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Abstract—Optimal sensor and actuator selection is a central
challenge in high-dimensional estimation and control. Nearly all
subsequent control decisions are affected by these sensor and
actuator locations. In this work, we exploit balanced model
reduction and greedy optimization to efficiently determine sensor
and actuator selections that optimize observability and con-
trollability. In particular, we determine locations that optimize
scalar measures of observability and controllability via greedy
matrix QR pivoting on the dominant modes of the direct
and adjoint balancing transformations. Pivoting runtime scales
linearly with the state dimension, making this method tractable
for high-dimensional systems. The results are demonstrated on
the linearized Ginzburg-Landau system, for which our algorithm
approximates known optimal placements computed using costly
gradient descent methods.

Index Terms—optimal control, balanced truncation, sensor
selection, actuator selection, observability, controllability.

I. INTRODUCTION

Optimizing the selection of sensors and actuators is one

of the foremost challenges in feedback control [1]. For high-

dimensional systems it is impractical to monitor or actuate ev-

ery state, hence a few sensors and actuators must be carefully

positioned for effective estimation and control. Determining

optimal selections with respect to a desired objective is an

NP-hard selection problem, and in general can only be solved

by enumerating all possible configurations. This combinatorial

growth in complexity is intractable; therefore, the placement

of sensors and actuators are typically chosen according to

heuristics and intuition. In this paper, we propose a greedy

algorithm for sensor and actuator selection based on jointly

maximizing observability and controllability in linear time-

invariant systems. Our approach (see Fig. 1) exploits low-rank

transformations that balance the observability and controlla-

bility gramians to bypass the combinatorial search, enabling

favorable scaling for high-dimensional systems.

To understand the challenges of sensor and actuator place-

ment for estimation and control, we will first consider optimal

sensor placement, which has mostly been used to reconstruct

static signals. The primary challenge of sensor selection is that

given n possible locations and a budget of r sensors, there

are combinatorially many,
(

n
r

)

, configurations to evaluate in a

brute-force search. Fortunately, there are heuristics that employ

greedy selection of sensors based on maximizing mutual

information [2] and information theoretic criteria [3]. Another

popular approach relaxes sensor selection to a weighted convex

combination of possible sensors [4], [5], [6], typically solved

using semidefinite programming. Both heuristic approaches

optimize submodular objective functions [7], which bound

the distance between heuristic and optimal placement. Some

objectives, such as those based on the quality of a Kalman

filter, are not submodular [8]. Alternatively, sparsity-promoting

optimization can be used to determine sensors and actua-
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Fig. 1: Schematic of balanced sensor and actuator selection

for the optimal control of a high-dimensional system.

tors [9], [10], [11], although non-differentiability of sparsity

promoting terms motivates other optimization techniques [12].

Even such heuristics cannot accommodate the large dimen-

sion of many physical models, such as in fluid dynamics.

Fortunately, high-dimensional systems often evolve according

to relatively few intrinsic degrees of freedom. Thus, it is possi-

ble to leverage dimensionality reduction to strategically select

sensors. Such sensor placement approaches [13], [14] build

upon discrete empirical interpolation methods (DEIM) [15],

which select the optimal measurement locations to interpolate

low-rank proper orthogonal decomposition (POD) modes.

For systems with actuation, it is necessary to simultaneously

consider the placement of sensors and actuators, since the

most observable and most controllable subspaces are often

different. Sensors and actuators for optimal feedback control

are often placed along the most observable and controllable

directions, respectively [16], [17], [18], [19], [7], using ob-

jective functions based on the associated observability or

controllability gramians. Standard metrics for evaluating a

certain sensor/actuator configuration include the H2 norm [20],

[16], a measure of the average impulse response, and the

H∞ norm to measure the worst case performance. A chief

drawback is the need to recompute the controller with each

new configuration of sensors and actuators given by either

the gradient minimization computation or brute-force searches.

Moreover, these methods do not exploit the state-of-the-art in

model reduction to optimize sensor and actuator placement.

Contribution. This work develops a scalable sensor and actu-

ator selection algorithm based on balanced truncation [21], in

which modes are hierarchically ordered by their observability

and controllability. We use empirical interpolation of the low-

rank balanced representation to find maximally observable and

controllable states. The resulting locations correspond to near-
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optimal point sensor and actuator configurations. The quality

of our optimized configurations are evaluated using the H2

norm of the resulting system, which is an average measure

of its output energy. Given a specific H2 cost function and

controller weight matrices, the closed loop H2 norm, which

measures input-output energy, is a more appropriate measure

of control performance than open loop metrics. Our approach,

when used to optimize the open loop H2 norm, is neutral

to specific choices of controller weight matrices, and instead

maximizes the input–output energy of the reduced order

model. We also show that it is possible to apply our framework

to closed loop systems, demonstrating near optimal sensor

and actuator selection in comparison with more expensive

iterative closed loop H2 optimization. The runtime scales

linearly with the number of state variables, after a one-time

offline computation of the balancing transformation, which is

less expensive than iterative alternatives. The resulting sensor

and actuator configurations reproduce known optimal locations

at a fraction of the cost associated with gradient descent.

II. PROBLEM SETUP

Consider the following linear time-invariant system with a

given state-space realization

ẋ = Ax+Bu x ∈ R
n,u ∈ R

q (1a)

y = Cx, y ∈ R
p, (1b)

with large state dimension, i.e., n ≫ 1. It is assumed that

the system is stable, and B and C are linear actuation and

measurement operators under which the system is observable

and controllable. Our objective is to choose a minimal subset

of these sensors and actuators to obtain a system that is most

jointly controllable and observable. For example, the case B =
C = I corresponds to pointwise sensing and actuation of each

state. We consider the more general subset selection problem

for arbitrary actuation and measurement operators B and C.

This subset selection corresponds to multiplying inputs and

outputs by the selection matrices

SC =
[

eγ1
eγ2

. . . eγr

]T
(2a)

SB =
[

eβ1
eβ2

. . . eβr

]

. (2b)

Here ej are the canonical basis vectors for R
p or R

q with a

unit entry at the selected index j and zeros elsewhere, where

γ = {γ1, . . . , γr} ⊂ {1, . . . , p} denotes the index set of sensor

locations with r members. Similarly, actuator selection indices

are given by β = {β1, . . . , βr}. The new measurement and

actuation operators are Ĉ = SCC and B̂ = BSB respectively.

The new outputs, ŷ = Ĉx, consist of r measurements of x.

Problem statement: What are the best r-subsets of a given

set of p sensors and q actuators, where r ≪ n?

To answer this question, we first quantify the degree of

observability and controllability for a given set of sensors and

actuators, i.e. for a given choice of C and B. Optimizing

over these directly involves a combinatorial search, and thus a

heuristic approach is necessary for high-dimensional systems.

A. Observability and controllability

The degrees of observability and controllability for the state-

space system (1) are quantified by the observability gramian

Wo and controllability gramian Wc

Wo =

∫

∞

0

eA
∗tC∗CeAtdt, Wc =

∫

∞

0

eAtBB∗eA
∗tdt,

(3)

which may be visualized as controllable and observable ellip-

soids (Fig. 2). These depend on the actuation and measurement

operators, which consist of all states reachable from a bounded

initial state

Ec = {W1/2
c x | ‖x‖2 ≤ 1}, (4)

and all states that may be observed

Eo = {W1/2
o x | ‖x‖2 ≤ 1}. (5)

Because the gramians depend on B and C, they are often used

to evaluate the observability/controllability of a given sensor

and actuator placement. One important evaluation metric is

the H2 norm of a system. It measures the average output gain

over all frequencies of the input, or the output energy. For the

state-space system (1) with transfer function G(s) = C(sI −
A)−1B, it is given by

‖G‖22 =
1

4π2

∫

∞

0

tr(G(jω)∗G(jω))dω. (6)

By the Plancherel theorem, it is also defined in the time

domain by the impulse response yij(t) = Cie
AtBj - the

output in component i given an impulse in input j,

‖G‖22 =

∫

∞

0

tr(CeAtBB∗eA
∗tC∗)dt = tr(CWcC

∗) (7a)

=

∫

∞

0

tr(B∗eA
∗tC∗CeAtB)dt = tr(B∗WoB) (7b)

which explicitly relate each gramian to both B and C.

An alternative to the average output energy metrics are the

volumetric measures given by the log determinants

logdetCWcC
∗, logdetB∗WoB, (8)

which are the logarithms of the geometric mean of the axes of

the ellipsoid skewed by B or C; the trace, in comparison, is

the arithmetic mean. This metric is introduced by Summers et

al [7] to place actuators using a greedy optimization scheme

for the submodular objective function

B⋆ = argmax
B

logdetCWcC
∗. (9)

For H2 optimal control it is desirable to minimize the average

gain through the transfer function Ĝ that maps disturbances

ŵ to outputs ẑ(s) = Ĝ(s)ŵ(s), i.e., minimizing ‖Ĝ‖2.

Several strategies seek to build the controller and choose ac-

tuators simultaneously, using expensive gradient optimization

schemes. The drawback of such closed loop metrics is having

to recompute the gramians - an O(n3) operation - for every

iteration that selects the next best actuator. This cubic scaling

may be intractable for high-dimensional systems with large n.

There are cases where optimizing sensors and actuators us-

ing the closed loop H2 norm is more relevant for control [20],
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[16]. By contrast, our approach reverses the strategy by

instead starting from a maximally actuated and sensed optimal

controller, then seeks a subset of these sensors/actuators to

preserve (maximize) the volumetric control measures

SC⋆ = argmax
SC

logdet SCCWcC
∗
S
∗

C , (10a)

SB⋆ = argmax
SB

logdet STBB
∗WoBSB . (10b)

Now, the gramians no longer depend on the optimization

variable and need only be computed once, and both objectives

are still fundamentally linked to the H2 norm of the system.

Critically, we will extract the dominant controllable and ob-

servable subspaces from a balanced coordinate transformation

of the gramians.

III. BALANCED MODEL REDUCTION

Many systems of interest are exceedingly high dimensional,

making them difficult to characterize and limiting controller

robustness due to significant computational time-delays. How-

ever, even if the ambient dimension is large, there may

still be a few dominant coherent structures that characterize

the system. Thus, significant effort has gone into obtaining

efficient reduced-order models that capture the most relevant

mechanisms for use in real-time feedback control [1].

The goal of balanced model reduction is to find a trans-

formation T from state-space (leaving inputs and outputs

unchanged),

[

A B

C 0

]

to

[

TAT−1 TB

CT−1 0

]

, such that the

transformed coordinates a = Tx are hierarchically ordered

by their joint observability and controllability. This permits

an r-dimensional representation made possible by truncating

the n− r least observable and controllable states.

The seminal work of Moore in 1981 [21] showed it is

possible to compute this change of coordinates Ψ under which

the controllability and observability gramians are equal and

diagonal, and it is given by the balanced system

ȧ = Φ∗AΨa+Φ∗Bu a ∈ R
n,u ∈ R

q

y = CΨa. y ∈ R
p (11)

The desired transformation and its inverse are given by the

direct modes Ψ and the adjoint modes Φ∗, respectively. The

balanced state a is then truncated, keeping only the first r ≪ n
most jointly controllable and observable states in ar, so that

x ≈ Ψrar. This results in the balanced truncation model [21]

Gr =

[

Φ∗

rAΨr Φ∗

rB

CΨr 0

]

. Since gramians depend on the

particular choice of coordinate system, they will transform

under a change of coordinates. The controllability and ob-

servability gramians for the balanced truncated system are

W̃c = Φ∗WcΦ, W̃o = Ψ∗WoΨ. (12)

The coordinate transformation Ψ that makes the controllability

and observability gramians equal and diagonal,

W̃c = W̃o = Σ, (13)

ˆ ˆ

Fig. 2: (top) Illustration of the balancing transformation for

gramians. The reachable set Ec with unit control input is shown

in blue. The corresponding observable set is shown in red.

Under the balancing transformation Ψ, the gramians are equal,

shown in purple. (bottom) Sensor and actuator selection based

on balancing transformation.

is given by the matrix of eigenvectors of the product of the

gramians WcWo in the original coordinates:

W̃cW̃o = Φ∗WcWoΨ = Σ2 =⇒ WcWoΨ = ΨΣ2. (14)

The H∞ norm between the truncated system and original

system is bounded by twice the sum of the neglected diagonal

entries of Σ or Hankel singular values, σk = Σkk,

‖G−Gr‖∞ ≤ 2
n
∑

k=r+1

σk. (15)

In practice, computing the gramians Wc and Wo and the

eigendecomposition of the product WcWo in (14) may be

prohibitively expensive for high-dimensional systems. Instead,

the balancing transformation may be approximated with data

from impulse responses of the direct and adjoint systems,

utilizing the singular value decomposition for efficient ex-

traction of the relevant subspaces. The method of empirical

gramians is quite efficient and is widely used [21], [22], [23],

[24]. Moore’s approach computes the entire n × n balancing

transformation, which is not suitable for exceedingly high-

dimensional systems. In 2002, Willcox and Peraire [23] gen-

eralized the method to high-dimensional systems, introducing

a variant based on the rank-r decompositions of Wc and Wo

obtained from snapshots of direct and adjoint simulations. It is

then possible to compute the eigendecomposition of WcWo

using efficient eigenvalue solvers. This approach requires as

many adjoint impulse-response simulations as the number of

output equations, which may be prohibitively large for full-

state measurements. In 2005, Rowley [24] addressed this issue

by introducing output projection, which limits the number of

adjoint simulations to the number of relevant POD modes in

the data. It is particularly advantageous to use these data-

driven methods or low-rank alternating direction methods [25]
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to approximate the gramians when there are fewer than full

measurements and actuation of the state.

IV. SENSOR & ACTUATOR OPTIMIZATION VIA QR PIVOTING

We now describe an efficient matrix pivoting algorithm

to optimize the log determinant over the choices of sensors

and actuators. The representation of the gramians in balanced

truncation coordinates plays a crucial role.

A. Matrix volume objective

Recall the goal of optimizing a set of r sensors and actuators

out of a fixed set p and q possible choices. The budget r
determines the balancing rank truncation, which necessarily

must be less than both p and q. Our sensor-actuator selection

can be regarding as interpolating this rank-r representation,

that is, choosing locations or interpolation points that are

heavily weighted in the dominant r balanced modes.

Summers et al [7] show that it suffices to only consider

controllable or observable subspaces for selecting sensors and

actuators using the log determinant objective. Thus, we can

substitute rank-r balanced approximation of the gramians, Ŵc

and Ŵo, into the log determinant objective and simplify

SC⋆ ≈ argmax
SC

logdet SCCΨrΣrΨ
∗

rC
T
S
T
C

= argmax
SC

((det SCCΨr)
2 · detΣr)

= argmax
SC

| det SCCΨr|. (16)

This result follows from the monotonicity of logarithms and

the product property of determinants, then omitting the term

that is independent of the sensors, detΣr. Likewise, in the

actuator case, the objective logdet B̂TŴoB̂ simplifies

SB⋆ ≈ argmax
SB

| detΦ∗BSB |. (17)

Consider for now the case of sensor placement. The abso-

lute determinant is a measure of matrix volume, and SC

is a row selection matrix. The transformed objectives may

be viewed as a submatrix volume maximization problem,

which seeks the optimal r-row selection of CΨr with the

largest possible determinant. Finding this optimum is an NP-

hard, intractable combinatorial search over all possible r-row

submatrices of CΨr. However, it can be optimized greedily

and efficiently via one-time matrix QR factorization requiring

O(pr2) and O(qr2) operations, as described next.

B. QR pivoting algorithm

The QR factorization with column pivoting is a greedy

submatrix volume optimization scheme that we will use to

construct C and B, given Ψr and Φr. The pivoted QR factors

any input matrix V ∈ R
r×p into a unitary matrix Q ∈ R

r×r,

upper-triangular matrix R ∈ R
r×p, and column permutation

matrix P ∈ R
p×p so that the permuted matrix VP is better

conditioned than V

VP = QR. (18)

However, we seek a well-conditioned row permutation of

CΨr. Consider the input V = (CΨr)
∗ to the QR factoriza-

tion, and the leading r×r square submatrices of the permuted

input on both sides of (18),

VP.,1:r = QR.,1:r. (19)

Each iteration of pivoting works by applying orthogonal pro-

jections to successive columns of V to introduce subdiagonal

zeros in R. For our purposes, P plays the crucial role: at

each step P stores the column “pivot” index of the column

selected at each iteration to guarantee the following diagonally

dominant structure in R

|Rii|2 ≥
k

∑

j=i

|Rjk|2; 1 ≤ i ≤ k ≤ p. (20)

Observe that the quantity of interest, the absolute determinant

of the row-selected submatrix det |VP.,1:r| corresponding to

the subset selection of measurements, now satisfies

| detVP.,1:r| = | detQ|| detR.,1:r| =
r
∏

k=1

|Rkk|. (21)

Because the determinant is the product of these diagonal

entries, it can be seen that diagonal dominance property of

pivoting implicitly optimizes the desired submatrix determi-

nant. Thus SC is constructed from the first r columns of P

SC , (P.,1:r)
T . (22)

Actuator selection proceeds in the same manner to construct a

submatrix of r columns of B∗Φr with maximal determinant,

using one additional QR factorization

(Φ∗

rB)P̃ = Q̃R̃. (23)

The solution SB is precisely the leading r columns of P̃,

SB , P̃.,j , and we denote the resulting measurement and

actuation operators by

Ĉ = SCC, B̂ = BSB . (24)

The QR pivoting routine is a standard tool in scientific

computing for matrix decomposition and linear least-squares

problems. We use a block accelerated implementation of clas-

sical Businger-Golub pivoting [26] in MATLAB. QR pivoting

scales as O(pr2) with number of candidates p and rank

truncation r, making it particularly favorable in the large p and

low rank setting. The computational complexity and efficient

implementations have been well studied in the literature [26],

[13]. Recently QR pivoting was used for reduced-order inter-

polation in DEIMs [13] to efficiently evaluate nonlinear terms

in the model. Here, the interpolation point selection operator

is analogous to our selection operator SC used with point

measurements (C = I). The algorithm can be analyzed in

terms of the error between the full state and the interpolant

approximation using the QR selected points,

ŷ = Ĉx ≈ ĈUrar, (25)
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where Ur are the POD modes of the reduced model, and

ar are modal coefficients. Recovering the state using the POD

interpolant is done using standard least-squares approximation

x̂ = Ur(ĈUr)
−1ŷ = Ur(ĈUr)

−1Ĉx. (26)

This can be expressed as a projection PC , Ur(ĈUr)
−1Ĉ of

the state x onto the observable subspace. The approximation

error using DEIM is given by

‖x−Ur(ĈUr)
−1Ĉx‖2. (27)

Using a similarly defined projection onto balanced modes

PC , Ψr(ĈΨr)
−1Ĉ, we now use the projection error as-

sociated with balanced modes (not POD) and Hankel singular

values of G to lower bound the desired submatrix determi-

nants.

V. ANALYSIS

The best approximation to the state in the span of the direct

modes is given by x⋆ , ΨrΦ
∗

rx in the ideal measurement

scenario y = x, i.e. C = I. The approximation error is

bounded by twice the sum of the neglected Hankel singular

values resulting from balanced truncation (15)

‖x− x⋆‖2 ≤ 2(σr+1 + · · ·+ σn), (28)

which holds for all inputs of unit energy [27]. The analysis

of empirical QR interpolation in the balanced modes begins

with an established result for measurements selected using QR,

which states that ‖(ĈΨr)
−1‖2 at most grows as

√
pO(2r).

Lemma 1 (Drmac & Gugercin [13]): For any full-rank

matrix M ∈ R
p×r, the spectral norm of (SM)−1, where S

is given by the QR pivoting algorithm (22), satisfies

‖(SM)−1‖2 ≤
√
p− r + 1

σmin(M)

√
4r + 6r − 1

3
. (29)

We generalize this result to the setting of arbitrary linear mea-

surements and actuation, by analyzing the residual between the

state and its interpolation in balanced coordinates. Note that

the residual between the state and its projection onto balanced

modes v = x− x⋆ satisfies

PCv = PCx−Ψr(ĈΨr)
−1ĈΨrΦ

∗

rx = PCx− x⋆.

The interpolation error from QR pivot selection satisfies

‖x− PCx‖2 = ‖(v + x⋆)− (PCv + x⋆)‖2 = ‖(I− PC)v‖2
≤ ‖PC‖2‖x− x⋆‖2
≤ ‖Ψr‖2‖(ĈΨr)

−1‖2‖C‖2‖x− x⋆‖2.

The inequality ‖Ĉ‖2 ≤ ‖SC‖2‖C‖2 = ‖C‖2 is due to C 6= I.

Substituting (28),(29) above yields the following result.

Theorem 2: The approximation error from interpolating QR-

selected observations (22) in balanced truncated modes is

controlled by the discarded Hankel singular values and the

norms of the given measurements and direct modes

‖x− PCx‖2 ≤ ‖C‖2‖Ψr‖2
σmin(CΨr)

√
pO(2r)

n
∑

k=r+1

σk. (30)

An analogous result is obtained for actuator selection by

considering the dual problem of estimating the adjoint state

from actuation matrix B̂ - which is now the measurement

operator of the adjoint system. The resulting projection op-

erator, PB , Φr(B̂
∗Φr)

−1B̂∗, now projects on the span of

the adjoint modes Φr. Making appropriate substitutions of PB

in the above results yields the following.

Corollary 1: The approximation error from interpolating

QR-selected observations (24) of the adjoint state z in bal-

anced truncated modes is controlled by the discarded Hankel

singular values and the norms of B and Φr

‖z− PBz‖2 ≤ ‖Φr‖2‖B‖2
σmin(Φ∗

rB)

√
qO(2r)

n
∑

k=r+1

σk. (31)

We now relate the approximation error bounds using QR pivot

sensors and actuators to the log determinant objectives.

Theorem 3: Given direct modes Ψr, QR pivot sensors Ĉ

guarantee the following lower bound for the log determinant

r log
9σ2

min(CΨr)

(p− r + 1)(4r + 6r − 1)
+

r
∑

k=1

log σk ≤ logdet ĈŴcĈ
T .

Proof: The absolute diagonal entries of a matrix’s R factor

are its nondecreasing singular values, so we can lower bound

the absolute determinant | det ĈΨr|

| det ĈΨr| =
r
∏

k=1

σ̂k =
r
∏

k=1

|Rkk| ≥ |Rrr|r, (32)

where σ̂k are the singular values of ĈΨr. We obtain, upon

squaring the inequality and multiplying by detΣr,

R2r
rr detΣr ≤ (det ĈΨr)

2 detΣr

= det ĈΨrΣrΨ
∗

rĈ
T = det ĈŴcĈ

T ,

and, taking logarithms of both sides,

r logR2
rr +

r
∑

k=1

log σk ≤ logdet ĈŴcĈ
T .

Because ‖(ĈΨr)
−1‖2 = 1/|Rrr|, the upper bound (29) in

Lemma 2 is the inverse lower bound for |Rrr|, which can

now be substituted above to obtain the final result.

An analogous lower bound can be obtained for the objective

using QR pivot actuators by appropriately substituting B̂, R̃
and adjoint modes Φr in the above proof.

Corollary 2: Given adjoint modes Φr, B̂ satisfies the

following lower bound for the log determinant

r log
9σ2

min(Φ
∗

rB)

(q − r + 1)(4r + 6r − 1)
+

r
∑

k=1

log σk ≤ logdet B̂TŴoB̂.

VI. RESULTS

We evaluate the selection algorithm in two settings. The first

compares QR pivot selections with all possible sensor subset

selections in a random state-space model of tractable size.
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tr ĈWcĈ
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Fig. 3: Histograms of the log determinant and H2 norm (trace)

objectives evaluated at all possible selections of 7 sensors out

of 25 show that QR pivot sensors (red) are near optimal.

Next we consider an application to closed-loop flow control

using LQG control to stabilize Ginzburg-Landau dynamics.

Given an LQG controller with full sensing and actuation, we

approximate H2 optimal placements computed using gradient

descent [16] with our QR scheme.

A. Discrete random state space

Our first example investigates sensor and actuator selection

for random state-space systems with randomized A,B,C.

First, we compare the results of QR sensor placement against

a brute-force search across all possible r = 7 sensor selections

for a system with n = 25 states and p = q = 25 randomized

measurements. The log determinant objective (10) is evaluated

for all possible choices of 7 sensors, since the system is

small enough to explicitly compute the full gramian for all
(

n
r

)

= 480, 700 choices of Ĉ. These results are binned in

Fig. 3, and compared with the value resulting from our method

(red line). The input to the QR scheme, the balancing modes,

are computed only once from the full system. The sensors

resulting from our method are observed to be near optimal

for the log determinant, exceeding 99.99% of all others, and

also good substitutes for H2 optimal sensors. On average, our

method surpasses 99.8% of possible outcomes with a standard

deviation of 0.85%, over a randomly generated ensemble of

500 model realizations. Therefore, QR sensors are closer to

optimal than the analysis suggests.

We now investigate performance on a larger random state-

space model with n = 100 states, and likewise initialize

the model with randomized actuation and sensing such that

p = q = 100. Figure 4 shows the log determinant objective

that is being optimized for various sensor and actuator config-

urations. The log determinant of the gramian volume is plotted

for the truncated model with QR-optimized sensor and actuator

configurations (red circles) and with random configurations

(blue violin plots). The truncation level r for the balanced

truncation is chosen to match the sensor and actuator budget

on the x-axis. The QR-optimized configurations dramatically

outperform random configurations. As more modes are re-

tained, the chosen sensors and actuators better characterize

the input–output dynamics, and their performance gap over

random placement increases over all random ensembles, giving

empirical validation of our approach.

Fig. 4: Sensor and actuator placement in a random state-

space system. The log determinant objective is plotted for QR-

optimized sensor-actuator selections (red) and an ensemble of

200 random sensor-actuator selections (blue violin plots). The

truncation level r (also the sensor/actuator budget) varies on

the horizontal axis.

Because the system is randomly generated and the dynamics

do not evolve according to broad, non-localized features

in state-space, many sensors and actuators are required to

characterize the system. In particular, this is reflected in the

slow decay of Hankel singular values. By contrast, the next

example is generated by a physical fluid flow model, and has

coherent structure that allow for a more physical interpretation

of sensor and actuator placements with enhanced sparsity.

B. Linearized Ginzburg-Landau with stochastic disturbances

Consider a closed-loop, fully sensed & actuated, linearized

Ginzburg-Landau model evolving velocity perturbations in

a flow. The system matrix A2 is a Hermite pseudospec-

tral discretization of the linearized Ginzburg-Landau operator

A = −ν ∂
∂ξ + µ(ξ) + β ∂

∂ξ2 over n = 100 spatial gridpoints

(ξ ∈ R
n in vector notation), and ν = 2 + .4i, β = 1 −

i, and µ(ξ) = .37− .005ξ2 are complex advection, diffusion

and wave amplification parameters. Sensors and actuators

are spatially localized Gaussians centered at each gridpoint.

For example, the kth actuator (kth column of B2) is given

by exp(−(ξ − ξka)
2/
√
2σ), with σ = 0.4. Plant dynamics

are perturbed by white noise signals wd ∼ N (0, I) and

wn ∼ N (0, 4e-8I)

ẋ = A2x+B2u+wd (33a)

y = C2x+wn, (33b)

which is unstable because the system matrix has eigenvalues

in the right half plane. We perform H2 control using a

linear quadratic Gaussian (LQG) controller that minimizes the

ensemble-averaged cost function J(t) = 〈
∫ t

0
[x(τ)T Q̂x(τ) +

u(τ)T R̂u(τ)]dτ〉, where the average is taken over the noise

realizations. The matrices Q̂ = β2diag(d) and R̂ = I, where

d are pairwise distances between the gridpoints, weight the

costs of state regulation and actuation respectively, specifying

the relative importance of the control objectives. We solve

Riccati equations in the standard way to optimize the LQG

gain matrices F,L, which depend on both Q̂, R̂ and the
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Fig. 5: Sensor (×) and actuator (◦) placement for linearized

Ginzburg-Landau. Each row corresponds to the optimized

placement for budgets of 1-5 sensors and actuators. Placements

based on QR pivoting of balanced truncated modes (a) closely

approximate the H2 norms of the placements determined using

gradient descent (c). The QR method can be modified to place

sensors and actuators to avoid collocation (b).

noise covariances, and obtain the controller that stabilizes the

plant (33)

[

˙̂x
u

]

=

[

A2 −B2F− LC2 L

−F 0

] [

x̂

y

]

. (34)

Our algorithm generalizes optimal sensor & actuator selection

for this closed loop formulation. To see why, observe that

F,L are fixed and hence the system is structured similarly

to (1), albeit with inputs and outputs swapped. Nevertheless

the dominant observable and controllable subspaces of the

controller may still be computed and exploited to optimize

sensor-actuator selections. Thus we compute gramians and

direct & adjoint modes of the controller by assigning the state-

space realization A , A2 − B2F − LC2,B , L,C , −F

as in (1), noting our results also hold for complex-valued

systems. In this scenario, which is not always practical, we

access a controller with full sensing and actuation, extract

subspaces relevant to control, and proceed with sensor &

actuator selection.

We compare our approach to the gradient descent scheme of

Chen and Rowley [16] who simultaneously optimize the LQG

controller and sensor-actuator placements. Their H2 norm op-

timization scheme permits placement of sensors and actuators

at locations that may not be grid points. The major drawback

is that each Newton iteration requires solving 2r n × n
Lyapunov equations until convergence, although recent work

reduces this to 2 equations per iteration [28]. Furthermore, the

procedure requires an ensemble of random initial conditions

ω = 10
−1

ω = 10
1

ω = 10
3(a)H2opt

-20

-10

0

10

20

(b) QR

-20

-10

0

10

20

Fig. 6: LQG gain (dB) for a system with 5 sensors and

actuators. Each block shows the gain from a signal exp(iωt)
in sensor k (column) to actuator j (row), ordered upstream to

downstream.

to avoid converging to a local minimum. In [16], the optimal

placement is computed using conjugate gradient optimization

for the same spatial discretization n = 100, which becomes

computationally expensive as the grid resolution increases. In

this case, gradient descent is more costly than balancing the

fully actuated and observed system, which comes at a one-

time cost of solving 2 Lyapunov equations for the gramians,

and 2 Riccati equations for the LQG gain matrices (O(n3)
each). Therefore, our algorithm is sensible when the grid

discretization is sufficiently fine. Furthermore, our solution

is a good starting point for the convergence of gradient

descent, thus eliminating the need for optimization over a large

ensemble of randomized starting points. QR pivoting runtime

scales as O(nr2) and the deviation of the resulting placement

from the H2 optimum (fig. 5) decreases with increasing r.

Figure 5 plots sensor and actuator configurations from the

QR algorithm and H2 gradient optimization, which are com-

pared with the H2 optimal placements in [16]. The resulting

placements for the cases r = 1 to r = 5 sensors and actuators

are plotted vertically, and the horizontal axis is the spatial

domain ξ ∈ [−12, 12] with a shaded wave amplification

region. For each value of r, we apply QR pivoting to the

rank r truncated balanced modes. QR pivoting collocates

sensors and actuators, indicating the direct and adjoint modes

(first 5 plotted as shaded regions in Fig. 1) are identical

up to a scaling factor. In practice, sensors are often slightly

downstream to account for time delays, so we enforce via the

pivoting procedure that sensors are not placed at previously

chosen actuators. The H2 norms of the resulting placement on

the y-axis indicate that the QR selections closely approximate

the optimal placements. The QR selection for five sensors and

actuators results in an H2 norm of 27.8, which agrees closely

with the optimal H2 norm of 27.4 [16, Fig. 4].

Figure 6 compares controller gain responses between QR

pivoting and the H2 optimum via the LQG gain of a given

signal from each sensor to each actuator. The LQG gains agree

closely with those produced by the H2 optimal method of

Chen and Rowley [16, Fig. 5]. Balanced truncation is applied

to the closed loop system since the open loop dynamics are

unstable, and it is shown in [16] that the dominant eigenmodes

of the dynamics lead to vastly suboptimal placements. It is also

possible to enforce non collocation of sensors and actuators as

in [16]; this sensor-actuator configuration has been extensively
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studied in convective flows [29].

VII. DISCUSSION AND OUTLOOK

We develop a scalable sensor and actuator selection method

with runtime that scales linearly with the number of candidate

locations, after a one-time computation of the balanced modes.

Our approach relies on balanced model reduction [21], [23],

[24], which hierarchically orders modes by their observability

and controllability. We extend EIMs to interpolate the low-

rank balancing modes of the system and determine maximally

observable and controllable locations (sensor & actuators) in

state space. The performance of this algorithm is demonstrated

on random state-space systems, and optimal H2 control of

the linearized Ginzburg-Landau model. Our optimized place-

ments vastly exceed the performance of random placements,

and closely approximate H2 optimal placements computed

by costly gradient minimization schemes, but achieved at a

fraction of the runtime.

Sensors and actuators are critical for feedback control of

large high-dimensional complex systems. This work advocates

sensor and actuator selection using QR pivots of the direct

and adjoint modes of a system’s balancing transformation. The

resulting placement is empirically shown to preserve the dy-

namics of the full system. The method has deep connections to

system observability, controllability, modal sampling methods

and classical experimental design criteria. Furthermore, QR

pivoting is more computationally efficient than leading greedy

and convex optimization methods, and thus critically enlarges

the search space of possible selections. This is particularly

valuable in spatiotemporal models where high-resolution grids

generate a large number of states, and balanced modes and QR

method exploit the spatial structures.

This work opens a variety of future directions in pivoting

sensor and actuator optimization. Rapid advances in data col-

lection yield extremely large search spaces. For prohibitively

large n or p, randomized linear algebra can significantly

accelerate both pivoting [30] and balancing computations. In

addition, it remains to study the case when only data but no

model of the dynamics are given, and optimize placements

based on data-driven system identification models. These mod-

els may be characterized by complex, nonlinear dynamics or

sensing and actuation constraints. These computational studies

and extensions are topics of future investigation.

REFERENCES

[1] G. E. Dullerud and F. Paganini, A course in robust control theory: A

convex approach. Springer Texts in Applied Mathematics, 2000.
[2] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements

in Gaussian processes: Theory, efficient algorithms and empirical stud-
ies,” J. Mach. Learn. Res., vol. 9, no. Feb, pp. 235–284, 2008.

[3] L. Paninski, “Asymptotic theory of information-theoretic experimental
design,” Neural Computation, vol. 17, no. 7, pp. 1480–1507, 2005.

[4] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE

Transactions on Signal Processing, vol. 57, no. 2, pp. 451–462, 2009.
[5] S. P. Chepuri and G. Leus, “Continuous sensor placement,” IEEE Signal

Processing Letters, vol. 22, no. 5, pp. 544–548, 2015.
[6] S. Liu, S. P. Chepuri, M. Fardad, E. Masazade, G. Leus, and P. K.

Varshney, “Sensor selection for estimation with correlated measurement
noise,” IEEE Trans. Sig. Proc., vol. 64, no. 13, pp. 3509–3522, 2016.

[7] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and
controllability in complex dynamical networks.” IEEE Trans. Control of

Network Systems, vol. 3, no. 1, pp. 91–101, 2016.
[8] H. Zhang, R. Ayoub, and S. Sundaram, “Sensor selection for Kalman

filtering of linear dynamical systems: Complexity, limitations and greedy
algorithms,” Automatica, vol. 78, pp. 202–210, 2017.

[9] F. Lin, M. Fardad, and M. R. Jovanovic, “Design of optimal sparse
feedback gains via the alternating direction method of multipliers,” IEEE

Trans. Autom. Control, vol. 58, no. 9, pp. 2426–2431, 2013.
[10] U. Munz, M. Pfister, and P. Wolfrum, “Sensor and actuator placement

for linear systems based on h2 and h∞ optimization,” IEEE Trans.

Autom. Control, vol. 59, no. 11, pp. 2984–2989, 2014.
[11] A. Zare, N. K. Dhingra, M. R. Jovanović, and T. T. Georgiou,
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