has been presented in
[15]. Nevertheless, none of these algorithms have been pro-
posed under a probabilistic and statistical approach that may
open the door to a long-term optimization of the network. A
selective forwarding scheme using a probabilistic approach has
recently been explored in [16], [17] and [18]. In those works,
the decision to transmit or discard a message at each node is

Digital Object Indentifier 10.1109/TMC.2009.67 1536-1233/$25.00 ©  2009 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 20, 2009 at 18:40 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING , VOL. XX, NO. XX, MONTH 200X 2

taken in order to minimize a cost which depends on the energy
expenses as well as the message importance. The resulting
protocols promote the transmission and forwarding of highly
graded messages and, as a result, the overall importance of
the transmitted messages during the full node lifetime is higher
than the corresponding to non-selective methods. However, the
relative influence of energy expenses and importance values in
the overall cost is a heuristic parameter in the model, whose
value is difficult to optimize.

Different from the aforementioned works, in this paper we
develop an optimum selective message forwarding scheme
based on a statistical model of the message importances.
More specifically, we derive optimal decisions maximizing the
importance sum of the transmitted messages at each node, and
analyze the node behavior under different importance distribu-
tions. Using asymptotic analysis, gains with regard to a non-
selective scheme are theoretically quantified. Furthermore, in
scenarios where nodes do not know the statistical importance
distribution of messages, an alternative method that does not
require a priori knowledge of the statistical information is
developed.

Noticeably, the statistical model here presented exhibits
similarities to other problems in Operations Research and
Stochastic Dynamic Programming (see, e.g., [21]), and the
equations describing the energy evolution at the sensor node
and the importance sum can be restated as a particular type
of Markov decision process. Nonetheless, our treatment of the
problem and the theoretical derivations are self-contained.

Finally, remark that the sensor model in this paper is
an abstraction of reality which makes some simplifying as-
sumptions: perfect transmissions, perfect knowledge of energy
resources and importance distributions, and some others. Some
of these assumptions are likely not critical, and the model can
be modified in order to incorporate more realistic situations.
Some others state some challenges in order to obtain more
practical decision schemes. In any case, we believe that our
model captures the essential behavior of a selective transmis-
sion scheme, and can be used as a starting point for other
designs more accurately adapted to specific scenarios.

The rest of the paper is organized as follows. Section 2 de-
scribes the context and the sensor model. Section 3 focuses on
the optimal selective transmitter, obtaining a general formula
to compute the optimal time-variant threshold, which is there-
after particularized for specific operating conditions. Section 4
describes a selective transmission policy based on a constant
threshold. The asymptotic analysis in Section 5 provides a gain
formula as well as some illustrative examples. In Section 6, an
adaptive method which estimates the importance distribution
on-the-fly is presented. Section 7 is in charge of showing the
experimental study and results for a single node and a sensor
network. Some conclusions and pointers to future work close
the paper in Section 8.

2 SENSOR MODEL

For the purpose of the analysis that follows, we consider
a sensor network as a collection of nodes N = {n|n =
0, . . . , N − 1}. For the time being, we will focus on the

behavior of each node, which receives a sequence of requests
to transmit messages (no matter how the network topology is).
The node dynamics will be characterized by two variables

• ek : available energy at a given node at time k. It reflects
the “internal state” of the node; and

• xk : importance of the message to be sent at time k. It
reflects the “external input” to the node.

For mathematical reasons, we assume that if the node does
not receive any request to transmit at time k, then xk = 0,
while true messages will have xk > 0.

At time k, the sensor node must make a decision, dk, about
sending or not the current message, so that dk = 1 if the
message is sent, and dk = 0 if the node decides to discard it.

Nodes consume energy at each time slot, by an amount that
depends on the message reception and the taken actions. In the
literature, up to three different energy expenses are typically
considered:

• EI : energy spent at a silent time, when there is no
message reception, and the node may stay at ”idle” mode;

• ER: energy spent when receiving a message; and
• ET : energy spent when transmitting a message.

The value of these parameters will depend on the system
specifications and the specific application (among the factors
that will determine the energy costs we find mobility, sensed
magnitude, or behavior of the batteries, to name a few). For
example, for static dense networks, ET and ER values may be
very similar, while for mobile networks operating over fading
channels, ET >> ER is expected.

Energy at time k can be expressed recursively as

ek+1 = ek − dkE1(xk)− (1− dk)E0(xk), (1)

where E1(xk) is the energy consumed when the node decides
to transmit the message, and E0(xk) is the energy consumed
when the message is discarded. For positive values of im-
portance, energy consumption is independent of the message
importance, and we have

E1(xk) = ET + ER, xk > 0 (2)

E0(xk) = ER, xk > 0. (3)

Recalling that xk = 0 means that no messages are received,
we also have

E1(0) = E0(0) = EI . (4)

When the sensor node is the source of the message, ER

comprises the energy expense of the message generation
process (possibly by a sensing device). When the sensor node
acts as a forwarder, ER comprises the energy expense of
receiving the message from other node. Thus, we assume that
ER is the same no matter if the node is the source of the
message or it has been requested to forward a message from
other node. Even though this assumption is not critical and
could be bypassed by splitting ER between receiving and
sensing costs, we adopt it for two reasons: (i) it leads to a
simpler mathematical formulation and (ii) nodes are prevented
from acting selfishly (note that if the energy cost of sensing
were smaller than the cost of receiving, nodes would promote
their own messages instead of forwarding others’ messages).
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Remark 1: It is important to mention that although this paper
focuses on the case where the energy consumption is given by
(2)-(4), we will formulate and solve the general case in (1) by
assuming that both consumption profiles, E1(x) and E0(x),
may arbitrarily depend on x. As a first approach, the model
could even be applied to situations where ET and ER are
random or time-variant (e.g., in sensors operating over fast
fading channels where transmissions are adapted based on the
channel state information) by substituting ET and ER by their
respective mathematical expectations. In any case, we assume
that both energy functions are perfectly known.

3 OPTIMAL SELECTIVE TRANSMISSION

To derive the optimal transmission policy we will consider
that node decisions do not depend on the state and the actions
of neighboring nodes, but only on the available information
at each node. Therefore, at each time, k, the node decision
depends on the internal state and the external input

dk = g(ek, xk), (5)

with the constraint

g(ek, xk) = 0, if ek < E1(xk) (6)

reflecting that, if the sensor node does not have enough energy
to receive and transmit the message, it cannot decide dk = 1.

Decisions at each node will be made with infinite horizon,
i.e., by maximizing (on average) the importance sum of all
transmitted messages1

s∞ =
∞∑

k=0

dkxk. (7)

Since nodes have limited energy resources, this sum only
contains a finite number of nonzero values (eventually, for
some k, ek < mink E1(xk), and ∀k′ ≥ k, we have dk′ = 0).

The following result provides the optimal selective trans-
mitter.
Theorem 1: Let {xk, k ≥ 0} be a statistically independent
sequence of importance values, and ek the energy budget at
time k, whose energy process is given by (1). The optimal
sequence of decision rules in the form dk = g(ek, xk)
maximizing E{s∞} (with g(ek, xk) = 0 for ek < E1(xk)
and s∞ given by (7)), is

dk = u(xk − μk(ek, xk))u(ek − E1(xk)), (8)

where u(x) stands for the Heaviside step function (with the
convention u(0) = 1) and thresholds μk can be computed
recursively through the pair of equations

μk(ek, xk) = λk+1(ek − E0(xk))− λk+1(ek − E1(xk))
(9)

1. Since our design focuses on the performance of each single node,
decisions made at other nodes are not explicitly taken into account, but only
implicitly through messages actually received from its neighbors. Although
this approach fits into the design philosophy of sensor networks where the
complexity of each node should be kept as low as possible, it is worth
remarking that from an overall network perspective, it may entail a loss of
performance. Interestingly, preliminary results published in [19] show that
the loss of optimality due to this simplified design is very small, therefore
validating the proposed approach.

λk(ek) = (E{λk+1(ek − E0(xk))} (10)

+ E{(xk − μk(ek, xk))+u(ek − E1(xk))}) u(ek),

where

(xk − μk(ek, xk))+ = (xk − μk(ek, xk))u(xk − μk(ek, xk)).
(11)

The auxiliary function λk(e) represents the expected increment
of the total importance (expected reward) at time k , i.e.,

λk(e) =
∞∑

i=k

E{dixi|ek = e}. (12)

Proof: See Appendix A.
Although the results of Theorem 1 are general and hold for

any energy cost and importance value, they do not provide a
clear intuition about the impact of E(x) and the distribution of
xk on the design of the optimal forwarding scheme. Moreover,
the direct application of these results is difficult, because (9)
and (10) state a time-reversed recursive relation: in order to
make optimal decisions, the node should know the future
importance distributions in advance. For these reasons, in the
reminder of this paper we will focus special attention on
several particular cases that will lead us to tractable closed-
form solutions.

3.1 Stationarity

If all variables x1, . . . , xk have the same distribution, then μk

does not depend on k [c.f. (9) and (10)]. In this case, the
following result can be shown:
Theorem 2: Under the conditions of Th. 1, if the impor-
tance values {xk, k ≥ 0} are identically distributed and
infx{Ei(x)} > 0, for i = 0, 1, the optimal sequence of
decision rules in the form dk = g(ek, xk) maximizing E{s∞}
(with g(ek, xk) = 0 for ek < E1(xk) and s∞ given by (7)),
is

dk = u(xk − μ(ek, xk))u(e− E1(xk)), (13)

where

μ(e, x) = λ(e− E0(x)) − λ(e− E1(x)) (14)

λ(e) = (E{λ(e− E0(x))}
+ E{(x− μ(e, x))+u(e− E1(x))}) u(e), (15)

Proof: See Appendix B.
It is important to stress that in most scenarios involving

multiple sensors, the stationarity assumption, strictly speak-
ing, is not true. For example, the distribution of messages
arriving to a node depends on the transmission policy used
by forwarding nodes. Since the optimal policy presented here
is energy-dependent [c.f. either (9) or (14)] and the available
energy clearly changes along time for all nodes, the importance
distribution of the received messages will also change along
time. However, it will be shown in the next sections that
the simplification obtained in (14) is not only useful from a
theoretical perspective, but also valid from a practical point
of view for large networks. This (almost) stationary behavior
can be justified based on different reasons. First, although
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the optimal forwarding policy varies along time, this variation
turns out to be negligible during most of the time (i.e., it is
almost-stationary). The underlying reason is that for medium-
high values of available energy the optimal forwarding scheme
is not very sensitive to energy changes. Only when nodes are
close to run out of batteries, the decision threshold varies
significantly as a function of the remaining energy. Second,
even if the behavior of a single node is not stationary, the
aggregate effect of the entire network may be stationary. In
other words, the approximation given by (14) will be accurate
during most of the time, and the discrepancy will only arise
when the network is close to expire. Theoretical analysis and
numerical results will corroborate this intuition.

3.2 Constant energy profiles

Under the constant profile model given by (2)-(4), the optimal
threshold can be written as

μk(e, x) = μk(e)Ix>0, (16)

where Ix>0 is an indicator function (equal to unity if the
condition holds and zero otherwise), and using (9) we have

μk(e) = λk+1(e− ER)− λk+1(e− ET − ER). (17)

Also, (10) becomes

λk(e) = PIλk+1(e− EI) + (1− PI)λk+1(e− ER)
− PIμk(e, 0)u(−μk(e, 0))u(e− EI)
+ (1 − PI)E{(xk − μk(e, xk))+|xk > 0}
· u(e− ET − ER)

= PIλk+1(e− EI) + (1− PI)λk+1(e− ER)
+ (1 − PI)E{(xk − μk(e, xk))+|xk > 0}
· u(e− ET − ER) (18)

where PI = Pr{x = 0}. Defining

Hk(μ) = E{(xk − μ)+|xk > 0}, (19)

we can write

λk(e) = PIλk+1(e− EI) + (1− PI)λk+1(e− ER) +
+ (1 − PI)H(μk(e))u(e− ET − ER). (20)

Thus, the optimal transmission policy for a sensor with a
constant energy profile is described by (17) and (20). In order
to analyze the influence of idle times and the relation between
transmission and reception energy expenses separately, in the
following examples we consider the case of PI = 0 and/or
EI = 0. Note that if any of these conditions holds, the
expected importance sum in (20) can be rewritten as

λk(e) = λk+1(e− ER) + H(μk(e))u(e− ET − ER). (21)

3.3 Examples

As we have already mentioned, there is no general explicit
solution to the pair of equations (9) and (10), not even for the
stationary case in (17) and (20). For this reason, in this section
we focus on systems satisfying the operating conditions that
gave rise to (21) (constant energy profiles, stationarity and

zero idle energy) and solve the recursive relations for several
importance distributions2. This simplification will lead to
tractable expressions, providing insight into the behavior of
the optimal forwarding scheme.

• Uniform Distribution: Let U(0, 2) denote the uniform
distribution between 0 and 2 whose probability density
function (PDF) is

p(x) =
1
2
(u(x)− u(x− 2)). (22)

Substituting (22) into (19), we have

H(μ) = E{(x− μ)+} =
1
4
(2− μ)2, (23)

and therefore, the expected reward is given by

λ(e) = λ(e−ER)+
1
4
(2−μ(e))2u(e−ET −ER). (24)

Fig. 1(a) plots the threshold for extremely small values
of available energy, e. E1(x) = 1 and different values of
the ratio ET /ER are considered. Note that, for values of
e lower than 1, in spite of the threshold value is 0, there
is no actual transmission because u(e− ET − ER) = 0.
For 1 < e < E1 + ER there is only one opportunity
to send the message, so the threshold is also 0, which
means that the message will be transmitted whatever
its importance value is. For larger energy values, the
threshold increases, meaning that the transmission can
be made more selective. Note, also, that μ(e) evolves in
a staircase manner, because any energy amount in excess
of a multiple of ER is useless.
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Fig. 1: Variation of the decision threshold (a) and the expected
importance sum (b) with respect to the available energy, e. A uniform
importance distribution U(0, 2) with E1(x) = ER + ET = 1 is
assumed. Different plots correspond to different values of ET /ER.

2. In the following, free parameters will be set so that all importance
distributions have a mean value equal to one.
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Fig. 1(b) represents the expected reward (λ(e)). Note that
the case ET = 0 is equivalent to a non-selective trans-
mitter (because, according to (17), the optimal threshold
is 0 in that case, which means that no messages are
discarded). Despite that, for e close to 2, there is not
energy for a second transmission, the selective transmitter
provides a significant expected income with respect to the
non-selective one.
Fig. 2(a) shows the optimal threshold for ET = 4, ER =
1 and high values of available energy. Note the sawtooth
shape of the forwarding threshold: as the available energy
is reduced to a value close to a multiple of the energy
required to transmit, the forwarding threshold decreases,
because if there is not any transmissions, the total number
of possible messages to be sent is reduced by a unity.
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Fig. 2: The decision threshold (a) and the expected importance sum
(b) (continuous line) as a function of the available energy. A uniform
importance distribution U(0, 2) with ET = 4 and ER = 1 is
assumed. The stepwise function (dotted line) reflects the behavior
of a non-selective transmitter, which transmits any message whatever
its importance value is.

Fig. 2(b) represents the expected reward of the selective
transmitter (continuous line) and the non-selective one
(dotted line), which transmits all messages regardless of
their importance value, until energy is used up.

• Exponential: For an exponential distribution, we have

p(x) =
1
a

exp
(
−x

a

)
u(x), (25)

and

H(μ) = a exp
(
−μ

a

)
, (26)

so that

λ(e) = λ(e− ER) + a exp
(
−μ(e)

a

)
u(e− ET − ER).

(27)

The variation of μ for an exponential distribution with
a = 1, ET = 4 and ER = 1 is illustrated in Fig. 3. The
more restrictive threshold, compared to that one shown
in Fig. 2(a) for the uniform distribution, gives rise to a
higher increase in the expected reward with regard to the
non-selective forwarder.
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 e

μ(
 e
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Fig. 3: Variation of the decision threshold with respect to the available
energy. An exponential importance distribution with a = 1, ET = 4
and ER = 1 is assumed.

• Pareto: For the Pareto-type distribution with PDF

p(x) =
a− 1

(1 + x)a
u(x), (28)

we have

H(μ) =
1

a− 2
1

(1 + μ)a−2
(29)

so that

λ(e) = λ(e− ER)

+
1

a− 2
1

(1 + μ(e))a−2
u(e− ET − ER). (30)

The evolution of μ for a Pareto distribution with a =
3, ET = 4 and ER = 1 is depicted in Fig. 4. Similar
conclusions can be applied to this type of distribution.
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Fig. 4: Variation of the decision threshold with respect to the available
energy. A Pareto importance distribution with a = 3, ET = 4 and
ER = 1 is assumed.

4 THE CONSTANT THRESHOLD TRANSMITTER

For comparative purposes in the following sections, we will
derive some expressions relative to selective transmission
policies based on constant thresholds. Let us assume that node
decisions are given by

dk = u(xk − μc)u(ek − E1(xk)), (31)
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where μc is a constant threshold. Note that if μc = 0
the constant-threshold transmitter reduces to the non-selective
transmitter. Following an analysis similar to that exposed in
Appendix A, we can write the expected reward of the constant-
threshold transmitter as

λk(e) =E{dkxk|ek = e}+ E{(1− dk)λk+1(e− E0(xk))}
+ E{dkλk+1(e− E1(xk))}

=E{u(xk − μc)u(e− E1(xk))xk}
+ (1− Pr{xk ≥ μc, e ≥ E1(xk)})
· E{λk+1(e− E0(xk))|(xk < μc) OR (e < E1(xk))}
+ Pr{xk ≥ μc, e ≥ E1(xk)}
· E{λk+1(e− E1(xk))|xk ≥ μc, e ≥ E1(xk)}.

(32)

In particular, for large e (i.e. e > maxx{E1(x)}) and the
stationary case

λ(e) =E{u(x− μc)x}
+ Pr{x < μc}E{λ(e− E0(x))|x < μc}
+ Pr{x ≥ μc}E{λ(e− E1(x))|x ≥ μc}. (33)

Interestingly, for the constant profile case with PI = 0,
E1(x) = ET + ER and μc = 0, λ(e) can be computed
explicitly using (12) as

λk(e) =
∞∑

i=k

E{u(ei − E1(xi))xi|ek = e} =

=
⌊

e

ET + ER

⌋
E{x}, (34)

where �y� denotes the largest integer which is lower than y.
So that (34) reflects the stepwise form shown in the example
of Fig. 2.

5 ASYMPTOTIC ANALYSIS

5.1 Large energy threshold

The above examples show that for large energy values e, the
threshold converges to a constant value, and the expected
reward tends to grow linearly. Both behaviors are closely
related because, as (9) shows, the optimal threshold is the
difference between two expected rewards. But this is also a
general behavior of the constant-threshold transmitter. In this
section, we discuss the asymptotic behavior of any selective
transmitter in the stationary case. To do so, we first define the
income rate of a selective transmitter.
Definition 1: The income rate of a selective transmitter with
expected reward λ(e) is defined as

r = lim
e→∞

λ(e)
e

. (35)

We start with the income rate of the constant-threshold
transmitter, providing a formula and a proof for bounded
energy profiles.
Theorem 3: Consider the selective transmitter given by (31),
constant threshold μc, and energy profiles with upper bound,

B, such that E0(x) ≤ B, and E1(x) ≤ B, for all x. Then,
the income rate is given by

rμc =
E{u(x− μc)x}

(1 − Pμc)E{E0(x)|x < μc}+ PμcE{E1(x)|x ≥ μc}
(36)

where Pμc = Pr{x ≥ μc}.
Proof: See Appendix C.

As a reference for comparison, we will consider the partic-
ular case of the non-selective transmitter, the particular case
of the constant-threshold transmitter with μc = 0, in such a
way that (36) reduces to

r0 =
E{x}

E{E1(x)} . (37)

The following theorem provides a way to compute the
income rate of the optimal selective transmission policy.
Theorem 4: The only threshold function μ(e, x) which is a
solution of (14) and (15) and is constant with e is given by

μ(e, x) = μ(x) = (E1(x)− E0(x))r, (38)

where r is a solution of

E{E0(x)}r = E{(x− (E1(x)− E0(x))r)+}. (39)

Moreover, if E1(x) ≥ E0(x), for all x, this solution is unique.
Proof: See Appendix D.

An important consequence of Theorem 4 is that, if
lime→∞ μ(e, x) exists, it must be equal to (38). Even though
we will not show any theoretical convergence result, we have
found a systematic empirical convergence, and we guess that
this could be a general result for any importance distribution,
provided it is stationary.

For the constant profile case, the asymptotic threshold (38)
becomes

μ(x) = ET rIx>0. (40)

The recursive expression in (39) can be written as a function
of μ∗ = ET r as

(PIEI + (1 − PI)ER)μ∗ = (1 − PI)ET H(μ∗) (41)

where H(μ∗) is given by (19). Defining

ρ =
(1 − PI)ET

PIEI + (1 − PI)ER
(42)

we get
μ∗ = ρH(μ∗). (43)

5.2 Gain of a selective forwarding scheme

In this section we analyze asymptotically the advantages of
the optimal selective scheme with regard to the non-selective
one. To do so, we define the gain of a selective transmitter as
the ratio of its income rate, r, and that of the non-selective
transmitter, r0,

G =
r

r0
. (44)

For the optimal selective transmitter in the constant profile
case, combining (39) and (37), we get
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G =
μ∗

E{E1(x)}
ET E{x} =

μ∗(PIEI + (1− PI)(ET + ER))
ET E{x}

=(1− PI)(1 + ρ−1)
μ∗

E{x}
=

1 + ρ

ρ

μ∗

E{x|x > 0} . (45)

In the following, we compute the gain for several impor-
tance distributions.

5.3 Examples

Let us illustrate some examples taken from the constant profile
case,

• Uniform Distribution: Substituting (23) into (43), we
get

μ∗ =
1
4
ρ(2− μ∗)2, (46)

which can be solved for μ∗ as

μ∗ = 2

⎛
⎝1 + ρ

ρ
−

√(
1 + ρ

ρ

)2

− 1

⎞
⎠ (47)

(the second root is higher than 2, which is not an
admissible solution). Note that, for ρ = 4, we get μ∗ = 1,
which agrees with the observation in Fig.2(a).
Therefore, the gain is given by

G = 2
1 + ρ

ρ

⎛
⎝1 + ρ

ρ
−

√(
1 + ρ

ρ

)2

− 1

⎞
⎠ . (48)

• Exponential: Using (26) we find that μ∗ is the solution
of

μ∗ = aW (ρ), (49)

where W (x) = y is the real-valued Lambert’s W function
which solves the equation yey = x for −1 ≤ y ≤ 0 and
−1/e ≤ x ≤ 0 [22]. Thus,

G = (1 + ρ−1)W (ρ). (50)

Fig. 5 compares the gain of the uniform and the expo-
nential distributions as a function of ρ. The graphic re-
marks that, under exponential distributions, the difference
between the selective and the non-selective forwarding
scheme is much more significant. The better performance
of the exponential distribution compared to the uniform
may be attributed to the tailed shape. We may think that,
for a long-tailed distribution, the selective transmitter may
be highly selective, saving energy for rare but extremely
important messages. This intuition is corroborated by the
following example.

• Pareto (one-sided): For this distribution, (29) can be used
to conclude that μ∗ is the solution of

μ∗ =
ρ

(a− 2)(1 + μ∗)a−2
. (51)

Although for a generic a this equation does not have
an analytical solution (closed-form solutions for specific

0 2 4 6 8 10
1

1.5

2

ρ

G
ai

n

Uniform
Exponential

Fig. 5: Gain of the uniform and exponential distributions, as a
function of ρ.

values of a are possible), it can always be solved nu-
merically. Fig. 6 shows the gain of the optimal selec-
tive forwarding policy under a Pareto distribution, for
different values of parameter a. As stated before, it is
corroborated that the gain achieves higher values for a
Pareto distribution regarding to the other two distribution
types. Besides, for the Pareto distribution, the higher the
distribution parameter a is, the lower the gain is.
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G
ai
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 a = 2.1
 a = 3
 a = 10

Fig. 6: Gain of the optimal selective forwarding policy under a Pareto
distribution, for different values of parameter a. For values higher
than 10, the gain is approximately equal to the case a = 10.

5.4 Bounding the gain of a selective transmitter

We can bound the gain of the optimal selective transmitter on
a constant profile scenario by noting that, for any μ∗ ≥ 0 and
any importance distribution

H(μ∗) =E{(x− μ∗)u(x− μ∗)|x > 0}
≤E{xu(x− μ∗)|x > 0} ≤ E

{
x

x

μ∗ |x > 0
}

=
E{x2|x > 0}

μ∗ . (52)

Using (43), we get

μ∗ ≤
√

ρE{x2|x > 0}. (53)

Thus, the gain in (44) can be bounded as

G ≤
√

E{x2|x > 0}
E{x|x > 0}

1 + ρ√
ρ

. (54)

Fig. 7 compares the normalized gain given by

G =

(√
E{x2|x > 0}
E{x|x > 0}

)−1

G (55)
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with the theoretical bound, for different distribution types, in
a log-log scale. Note that, for large values of ρ, the bound is
quite tight to the Pareto distribution.
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Fig. 7: Comparison of the normalized gain with the theoretical bound,
for different importance distributions.

5.5 Influence of idle times

The above examples show that the gain of the optimal selective
transmitter increases with ρ. By noting that ρ in (42) is a
decreasing function of PI and EI , the influence of idle times
becomes clear: as soon as the frequency of idle times or
the idle energy expenses increases, the gain of the selective
transmission scheme reduces. This effect will be observed in
the experiments.

6 ESTIMATING IMPORTANCE DISTRIBUTIONS

To obtain the optimum forwarding threshold the importance
distribution of messages is required. However, in many prac-
tical scenarios p(xk) is either unknown or may change along
time. To bypass this problem, p(xk) can be estimated in real
time based on the available data {x�, � = 0, . . . , k} at time k.

We consider an approach based on a parametric estimation
of p(xk) given by a Gamma distribution

p(x|v, θ) = xv−1 e−x/θ

θvΓ(v)
, x, v, θ > 0. (56)

The main reason for selecting (56) is that it does not require to
store all importance values at each time and so, the estimation
is not too much computationally expensive. Thresholds can be
computed analytically by using the upper and lower incom-
plete gamma distribution (Γ(a, x) and γ(a, x), respectively),

E{(x − μ)u(x− μ)} =
1

Γ(v)
(θ (Γ(v + 1)− γ(v + 1, μ/θ))

− μ (Γ(v)− γ(v, μ/θ))) . (57)

Let’s define q̂k = 1
k+1

∑k
�=0 x� and t̂k = 1

k+1

∑k
�=0 ln (x�).

While the maximum-likelihood (ML) estimate θ̂k (ML esti-
mate of θ at time k) is calculated as

θ̂k =
q̂k

v̂k
, (58)

the ML estimate of parameter v at time k, denoted by v̂k,
can be obtained as the solution of ln(v̂k)−ψ(v̂k) = ln(q̂k)−

t̂k, where ψ(v̂k) = Γ′(v̂k)/Γ(v̂k) is the digamma function.
Although there is not a closed-form solution for v̂k, it can be
approximated as [23]

v̂k ≈ 3− zk +
√

(zk − 3)2 + 24zk

12zk
, (59)

where zk = ln(q̂k) − t̂k. If accuracy were critical, closer
approximations would be obtained iterating (see [24] for
further details).

Note that q̂k and t̂k can be computed accumulatively, so
that the importance sequence xl is not required to be stored
(saving memory resources). Also, note that both sums in these
equations can be exponentially weighted so as to cope with
non-stationary importance distributions, as

q̂k =
1− αk+1

1− α

k∑
�=0

αk−�x� (60)

t̂k =
1− αk+1

1− α

k∑
�=0

αk−� ln (x�). (61)

The design of optimal/efficient algorithms to estimate the
importance distributions and calculate the optimal decision
threshold is a complex problem that has to be thoroughly
addressed. The scheme proposed in this section is a simple
implementation that besides achieving good performance, can
be used to gauge the influence of using estimates instead of the
true statistics. Another alternative, considerably less expensive
computationally speaking and in which we are working at
present, consists of estimating the optimal threshold function
by its asymptotic limit, which is also computed in real time
based on the received data.

7 EXPERIMENTS AND RESULTS

In this section we test our novel selective message forwarding
schemes in two different scenarios. All simulations have been
conducted using Matlab.

7.1 Isolated node

Scenario A simulates an isolated energy-limited node. At
each time k, the node receives a message of importance xk

randomly generated according to a distribution p(x). This
distribution is known and independent of k (stationary case).
Next, a decision about transmitting the message is made.
Three importance distributions have been considered: uniform,
exponential, and Pareto. Distribution parameter a is set to 1.8
and 3.5 for exponential and Pareto distributions, respectively.
Samples belonging to the uniform distribution are generated
according to U(0, 10). Recall, xk = 0 represents a silent time.

Performance of four different types of sensors is compared.
• Type NS (Non-Selective): Non-selective node. The

threshold is set to μ = 0, so that it forwards all messages.
• Type OT (Optimal Transmitter): Optimal selective node.

Threshold μ is computed according to (17) and (20),
where nodes know the importance distribution p(x).

• Type CT (Constant Threshold): Asymptotically optimal
selective node. The sensor node establishes a constant

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 20, 2009 at 18:40 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING , VOL. XX, NO. XX, MONTH 200X 9

threshold which is set to the asymptotic value of the
optimal threshold given by (43).

• Type AT (Adaptive Transmitter): Adaptive selective
node. The threshold is also computed following (17) and
(20). Nevertheless, the node is unaware of p(x) and it
uses the estimation strategy exposed in Section 6 to know
it, so that μ is computed according to (57).

The sensor’s initial battery is set to E = 2000 units. Energy
expenses are also set to ET = 4, ER = 1 and EI = 0 units. A
simulation finishes when the node runs out of battery. Results
are averaged over 50 simulation runs.

Performance is assessed in terms of the importance sum of
all transmitted messages, the mean value of the transmitted
importances and the total number of transmitted messages.
Results are summarized in Tables 1, 2 and 3.

The first observation is that the non-selective node transmits
more messages than any type of the selective transmitters:
approximately a 17% more in the uniform distribution, 32%
in the exponential distribution and 47% in the Pareto distri-
bution. Bearing in mind that the NS sensor forwards all the
messages it receives, it is hardly surprising that the number
of transmitted messages is the same no matter the importance
distribution (as opposed to selective transmitters). Neverthe-
less, on the one hand, the importance sum of all transmitted
messages in a NS sensor is the lowest in comparison with the
selective transmitters. On the other hand, the mean value of the
transmitted messages is lower for the NS transmitter: nearly
7.5 for the selective transmitters with a uniform importance
distribution against 5 in the NS node; nearly 4 as opposed
to 1.8 in an exponential importance distribution and 2.25
against 0.7 in a Pareto importance distribution. The mean
value of the exponential and Pareto importance distributions
are conditioned by the parameter selection, since it influences
on the threshold, as it was shown in Section 5.3. Therefore,
the simulated results confirm the less efficient behavior of the
NS transmitter.

TABLE 1: Averaged performance when the importance values are
generated according to a uniform distribution - Scenario A

Avg. Total Imp. Tx Importance Total Transmitted

± std. deviation mean value messages

Type NS 1988.22 ± 53.17 4.97 400
Type OT 2486.03 ± 35.98 7.48 332.50
Type CT 2485.22 ± 35.84 7.48 332.22
Type AT 2480.40 ± 37.87 7.59 326.82

TABLE 2: Averaged performance when the importance values are
generated according to an exponential distribution- Scenario A

Avg. Total Imp. Tx Importance Total Transmitted

± std. deviation mean value messages

Type NS 719.47 ± 34.25 1.80 400
Type OT 1087.15 ± 43.70 3.98 273.46
Type CT 1086.85 ± 43.91 3.98 272.92
Type AT 1084.39 ± 42.21 3.94 275.34

Focusing on the selective transmitters, we observe that

OT/CT nodes outperform the AT node. Clearly, estimation
errors penalize the performance of the AT node compared to
the optimum. In spite of it, its performance is close to the one
achieved by the OT sensor. Furthermore, it always yields a
better result than the NS transmitter. Regarding to the CT
node, results are similar to those of the OT node (differences
only appear when the node is close to use up its batteries).
Performance clearly depends on the importance values of those
messages arrived at the node when the battery level is scarce.

TABLE 3: Averaged performance when the importance values are
generated according to a Pareto distribution - Scenario A

Avg. Total Imp. Tx Importance Total Transmitted

± std. deviation mean value messages

Type NS 262.94 ± 24.20 0.66 400
Type OT 473.47 ± 38.35 2.23 212.20
Type CT 473.40 ± 38.23 2.23 211.82
Type AT 469.06 ± 40.79 2.05 230.30

With the aim of obtaining a better comparison between these
two selective sensors (OT and CT), their behavior under low
battery resources is studied. In this case, the battery level is
limited to 13 units, so that the maximum number of possible
transmissions is two. Fig. 8 illustrates that, when batteries are
scarce and the importance of the messages arriving at the
sensor is low, the OT sensor slightly outperforms the CT
sensor. This is because for small energy values, the optimum
transmitter is more sensitive to energy changes.
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Fig. 8: Comparison between the optimal selective forwarder and the
asymptotically optimal selective forwarder with low battery level.

Threshold variations as a function of the remaining energy
e under the influence of different frequencies of idle time (P I )
are depicted in Fig. 9 for an AT sensor.

Reception and idle energy expenses are fixed to the same
amount (ER = EI = 1 units) and the node is initially provided
with E = 2000 units. The message importance follows a
uniform distribution U(0, 10). As it can be observed, the
more frequent the idle times increases, the lower the decision
threshold is. The node is less selective when the opportunities
to send true messages decreases, corroborating the theoretical
results presented in this paper. Moreover, for high values of
e we observe strong oscillations in μ. This oscillation occurs
because during the first time instants the AT node does not
have enough samples to properly estimate the importance
distribution. As the number of received messages increases,
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Fig. 9: Threshold evolution regarding to the remaining battery level e
in an isolated AT sensor node for a uniform importance distribution
U(0, 10). Different frequencies of being in idle state have been
considered in a single run.

nearly constant thresholds are obtained and changes only
appear when the node’s battery is close to use up. The duration
of the transitory phase will depend on the specific application.
For instance, monitoring activities will not entail a long
transitory phase. The reason is that during most of the time
sensors are reporting a high number of consistent measurement
values (the network is typically dense and the environment
usually remains unchanged). On the other hand, in applications
where nodes are not always collaborative, more time is needed
to reach the long-term behavior of the network. A transitory
phase might also appear if the importance distribution varies
too drastically, since nodes would need some time to learn the
new distribution (smooth changes should be easily tracked by
the learning algorithm). Regardless of its duration, the impact
of the transitory phase on the overall network performance is
not necessarily critical, since high importance messages will
be always transmitted.
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Fig. 10: Gain of the selective forwarding policy under a uniform
importance distribution U(0, 10) for different values of PI .

Fig. 10 shows the gain of the selective transmitters regard-
ing to the non-selective forwarder for a uniform importance
distribution and for different frequencies of idle time. As
mentioned in Section 5.5, the gain of the selective forwarding
scheme decreases as PI increases. Intuitively, it is easy to
see that as PI approaches one (i.e., the node is in idle mode
most of the time), the selective transmitter converges to the
NS transmitter. The same behavior is appreciated in the
exponential and the Pareto importance distributions. In these

cases, the gain is even higher than in the uniform case, which
corroborates the theoretical study.
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Fig. 11: Gain of the selective forwarding policy under a uniform
importance distribution U(0, 10) for different values of ER and PI =
0.5.

Finally, we have also investigated the behavior of the
performance of the various forwarding strategies when a wide
variety of energy models is considered. The study will help
us to explore how our findings are influenced by the relative
values of the energy consumptions. First of all, the gain
of the aforementioned forwarding strategies for variable ER

values is analyzed. Besides considering a uniform importance
distribution, the transmission expense is set to ET = 4, the idle
expense to EI = 1 and PI = 0.5. Fig. 11 shows a decreasing
behavior in the gain for all type of selective transmitters when
the ER value approaches to ET . This behavior is expected
since ρ in (42) is a decreasing function of ER. On the other
hand, the NS transmitter is not affected by the ER value since
it will transmit the incoming messages in any case.

Fig. 12 focuses on the OT transmitter in order to examine
the behavior of the gain under the influence of the frequency
of idle times and for different values of ER. As it can be
expected, as the frequency of idle times and the reception en-
ergy expenses increases, the gain of the selective transmission
scheme reduces, according to (42).
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Fig. 12: Gain of the OT transmitter under a uniform importance
distribution U(0, 10) for different values of ER and PI .

7.2 Sensor network

The assumption of an isolated node is quite simple, so in
scenario B, a sensor network is simulated. The sensor network
is considered as a square area of 10 x 10, where 100 nodes
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have been uniformly random deployed. All nodes are identical
and have the same initial resources (initial energy E = 200
units) except for the sink, which is powerful in terms of energy
resources. This static unique sink is always positioned at the
right extreme of the field. ET , ER and EI are set as in
Section 7.1 when PI = 0. Sources are selected at random and
keep transmitting messages of importances x to the sink until
network lifetime expires. Network lifetime is defined as the
number of time slots achieved before the sink is isolated from
its neighboring nodes. In order to simulate a more realistic set
up, xk ∈ [0, 10] for the three distribution types (a uniform,
exponential and Pareto importance distributions) by adjusting
their own parameters, with xk = 0 representing a silent time.
Regarding to the forwarding schemes implemented, the same
types of sensors that those from Section 7.1 are considered.

Nodes are considered as neighbors if they are placed within
the transmission radius, which for simplicity reasons and due
to power limitations is assumed to be the same for all nodes
(i.e., a Unit Disk Graph model is assumed). Since nodes can
only transmit messages inside their coverage area, they have
geographical information about their own position, the location
of their neighbors and the sink coordinates. Periodical “keep
alive” beacons are sent to keep nodes updated. Link losses
have also been included and so, the algorithm is made more
robust by establishing a maximum number of retransmissions
before discarding the message, which has been set to 5 in our
simulations. It is naturally assumed that coverage areas are
reciprocal, which is common when having a single omnidi-
rectional antenna. Under this assumption nodes can listen to
the channel and detect retransmissions of neighboring nodes
before retransmitting the message again or discard it.

The routing algorithm implemented by the network follows
a greedy forwarding scheme [25]. Although the disadvantages
of the greedy forwarding algorithm are well-known (e.g. when
the number of nodes close to the sink is small or there is a
void), we choose this algorithm due to its simplicity, which
will contribute to minimize its influence on the final results.
This way, we can gauge better the effect of implementing our
optimal selective schemes in a network, which indeed is the
main objective of the simulations. It is worthy re-stressing
that we are not proposing a new routing algorithm but a
forwarding scheme with a selective mechanism and therefore,
this scheme can also be integrated into other more efficient
routing algorithms.

Performance is assessed in terms of the importance sum of
all messages received by the sink, the mean value of these
received importances, the number of transmissions made by
origin nodes and the network lifetime (measured in time slots).

Experimental results are averaged over 50 different topolo-
gies which contain different samples of the three previous
importance distributions.

Simulation results for scenario B are summarized in Tables
4, 5 and 6. The numerical results confirm the conclusions
extracted in scenario A and validate our theoretical claims.
Basically, it is shown that the selective forwarding model
outperforms the non-selective scheme.

Regardless of the distribution tested, both the mean value of
the importance of messages received by the sink and the net-

TABLE 4: Averaged performance when the importance values are
generated according to a uniform distribution - Scenario B

Total Import. Importance Number of Network

Received Sink mean value Transmissions Lifetime

Type NS 1021.92 5.06 688.56 7896.00
Type OT 1388.40 7.49 677.38 8467.90
Type CT 1384.26 7.49 656.92 8441.08
Type AT 1377.22 7.80 720.78 8812.74

TABLE 5: Averaged performance when the importance values are
generated according to an exponential distribution - Scenario B

Total Import. Importance Number of Network

Received Sink mean value Transmissions Lifetime

Type NS 331.72 1.76 672.84 7798.02
Type OT 610.96 3.84 613.30 8758.00
Type CT 609.45 3.86 596.82 8713.88
Type AT 594.92 4.18 685.98 9309.56

work lifetime are higher when our selective forwarding scheme
is implemented. As predicted in Section 3.3, differences are
more noticeable when importance values are samples of a
Pareto distribution.

Among the selective policies, OT nodes exhibit the best
performance. Nevertheless, differences among OT , CT and
AT are smaller than in scenario A. The underlying reason is
that decisions made at neighboring nodes and path losses may
alter the shape of the original importance distribution. Since
AT nodes estimate the importance distribution p(x) based
on real received data, they are able to correct this alteration.
This is not the case of OT and CT nodes, which calculate μ
based on the original distribution, without accounting for the
alterations introduced by the network. On the other hand, the
transitory phase of AT nodes makes them be more selective
at the beginning, so that high importance messages are mainly
transmitted in the first time instants originating an increase in
the average of the importance value of the received messages.
Besides, considering the fact that each node applies its own
selective transmission policy together with channel losses, the
network lifetime is increased given that nodes closer to the
sink delay the exhaustion of their batteries and so, origin nodes
are able to send more messages. The drawback, however, is a
decrease in the total importance received at the sink.

TABLE 6: Averaged performance when the importance values are
generated according to a Pareto distribution - Scenario B

Total Import. Importance Number of Network

Received Sink mean value Transmissions Lifetime

Type NS 230.09 1.17 684.56 7875.76
Type OT 630.76 5.67 466.50 11491.56
Type CT 628.11 5.75 442.52 11420.48
Type AT 510.60 3.86 666.36 9718.26
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8 CONCLUSIONS AND FUTURE WORK

This paper has introduced an optimum selective forwarding
policy in wireless sensor networks as an energy-efficient
scheme for data transmission. Messages, which were assumed
to be graded with an importance value and which could be
eventually discarded, were transmitted by sensor nodes ac-
cording to a forwarding policy, which considered consumption
patterns, available energy resources in nodes, the importance
of the current message and the statistical description of such
importances.

The optimal selective transmitter was derived, leading to
an expression for the optimal decision which turned out to
compare the received importance and the forwarding threshold,
whose optimum value varies with time. Under certain simpli-
fying operating conditions, a constant forwarding threshold
which did not change along time and entailed asymptotic
optimality, was also developed and closed-form expressions
were obtained. Moreover, the gain of the selective forwarding
policy compared to a non-selective one was quantified and it
was proved to have a strong dependence on energy expenses
(transmission, reception and idle), the frequency of idle times
and the statistical distribution of importances. Finally, for cases
were the importance distribution of messages was unknown
(or it varied with time), a blind algorithm that caught this
distribution on-the-fly based on the the received messages was
proposed.

This study has also motivated the application of the se-
lective forwarding model to two different evaluation cases, an
isolated node and a sensor network. In both cases performance
was assessed for different importance distributions. Numerical
results validated our analytical claims and corroborated that
the novel selective forwarding scheme clearly outperforms
the non-selective one, even when idle times are considered.
Results also evidenced that the simplified developed designs
obtained a performance close to the optimal forwarder.

Several activities are under way within our research group
in order to enhance the above contributions. First of all, a
selective transmission policy aimed at improving the global
performance in terms of quantity and quality of messages
successfully arrived to the sink should be designed. Therefore,
future work also includes the study of selective transmission
in a sensor network, based on not only energy requirements,
but also taking into account neighboring information. A pre-
liminary work can be found in [19]. Also, to show the utility
of the new optimization approach, our selective model will be
applied to a target tracking scenario, whose first preliminary
results can be found in [20]. Secondly, we are working on
getting a solution for some model limitations, such as the
computational load of the threshold computation.

APPENDIX A
PROOF OF THEOREM 1
Defining the cumulative importance at time k as

sk =
k∑

i=0

dixi, (62)

the dynamics of cumulative importances and energy can be
described by the pair of equations

sk = sk−1 + dkxk (63)

ek+1 = ek − dkE1(xk)− (1− dk)E0(xk), (64)

and dk = g(ek, xk) with the constraint in (6).
Note that the accumulated importance can be expressed as

s∞ =
∞∑

i=0

dixi = sk−1 +
∞∑

i=k

dixi. (65)

Since, for any k, E{s∞} =
∫

E{s∞|ek, xk}dP (ek, xk),
maximizing E{s∞} is equivalent to maximize, for each k,
E{s∞|ek, xk},3 which can be expressed as

E{s∞|ek, xk} = E{sk−1|ek, xk}+dkxk+
∞∑

i=k+1

E{dixi|ek, xk}.
(66)

Since dk is a deterministic function of ek and xk , we can
write for any i > k,

E{dixi|ek, xk}
=(1− dk)E {dixi|ek+1 = ek − E0(xk), ek, xk}

+ dkE {dixi|ek+1 = ek − E1(xk), ek, xk} , (67)

thus, replacing (67) into (66)

E{s∞|ek, xk} = E{sk−1|ek, xk} (68)

+ dk

(
xk +

∞∑
i=k+1

E{dixi|ek+1 = ek − E1(xk), ek, xk}
)

+ (1 − dk)
∞∑

i=k+1

E{dixi|ek+1 = ek − E0(xk), ek, xk}.

Since (i) for i > k both di and xi are independent of xk (the
importance sequence, xk , is statistically independent) and (ii)
ek+1 is fixed; we can remove xk and ek in the conditional
expectations. Thus, we can use the definition of λk+1 in (12),
to rewrite (68) as

E{s∞|ek, xk} = E{sk−1|ek, xk}+ λk+1(ek − E0(xk)) (69)

+ (xk − [λk+1(ek − E0(xk))− λk+1(ek − E1(xk))]) dk.

Since the two first terms are fixed and do not depend on dk,
focus has to be placed on the third term. Defining μk(ek, xk)
as in (9), the third term in (69) can be written as

(xk − μk(ek, xk)) dk. (70)

Clearly, the decision rule given by dk = 1 as soon as xk ≥
μk(ek, xk) (so as to maximize (70)) and ek ≥ E1(xk) (so
as to satisfy the constraint in (6)) and dk = 0 otherwise, is
optimal in the sense of maximizing E{s∞|ek, xk}.

3. An intuitive explanation for the equivalence between maximizing
E{s∞} and E{s∞|ek, xk}is the following: no matter what a selective
transmission scheme has done up to time k − 1, the best that can be done at
time k is maximizing E{s∞|ek, xk}. If this rule is applied at every time k,
the unconditional expectation, E{s∞}, is maximized.
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The recursive computation of λk(e) in (10) is the only result
that remains to be proved. To do so we note that, for any i > k,

E{dixi|ek} = Pr{dk = 0|ek}E{dixi|ek, dk = 0}
+ Pr{dk = 1|ek}E{dixi|ek, dk = 1}

=(1 − Pr{xk ≥ μk(ek, xk), ek ≥ E1(xk)|ek})
· E{E{dixi|ek+1 = ek − E0(xk), ek, dk = 0}}
+ Pr{xk ≥ μk(ek, xk), ek ≥ E1(xk)|ek}·
· E{E{dixi|ek+1 = ek − E1(xk), ek, dk = 1}}, (71)

(where the external expectation must be taken over
xk|ek, dk = 0). Using the definition of λk(e) in (12) and
capitalizing on (71), we find

λk(e) =
∞∑

i=k

E{dixi|ek = e} = E{dkxk|ek = e}

+
∞∑

i=k+1

E{E{dixi|ek = e, xk}} (72)

where the outer expectation applies over xk. Taking into
account that dk only depends on ek and xk , the conditions
in the inner expectation operators determine uniquely d k and,
thus, we can write

λk(e) = E{dkxk|ek = e}

+
∞∑

i=k+1

E

{
(1 − dk)E{dixi|ek+1 = e− E0(xk), xk}

+ dkE{dixi|ek+1 = e− E1(xk), xk}
}

=E{dkxk|ek = e}+ E{(1− dk)λk+1(e− E0(xk))}
+ E{dkλk+1(e− E1(xk))}

=E{dkxk|ek = e} − E{dkμk+1(e, xk)}
+ E{λk+1(e− E0(xk))}

=E{dk(xk − μk(ek, xk))|ek = e}
+ E{λk+1(e− E0(xk))}

=E{λk+1(e− E0(xk))}
+ E{(xk − μk(e, xk))+u(e− E1(xk))}. (73)

The initial value can be computed using (6): if there is no
available energy, transmissions are not possible: mathemati-
cally, if ek = 0, di = 0 for i > k, so that (12) becomes

λk(0) = 0, for any k. (74)

Combining (73) and (74) we get (10), completing the proof.

APPENDIX B
PROOF OF THEOREM 2
Let’s define the minimum energy consumed per time as
ε = mini,x{Ei(x)}. We prove the theorem by induction, by
showing that λk(e) does not depend on k for e ≤ nε, for
any n. This is true for n = 0, because λk(0) = 0. Now, let
us assume that λk(e) does not depend on k for e ≤ nε. If
nε < e ≤ (n + 1)ε, by (9) we find that μk(e, x) does not
depend on k. Thus, using (10), and taking into account that
expectations are taken over xk , whose distribution does not

depend on k, we find that λk(e) does not depend on k, which
completes the proof.

APPENDIX C
PROOF OF THEOREM 3

Defining

z(e) = λ(e)− rμce · u(e) (75)

where rμc is given by (36), we have, for large e (i.e., e > B)

z(e) =E{u(x− μc)x} − rμce

+ Pr{x < μc}E{λ(e− E0(x))|x < μc}
+ Pr{x ≥ μc}E{λ(e− E1(x))|x ≥ μc}

=E{u(x− μc)x} − rμce

+ Pr{x < μc}E{z(e− E0(x))|x < μc}
+ Pr{x < μc}rμcE{e− E0(x)|x < μc}
+ Pr{x ≥ μc}E{z(e− E1(x))|x ≥ μc}
+ Pr{x ≥ μc}rμcE{e− E1(x)|x ≥ μc}

=E{u(x− μc)x}
+ Pr{x < μc}E{z(e− E0(x))|x < μc}
+ Pr{x < μc}rμcE{E0(x)|x < μc}
+ Pr{x ≥ μc}E{z(e− E1(x))|x ≥ μc}
+ Pr{x ≥ μc}rμcE{E1(x)|x ≥ μc}

= Pr{x < μc}E{z(e− E0(x))|x < μc}
+ Pr{x ≥ μc}E{z(e− E1(x))|x ≥ μc}. (76)

Defining the random variable

ε = E0(x)Ix<μc + E1(x)Ix≥μc (77)

we have

z(e) =E{z(e− ε)}
=P{ε = 0}z(e) + P{ε > 0}E{z(e− ε)|ε > 0}. (78)

Thus,

z(e) = E{z(e− ε)|ε > 0}. (79)

Since z(e) is a weighted average of previous values, there
should exist some values εl > 0 and εu > 0 such that

z(e− εl) < z(e) < z(e− εu). (80)

Applying this inequalities iteratively, we can prove by
induction that

z(el) ≤ z(e) ≤ z(eu), for some el, eu ≤ B (81)

But, since λ is finite for finite e, λ is bounded in [0, B] so z
is also bounded in [0, B]. Thus, using (81) we conclude that
z(e) is bounded in R. Therefore, we can compute the income
rate as

lim
e→∞

λ(e)
e

= lim
e→∞

z(e) + rμce

e
= rμc (82)
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APPENDIX D
PROOF OF THEOREM 4

Let’s assume that the threshold function does not depend on
the energy level, so that μ(e, x) = μ(x). Then, using (14), we
can write

λ(e) = λ(e−Δ(x)) + μ(x) (83)

where

Δ(x) = E1(x)− E0(x). (84)

Defining

gx(e) = λ(e)− μ(x)
Δ(x)

e (85)

Eq. (83) implies that gx(e) is a periodic function with period
Δ(x). But this is impossible if μ(x)

Δ(x) varies with x (because
the difference between two periodic functions cannot be a (non
constant) linear function. Thus,

μ(x)/Δ(x) = r (86)

for some constant r, and

gx(e) = g(e) = λ(e)− re. (87)

Combining (15), (83) and (87) we can write

g(e) +
μ(x)
Δ(x)

e =E {g(e− E0(x)) + r(e− E0(x))}
+ E{(x− μ(x))+}. (88)

Thus

g(e)− E{g(e− E0(x))} =− E {rE0(x)} + E{(x− μ(x))+}
(89)

Integrating the above equation with respect to e over a full
period and, noting that

∫
Δ(x) g(e)de =

∫
Δ(x) g(e− E0(x))de

we get

rE {E0(x)} = E{(x−Δ(x)r)+}, (90)

which is equivalent to (39). To show that the solution of (90)
is unique, note that the left-hand side is a strictly growing
function of r while the right-hand side is a non-increasing
function, because

dE{(x −Δ(x)r)+}
dr

= −E{Δ(x)u(x −Δ(x)r)}, (91)

which is always non positive. Since a strictly increasing
function intersects with a non-increasing function in at most
one single point, the solution is unique.
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