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Abstract— This paper presents the application of a new
methodology for Fault Detection and Isolation (FDI) to a Fuel
Cell System. The work is devoted to find an optimal set
of sensors for model-based FDI. The novelty is that binary
integer linear programming (BILP) is used in the optimization
formulation, leading to a reformulation of the detectability and
isolability specifications as linear inequality constraints. The
approach has been successfully applied to a Fuel Cell System.

I. INTRODUCTION
In model-based FDI (Fault Detection and Isolation), faults

are modeled as deviations of parameter values or unknown
signals, and diagnostic models are often brought back to a
residual form. The main approaches to construct residuals
are based on using Analytical Redundancy Relations (ARRs)
generated either using the parity space [1] or observer
approaches [2]. In [3] the sensor placement problem is solved
by the analysis of a set of possible ARRs using algorithms
of cycle generation in graphs. Some other results devoted
to sensor placement for diagnosis using graph tools can be
found in [4], [5], [6], [7], [8], [9] and [10]. All these works
use a structural model-based approach and define different
diagnosis specifications to solve the sensor placement prob-
lem.

A structural model is a coarse model description, based
on a bi-partite graph, that can be obtained early in the
development process, without major engineering efforts. This
kind of models is suitable to handle large scale systems
since efficient graph-based tools can be used and does not
have numerical problems. However, only best case results
are obtained. More information about structural modeling
applied to fault diagnosis can be found in [11].

In [12], an optimal sensor placement for model-based FDI
requires finding the set of all possible ARRs, considering
that all possible candidate sensors are installed. Then, a
set of sensors that minimizes the total cost of the network
is selected such that the resulting ARRs satisfy that a
pre-established set of faults can be detected and isolated.
The optimization problem is casted as a Binary Integer

Non Linear Programming (BINLP) problem [13], where the
optimization vector states whether a sensor is installed or
not and FDI specifications are translated into constraints.
However, the non-linear nature of such constraints lead to a
high computational complexity of the resulting optimization
problem.

This work was supported by CICYT (ref. DPI-2008-01996) of Spanish
Ministry of Education

All authors are with the Automatic Control Department, Universitat
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An alternative BINLP sensor location for diagnosis is
proposed in [9]. This formulation does not require finding
the set of all possible ARRs. However, it is only applicable
to linear structured systems [14].

In [15], the approach in [12] is enhanced by formulating
a Binary Integer Linear Programming (BILP) problem. The
FDI specifications are formulated as linear constraints and
the objective cost function is also linear, so that the BILP
problem can be efficiently solved by an LP-based branch-
and-bound algorithm.

This paper is an extension of the work presented in
[15]. In order to demonstrate the efficiency of this optimal
sensor placement formulation a complex non-linear system
is chosen as a case study.

Fuel cell systems are receiving much attention in the last
decade as good candidates for clean electricity generation.
Here, a fuel cell system benchmark is used and some faults
are defined to be diagnosed. The fuel cell system model
is a complex model which involves a wide range of non-
linear equations (lookup tables, piecewise functions, satura-
tions, non-linear dynamic equations, etc.), and moreover the
operating point may also change. So, a model linearization
approach is not feasible.

The paper is organized as follows: In Section II, sen-
sor placement is formulated as a BILP problem. The FDI
specifications are formulated as binary linear constraints in
Section III. Section IV summarizes the BILP formulation of
the sensor placement problem and extends it to also include
ARRs optimal selection. Section V describes the application
of the FDI BILP formulation to a Fuel Cell System. Finally,
some conclusions and remarks are given in Section VI.

II. SENSOR PLACEMENT FOR FDI
A standard optimization problem using BILP can be

formulated as a linear objective function and constrained by
linear inequality constraints:

min
x

cT x subject to: (1)

Ax ≤ b (2)
x is binary (3)

The main constraint is that any element of the optimization
vector x must be binary, i.e. ∀x ∈ x : x ∈ {0,1}. Furthermore,
matrix A and vector b form the linear inequality constraints.
Finally, c is a cost vector of the linear objective function.

In this case the sensor placement problem for FDI can be
defined as finding a minimal set of sensors to be installed in
the system such that faults can be detected and isolated.
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The sensor placement problem can be formulated as a
BILP problem where the set of candidate sensors to be
installed is represented by the optimization variable vector.
This means that if the entry x∈ x equals 1, the corresponding
sensor must be installed whereas if x equals 0, the sensor
does not need to be installed.

Furthermore, by means of the c vector a cost can be
assigned to each sensor in order to find an optimal solution
based in some criterion, e.g. minimal cardinality, minimal
economical price, etc.

This approach requires to formulate all constraints as
linear inequalities. Thus, for sensor placement for FDI,
fault detectability and fault isolability constraints must be
expressed as in (2).

III. CONSTRAINTS FORMULATION

In model-based FDI, ARRs are used to check the con-
sistency between the model and system measurements. An
ARR can be obtained from a subset of model equations
by eliminating unknown variables through the convenient
manipulation of the equations. Therefore, an ARR is an
expression that only depends on known (measured) vari-
ables. Structural analysis theory has been extensively used
in model-based FDI to generate the ARRs from the model
equations [11], [8], [16].

It is straightforward to establish a relation between the
ARRs set and the set of known variables. This relation is
represented by a bi-adjacency matrix where the row set is
the ARRs set and the column set is the sensors set. Let n

be the number of ARRs and k be the number of candidate
sensors, then the biadjacency matrix M = [mi j] is a n× k

matrix defined by

mi j =

{
1 if ARR i depends on sensor j

0 otherwise
(4)

Knowing which equations are related to a certain ARR
it is possible to determine the set of faults that an ARR
is sensitive to. This ARR-fault relation is known in the
literature by the Fault Signature Matrix (FSM) [11]. Let l be
the number of system faults (i.e. faults that affect to system
components other than sensors) to be diagnosed, then the
biadjacency matrix F = [ fi j] is a n× l matrix defined by

fi j =

{
1 if fault j may affect ARR i

0 otherwise
(5)

Remark that, the FSM F will refer to system faults. A
similar FSM will be considered for sensor faults, which will
be denoted by Fq = [ fqi j] and easily deduced from M as
Fq = M.

In the following sections, the constraint formulation pro-
posed in [15] will be revisited.

A. ARR selector constraint

Given a subset of installed sensors there may be some
ARRs that are not valid since they depend on candidate
sensors not chosen for installation. Let q = [q1, · · · ,qk]T be

the binary vector that denotes whether a sensor is installed.
Then, an ARR i is called non-selectable if there is a sensor
j such that q j = 0 and mi j = 1. This motivates the ARR

selector:

ρi =
k

∏
j=1

[mi jq j +(1−mi j)] (6)

Note that ρi is a binary variable such that if ARR i is
non-selectable then ρi equals 0. However, expression (6) is
non-linear and can not be casted as a constraint in (2). In
order to do so, remark that inequality (7) holds as long as
ARR i is non-selectable.

k

∑
j=1

[mi jq j +(1−mi j)] < k (7)

Next, introducing the binary variable ρi in inequality (7),
the expression (8) is obtained, which is equivalent to the ARR

selector in (6).

k

∑
j=1

[mi jq j +(1−mi j)]− kρi ≥ 0 (8)

Note however that expression in (8) implies that

ARR i is not valid → ρi = 0

whereas the reverse is not true. This means that ρi can
be viewed as a dummy variable in the optimization problem.
This variable is forced to zero as long as the corresponding
ARR is non-selectable. Otherwise, an ARR may be chosen
by the optimization algorithm (i.e., setting ρi to 1) depending
on the other FDI specifications.

Now, equation (8) is linear. Therefore, it is suitable for
BILP formulation. Rewriting (8) in vector form and extend-
ing it for all the n ARRs, we have

⎡
⎢⎣

mi1 · · · mik

...
. . .

...
mn1 · · · mnk

⎤
⎥⎦

⎡
⎢⎣

q1
...

qk

⎤
⎥⎦− k

⎡
⎢⎣

ρ1
...

ρn

⎤
⎥⎦+

⎡
⎢⎣

β1
...

βn

⎤
⎥⎦ ≥ 0n×1

(9)
where βi = ∑k

j=1(1−mi j) for i = {1, · · · ,n}. Equation (9)
can be written in a compact form as

[ −M kIn

][
q
ρ

]
≤ β (10)

where variables vector ρ = [ρ1 · · · ρn]T is the set
of ARR selectors and β = [β1 · · · βn]T is a vector of
coefficients.

Expression (10) has the same form as (2). Furthermore,
the optimization variable vector is augmented by including
the ARR selector, i.e. x = [qT ρT ]T .
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B. Fault detectability constraint

A fault is structurally detectable if there exists at least
one ARR that can be affected by this fault. Hence, the ARR

selector plays an important role since all non-selectable ARR
must be rejected from the detectability study.

Since system and sensor faults are considered in this paper,
the number of equations needed to check fault detectability
is l + k. Next, both type of constraints are deduced.

1) System faults detectability:

Given a fault j, the following expression holds:

a system fault j is detectable ↔
n

∑
i=1

( fi jρi) ≥ 1 (11)

Equation (11) can be extended to all system faults, and
written in compact form as

[
0l×k −FT

][
q
ρ

]
≤−1l×1 (12)

Therefore, the set of system faults is detectable if con-
straint (12) holds.

2) Sensor faults detectability:

A similar expression to (11) is used for sensor fault
detectability:

a sensor fault j is detectable ↔
n

∑
i=1

( fqi jρi) ≥ q j (13)

Note that for a non-installed sensor, q j = 0 and inequality
(13) always holds, meaning that no detectability property is
expected for this sensor fault. However, as long as a sensor
is chosen for installation (q j = 1), equation (13) becomes
equivalent to (11).

Equation (13) can be extended to all sensor faults, and
written in compact form as

[
Ik −Fq

T
][

q
ρ

]
≤ 0k×1 (14)

C. Fault isolability constraint

Two faults are structurally isolable if their corresponding
signatures in the FSM are different. This is true as long as
ARR-based exoneration is assumed [8].

Since system and sensor faults are considered in this paper,
the number of equations needed to check fault isolability is
the 2-combination of l + k faults, Cl+k

2 . Next, three types
of constraints are deduced depending on whether system or
sensor faults are considered.

1) Fault isolability between system faults:

Given two system faults j1 and j2, inequality (15) holds
as long as their signatures in the FSM are different.

two system faults
j1 and j2 are isolable

↔
n

∑
i=1

| fi j1 − fi j2 |ρi ≥ 1 (15)

Equation (15) can be extended to any combination of two
system faults, and written in compact form as:

[
0Cl

2×k −FI1
T

][
q
ρ

]
≤−1Cl

2×1 (16)

where FI1 = [ fI1 im] is a n×Cl
2 matrix with:

fI1 im = | fi j1 − fi j2 | ∀ j1, j2 ∈ {1, . . . , l} : j1 < j2 (17)

where m indexes in lexicographical order1 the Cl
2 system

faults combinations.
2) Fault isolability between system faults and sensor

faults:

Isolability involving a sensor fault depends on whether the
corresponding sensor is considered for installation or not.
So, the condition for isolability between a system fault and
a sensor fault can be stated as:

a system fault j1 and a
sensor fault j2 are isolable

↔
n

∑
i=1

| fi j1 − fqi j2
|ρi ≥ q j2 (18)

Note that for a non-installed sensor, the right hand side
of inequality (18) becomes 0, meaning that no isolability
property is expected for this sensor fault. However, as long
as a sensor is chosen for installation, equation (18) becomes
equivalent to (15).

Equation (18) can be extended to any pair of system fault
and sensor fault, and written in compact form as:

[
G2 −FI2

T
][

q
ρ

]
≤ 0l·k×1 (19)

where
FI2 = [ fI2 ip] is a n× l · k matrix with:

fI2 ip = | fi j1 − fqi j2
|

{
∀ j1 ∈ {1, . . . , l}
∀ j2 ∈ {1, . . . ,k} (20)

where p indexes in lexicographical order the cartesian
product of the system faults set and the sensor faults set.
Matrix G2 is used to involve the corresponding sensor in
(18) according the sub-index j2 in p.

G2 is the following l · k× k matrix:

G2 =
[

Ik Ik · · · Ik

]T (21)

3) Fault isolability between sensors faults:

Now the isolability condition involves two sensor faults,
so it depends on whether both sensors are considered for
installation. The condition for isolability between two sensor
faults can be stated as the following non-linear inequality:

n

∑
i=1

| fqi j1
− fqi j2

|ρi ≥ q j1 q j2 (22)

Note that as long as any of the two sensors are not
selected for installation, the right hand side of inequality (22)
becomes 0, meaning that no isolability property is expected

1The term lexicographical order is also known as dictionary order or
alphabetic order.
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between their corresponding sensor faults. However, as long
as both sensor are selected for installation, equation (22)
becomes similar to (15).

Equation (22) can be transformed into the equation in (23),
which is a linear equivalent constraint.

two sensors faults
j1 and j2 are isolable

↔
n

∑
i=1

| fqi j1
− fqi j2

|ρi ≥ q j1 +q j2 −1

(23)
Note that the left hand side of the equation in (23) is

non-negative, so this constraint will only become meaningful
when both sensors are selected for installation.

Equation (23) can be extended to any combination of two
sensor faults, and written in compact form as:

[
G3 −FI3

T
][

q
ρ

]
≤ 1Ck

2×1 (24)

where G3 is the following Ck
2 × k matrix:

G3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1

Ik−1

0
...
0

1
...
1

Ik−2

...
0 · · ·0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

and FI3 = [ fI3 ir] is a n×Ck
2 matrix with:

fI3 ir = | fqi j1
− fqi j2

| ∀ j1, j2 ∈ {1, . . . ,k} : j1 < j2 (26)

where r indexes in lexicographical order the Ck
2 sensor

faults combinations.
Remark that matrix G3 is used to involve the correspond-

ing pair of sensors in (23) according to the indexes j1 and
j2 used to construct matrix FI3 in (26).

IV. PROBLEM FORMULATION

Once detectability and isolability constraints have been
introduced, the optimal sensor placement for FDI can be
formally presented. The problem is reformulated as

min
[qT ρT ]

[cT 01×n]
[

q
ρ

]
subject to: (27)

⎡
⎢⎢⎢⎢⎢⎢⎣

−M kIn

0l×k −FT

Ik −Fq
T

0Cl
2×k −FI1

T

G2 −FI2
T

G3 −FI3
T

⎤
⎥⎥⎥⎥⎥⎥⎦

[
q
ρ

]
≤

⎡
⎢⎢⎢⎢⎢⎢⎣

β
−1l×1
0k×1

−1Cl
2×1

0l·k×1
1Ck

2×1

⎤
⎥⎥⎥⎥⎥⎥⎦
(28)

[qT ρT ] is binary (29)

Constraint (28) is the concatenation of (10), (12), (14),
(16), (19) and (24) respectively, where all the matrices
involved have been previously defined.

The number of rows (i.e., constraints) in (28) is the
following:

• The ARR selector constraints (10) involve n rows.
• The detectability constraints (12) and (14) involve l +k

rows.
• The isolability constraints (16), (19) and (24) involve

Cl
2 + l · k +Ck

2 = Cl+k
2 rows.

The cost vector of the objective function is extended as a
result of including ρ in the variable vector. Since the goal
is optimizing the set of sensors, the costs related to the ARR

selector, ρ , are set to zero. Hence, ρ is regarded as a dummy

vector.
In the previous development, it has been assumed that

there exists a sensor configuration such that all faults con-
cerned are fully detectable and isolable among them. Note
that verifying whether this assumption is fulfilled can be
accomplished by just checking which faults are detectable
and isolable when all the candidate sensors are installed in
the system. Should detectability and isolability of all con-
cerned faults be non-attainable with any sensor configuration,
then maximum detectability and isolability specifications
should be determined. Next, the rows in (28) that involve
undetectable faults or non-isolable faults pairs should be
removed from the constraints set in order to make the
optimization problem feasible.

A. Sensor placement optimization with minimal set of ARR

The BILP optimization stated in (27)-(29) can be extended
to optimize the selected ARRs. This requires to set a cost
for each ARR in the cost vector of the objective function.
Therefore, the optimization problem will be expressed as
follows:

min
[qT ρT ]

[cT c′T ]
[

q
ρ

]
subject to: (28) and (29)

(30)
where c′ is a column-vector of n ARR costs.
As an example of different criteria for optimizing the set

of ARRs consider the following:
• Minimizing the number of the chosen ARRs: set the

same cost for each ARR.
• Minimizing the complexity of the chosen ARRs: set a

cost proportional to the number of equations involved
in each ARR computation.

• Maximizing the isolability properties of the chosen
ARRs: set a cost proportional to the number of (system
and sensor) faults each ARR is sensitive to.

Usually, the main goal will be to optimize the sensors set
and then, once a minimal sensor set is ensured, optimize the
ARR set. Thus, given c′ =

[
c′1 · · · c′n

]T , condition (31)
must be fulfilled.

n

∑
i=1

c′i < c j ∀c j ∈ c, j ∈ {1, . . . ,k} (31)
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Fig. 1. Fuel Cell System

This requirement assures that the total cost of the selected
ARRs will be less than the cost of choosing any sensor for
installation. Thus, the ARR optimization will not affect the
optimal sensor solution since the optimization algorithm will
priorate the selection of a sensor configuration against the
selection of the subset of selectable ARRs.

V. APPLICATION TO FUEL CELL SYSTEM

A. Fuel-cell system description

A PEM (Polymer Electrolyte Membrane) Fuel Cell Sys-
tem model is used to test the optimal sensor placement
formulation. A model for a PEM Fuel Cell was proposed in
[17]. This model is widely accepted nowadays in the control
community as a good representation of the behavior of an
actual fuel cell for control purposes. The main components
considered in the system (Fig. 1) are the air compressor,
the air manifold, the fuel cell stack, anode manifold and
the return manifold. In the model, it is assumed that the
temperature is known and constant, since its dynamical
behaviour is much more slower than those of the rest of
the model.

The structural relations between model equations and
system variables are summarized below. Model equations
are derived from [17] and they are classified according to
the system component that they describe:

• Air Supply Compressor:

e1 : f (ωcp,τcm,τcp) = 0
e2 : f (τcm,Vcm,ωcp) = 0
e3 : f (τcp,ωcp, psm,Wcp, fpsm) = 0
e4 : f (Wcp, psm,ωcp, fpsm) = 0

• Air Supply Manifold:

e5 : f (Wsm,out , psm, pca, fWsm,out ) = 0
e6 : f (Wcp,Wsm,out , fpsm , fWsm,out ) = 0

• Fuel Cell Stack:

e7 : f (Wca,out ,Wv,in j, Ist ,Wsm,out , fWsm,out , fIst , fn) = 0
e8 : f (Wan,in, Ist , fIst , fn) = 0
e9 : f (Wsm,out , pca,Wv,in j, Ist , pan,Vst , fWsm,out , fIst ) = 0

• Anode Manifold:

e10 : f (Wan,in, pan) = 0
• Return Manifold:

e11 : f (Wca,out ,Wrm,out , fWrm,out ) = 0
e12 : f (pca,Wca,out ,Wrm,out , fWrm,out ) = 0

Model variables are classified into the following cate-
gories:

• Control variables: variables required for control pur-
poses. These variables are already measured.
Vcm: Compressor voltage
Wcp: Air flow through the compressor
Ist : Stack current
Vst : Stack voltage

• Unmeasurable variables: variables for which sensors are
not available.
τcm: Compressor motor torque
τcp: Load torque
Wv,in j: Humidifier injector flow

• Measurable variables: define all possible sensor loca-
tions.
ωcp: compressor angular speed
psm: Supply manifold pressure
Wsm,out : Supply manifold exit flow
pca: Cathode pressure
Wca,out : Cathode output flow
pan: Anode pressure
Wan,in: Anode input flow
Wrm,out : Return manifold exit flow

• Faults.
fpsm : Compressor fault
fWsm,out : Supply manifold fault
fn: Cell fault
fIst : Fuel Cell Stack fault
fWrm,out : Return manifold fault

Each measurable variable has an associated sensor which
together constitute the set of candidate sensors.

The FDI specifications which have to be fulfilled in this
application are that system faults and installed sensors faults
must be detectable and isolable.

B. Optimal Sensor Placement Solution

Given the structural model of the Fuel Cell System, and
considering a fully sensored system, a total of 9039 ARRs
can be found. For further information on methods devoted
to finding ARRs see [16] and [8]. Then, taking into account
which equation is related with each sensor or fault, matrices
M, F and Fq can be extracted2.

If all candidate sensors were installed, it would be straight-
forward to check that all faults are detectable and isolable
(assuming ARR-based exoneration): it suffices to verify that
all columns in F and Fq have at least a ’1’, and that every
possible pair of columns is different. So, an optimal sensor
placement problem can be posed, since it should have at least
that feasible solution.

Solving the optimal sensor placement problem requires
a cost to be associated to each candidate sensor. Consider

2Due to the size of such matrices (9039 rows), they are not shown in this
paper.
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TABLE I
SENSOR COST FOR EACH VARIABLE

x ω
c

p

p
sm

W
sm

,o
u
t

p
ca

W
ca

,o
u
t

p
a

n

W
a

n
,i

n

W
rm

,o
u
t

c1 400 600 500 300 1200 1000 1100 200

c2 500 100 200 700 300 600 900 400

TABLE II
FSM FOR THE OPTIMAL SET OF ARRS

f p
sm

f W
sm

,o
u
t

f n f I
st

f W
rm

,o
u
t

f s
(V

cm
)

f s
(W

c
p
)

f s
(I

st
)

f s
(V

st
)

f s
(p

a
n
)

f s
(W

rm
,o

u
t)

ARR327 1 1 1 1 1 0 1 1 1 0 1
ARR6838 1 1 0 0 1 1 1 0 0 0 1
ARR7024 1 1 1 1 1 1 1 1 1 1 0
ARR8735 0 1 1 1 1 1 1 0 1 1 1
ARR8848 1 0 1 0 1 1 1 1 1 1 1
ARR8956 1 1 0 1 0 1 1 1 1 1 1

sensor cost c1 in Table I. Regarding the ARRs set, a cost is
assigned proportional to the number of equations that each
ARR relates with (nr. of equations×10−3). Remark
that condition (31) is fulfilled by every sensor cost, since for
this example ∑9039

i=1 c′i = 82.081.
The BILP optimization is solved and implemented

using ILOG OPL Studio [18]. The result is q∗ =[
0 0 0 0 0 1 0 1

]T . Therefore, the optimal
subset of candidate sensors must measure variables pan and
Wrm,out . Moreover, an optimal subset of ARRs is found, that
depends on these sensors and guarantees fault detectability
and isolability. The corresponding Fault Signature Matrix is
shown in Table II. Remark, in the table, that fs(z) stands for
a fault in the sensor measuring variable z.

Changing the ARR cost assignment criterium a
different solution is obtained. Assigning now a cost
proportional to the number of faults each ARR is sensitive
to (nr. of faults×10−3), a new set of ARRs is chosen
({ARR6838,ARR8736,ARR8914,ARR8970,ARR8982,ARR8988}),
such that faults are detectable and isolable.

On the other hand, changing the sensor cost assignment,
a different set of sensors and ARRs is obtained. Consider
now the sensor cost c2 defined in Table I, and an ARR cost
proportional to the number of faults each ARR is sensitive to
(nr. of faults×10−3). Applying the BILP formulation
and solving the optimization problem, the optimal set of
candidate sensors found must now measure variables Wca,out

and pan. And the corresponding optimal subset of ARRs is
{ARR6839,ARR7941,ARR8738,ARR8850,ARR8970,ARR8990}

VI. CONCLUSIONS

In this work, a new methodology to solve the sensor
placement problem for FDI has been addressed and applied
to a Fuel Cell System. The sensor placement problem has
been presented formally as a binary variable problem. The
novelty is that BILP standard formulation is used, therefore

standard algorithms to solve BILP optimization can be used.
The advantage is that these algorithms are deeply developed
and their branch and bound search is well-studied, leading
to a fast resolution in the majority of cases.

The main drawback of the presented approach is that
the ARRs set must be provided beforehand. It is known
that generating the whole set of ARRs is a computational
complex task. Future works might be improved by solving
the BILP optimization without the need of generating such
ARRs set.

The authors are aware that the ARR-based exoneration
assumption may be unrealistic in many cases. However, this
method could be easily extended to the case when a residual
does not always cross the threshold at fault occurrence.
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