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The inverse finite element method (iFEM) for the 3D framework deformation reconstruction was introduced. As the process of
iFEM did not require a priori knowledge, such as the modal shape, the loading, and the elastic-inertial material information of
the structure, it presented high potential in the framework deformation reconstruction. With the current research, it was
observed that the key step in the deformation reconstruction of the frame structure with iFEM was the section strains
computing of the beam element from the surface strain measurements. The corresponding stability was severely affected by the
placement of strain sensors. Therefore, it was necessary to discover a suitable sensor placement to maintain the stability of
section strains computing. For this problem, one optimal model of sensor placement was proposed in this paper. Firstly, the
well-separated eigenvalues were applied as the optimization target to construct the optimal model. Following, an optimal sensor
placement was obtained through the optimal placement model solution, with the particle swarm optimization (PSO) method.
Finally, the effectiveness of optimal placement was verified though the accuracy comparison of iFEM deformation
reconstruction of a wing-like frame subjected to various loads for different schemes of sensor placement.

1. Introduction

Real-time reconstruction of structural deformation is a key
technology in structural health monitoring (SHM) and con-
trol of mechatronics structure. For structures such as aircraft
wings with embedded conformal antennas and high-sized
frame structures that carry antennas, an accurate shape esti-
mation is the prerequisite for the actuator adjustment to
increase detection and communication quality [1–3]. The
structural deformation reconstruction from in situ strain
measurements commonly referred to as shape sensing pre-
sents high advantage in the deformation reconstruction of
high-sized structures.

The key technology in shape sensing is to model the
relationship between the in situ strain measurement and
the displacement exactly. Certain authors modeled the
relationship through methods such as neural and fuzzy
nets [4, 5]. Although these methods have good capabilities
to model the relationship, the process of prediction model

training requires high-sized training samples. Also, the
mapping relation may be singular and ill conditioned when
the training samples are insufficient. Other researchers
treated the structural deformation as beam/plate bending
and twist problems, through the linear regression predic-
tion of a global or piecewise continuous base function, to
model the relationship among the measured strain data
and structural displacement.

In the literatures [6, 7], the global or piecewise continu-
ous basis function methods were employed to fit the surface
measured strain into a structure strain field. Consequently,
the deformation of the structure was obtained through the
strain-displacement relationship. This method was easy to
implement, but its range of application and the accuracy of
deformation estimation depended on the appropriate selec-
tion of the basis function and the weight coefficients. Modal
shapes were used as a basis function in [8]. The displace-
ments were reconstructed from measured strains with the
modal transformation method. Adversely, the following
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disadvantages existed in this method: (1) the detailed mate-
rial elasticity and inertial parameters were required to pre-
cisely construct the modal shapes; therefore, it was difficult
to model the complex structure exactly. (2) The method
required a computationally intensive eigenvalue analysis
when applied to high-fidelity finite element models. On the
basis of Euler-Bernoulli beam equation, Glaser et al. and
Jute et al. determined the deflection of beam through the
direct integration of discretely measured strains [9, 10].
Particularly, Jute et al. applied the classical beam equation
to develop a method to approximate the beam curvature
through the discrete measured strain data integration [10].
The resultant one-dimensional solution displayed high accu-
racy in the deflection prediction, but this method failed to
estimate the element deformation under multidimensional
complex loads.

Shkarayev et al. developed a finite element-based meth-
odology involving an inverse interpolation formulation that
employed the surface measured strain to determine the loads
and structural response of aerospace vehicles [11, 12]. By
contrast, an appropriate quality function was required to
select the most appropriate load case in this algorithm and
this function was constructed based on computer simulations
and experimental statistics.

Based on the Timoshenko theory and inverse finite
element methodology (iFEM) framework proposed by
Tessler and Spangler [13, 14], Gherlone et al. proposed
the in situ measured strain data to reconstruct three-
dimensional displacement of the frame structures [15].
Due to the fact that only the displacement-strain relation-
ship was used, this methodology could conduct deformation
reconstruction without the prior knowledge of loads, mate-
rials, and inertial damping. Furthermore, these authors
reproduced the structural deformation reconstruction of
the single beam under loading case of the end-node force
through iFEM [16]. The simulation and test results dem-
onstrated that the scheme could accurately reconstruct
the beam structure deformation under static load and
force. Moreover, as stated in [16], the authors proposed
four schemes of strain sensor placement and discovered
that the locations where the strain sensors were placed
would affect the deformation reconstruction accuracy, but
the location selection for the sensor placement to retain
the accuracy of reconstruction was not mentioned. Conse-
quently, it was necessary to discover a common strategy to
optimize the placement of strain sensors to guarantee the
accuracy and stability of structural deformation recon-
struction in iFEM.

Commonly, the optimal sensor placement schemes
mainly included the modal kinetic energy (MKE) method,
the effective independence (EI) method, the modal assur-
ance criterion (MAC) matrix, and certain intelligent optimi-
zation algorithms based on the aforementioned methods
[17, 18]. Adversely, these placement schemes were only
adapted for the deformed shape reconstruction of a struc-
ture. The relationship between the displacement field and
the measured strain was derived from the structural kine-
matical equation, such as through finite element analysis
method. For the iFEM, the relationship between the

displacement and the measured strain was based on the
mechanical property analysis of the structure. Consequently,
the aforementioned optimal placement schemes did not
apply to iFEM.

The key step in iFEM was the section strains computing
from measured surface strain data. It was discovered that
the locations where the strain sensors were placed would
directly affect the section strains computing, as well as the
accuracy and stability of deformation reconstruction. The
section strains computing from measured strain data in
iFEM could be regarded as parameter identification, while
the identification processing could be regarded as the linear
equation solution. Therefore, the differences between the
eigenvalues of the transfer matrix were proposed, which
was associated to the transfer relationship among section
strains and measured surface strain data, to assess the distri-
bution of strain sensors, as well as maximizing the difference
as the optimal model target. Moreover, as the sensor locations
contained three variates (a coordinate along the midaxis and
two angles around the two axes), while every variate had
its own range, the PSO method was proposed to solve
the optimal model. Subsequently, two different schemes
of sensor placement were compared to the optimal result
obtained by the PSO, through ANSYS simulation. Finally,
an aluminum wing-like structure model was subjected to
different static loadings to verify the optimal placement
scheme effectiveness. The reconstruction accuracies of all
tests demonstrated that the optimal scheme was robust
and accurate.

2. Review of Beam Deformation
Reconstruction through iFEM

For the careful beam deformation reconstruction in three-
dimensional domain, the iFEM described the beam displace-
ment field based on the Timoshenko beam theory and the
corresponding section strains were deduced based on the
small-strain hypothesis.

In the Timoshenko beam theory, the displacement field
of an isotropic and straight beam with constant cross-
section could be represented by Cartesian coordinates as
follows [15, 16]:

ux x, y, z = u x + zθy x − yθz x ,

vy x, y, z = v x − zθx x ,

uz x, y, z =w x + yθx x ,

1

where ux, vy, andwz are the point displacements along the

x-, y-, and z-axes, respectively. u x , v x , and w x denote
the displacements at y= z= 0; θx x , θy x , and θz x are

the rotations regarding three coordinate axes (Figure 1).
The six kinematic variables in one node along the middle
axes can be grouped in a vector form as:

u = u, v,w, θx, θy, θz
T

2
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Based on the small-strain hypothesis, the arbitrary sec-

tion strain vector e u = e1, e2, e3, e4, e5, e6
T can be obtained

from (1):

e1 x = ux x ,

e2 x = θy,x x ,

e3 x = −θz,x x ,

e4 x =wx x + θy x ,

e5 x = vx x − θz x ,

e6 x = θx,x x

3

Following, the kinematic variable vector u could be con-
firmed when the section strain vector e u was obtained. In
iFEM, the vector e u was replaced with the in situ section
strain vector eε, computed from the measured surface strain
data under the constraint of least square error.

φ u = e u − eε
2   4

Lastly, the relationship among the beam displacement
and in situ strain measurements can be constructed as
follows [15]:

keue = fe 5

ke and fe were indicated as follows:

ke = 〠
6

k=1

wkk
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k, kek =
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〠
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k xi Bk xi ,
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6

where Bk xi is the coefficient matrix, derived from the
element shape function. Once the location where the sec-
tion strains were evaluated (xi) was determined, the coeffi-
cient matrix Bk xi was fixed. eεk xi are the in situ section
strains computed from the measured surface strain data.
wk k = 1, 2,… , 6 are the weighting coefficients used to
reflect the effects of axial stretching, bending, twisting,

and transverse shearing on the beam element. The corre-
sponding expressions are as follows:

wk = w0
1,w

0
2

Iey
Ae ,w0

3

Iez
Ae , w0

4, w
0
5,w

0
6

Iep
Ae , 7

where w0
k k = 1, 2,… , 6 denote dimensionless weighting

coefficients with initial values identically set as 1; Ae, Iey , I
e
z ,

and Iep are the cross-section area, second moments of the area

according to the y- and z-axes, and the polar moment of area
of the beam element, respectively.

The key step in iFEM was the section strains computing

eε = eε1 xi , e
ε
2 xi ,… , eε6 xi

T from the in situ surface strain
measurements, ε∗2 , i = 1, 2,… , 6 [15, 16]:

ε∗2 xi, θi, βi = εε1 xi c2βi
− vs2βi

+ eε2 xi c2βi
− vs2βi

sθiR

+ eε3 xi c2βi
− vs2βi

cθiR + eε4 xi cβi sβicθi

− eε5 xi cβi
sβi
sθi + eε6 xi cβi

sβi
R,

8

with cβi
≡ cos βi, sβi

≡ sin βi, cθi ≡ cos θi, sθi ≡ sin θi, where

xi, θi, βi is the location, where the ith strain sensor is set
on the surface of the beam element, v is the Poisson ratio,
and R is the external radius of the section (Figure 2).

Six different strain measurement data in one section were
required to obtain section strains eε in one section, whereas
the minimum of the sections where the section strains were
evaluated differed for different loading cases. The minimum
was 2 for the loading case of end-node forces and 3 for the
loading case of uniformly distributed transverse forces [19].
This meant that the mininumber of sensors used to compute
the section strains was 12 for end-node forces and 18 for
uniformly distributed forces.

3. Optimal Placement of Strain Sensors

In this section, the number of strain sensors used to catch the
beam surface strain and the equation computing the section
strains in loading case of end-node force were described,
firstly. Based on the latter equation section strains comput-
ing, the optimal placement of strain sensors was discussed.
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Figure 1: Beam geometry and kinematic variables.
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With the equilibrium equation analysis contribution,
the section strains order on the cross-section along the
beam element could be obtained. In the case of end-node
forces, e1, e4, e5, and e6 were constants, while e2 and e3 were
linear [15, 19]. Following, the following equations to
express section strains on arbitrary cross-section of the beam
element through the above conclusion could be constructed
as follows:

e1 xi = a1,

e2 xi = a2xi + a3,

e3 xi = a4xi + a5,

e4 xi = a6,

e5 xi = a7,

e6 xi = a8

9

The undecided parameters, a1,… , a8, could be solved
through the substitution of (9) into (8), with different surface
strain measurements. Eight different strain measurements
were required to determine the undecided parameters, which
meant that each beam element required 8 sensors. Also,

fixed proportion relations among e2′ and e4, as well as e3′

and e5, existed:

Dye2′ =Gze4,

Dze3′ = Gye5,
10

with Gy ≡ k2yGA,Gz ≡ k2zGA,Dy ≡ EIy,Dz ≡ EIz , where k
2
y and

k2z are the shear correction factors; G and E are the shear
modulus and Young’s modulus of the beam element, respec-
tively. A is the cross-section area of the beam element, while
the second moments of area with respect to y- and z-axes are
Iy and Iz , respectively. It was further noted that the ratios

Dy/Gz ,Dz/Gy were constant once the external radius of the

beam section was confirmed. Through (9), (10) could be
modified as follows:

e1 xi = a1,

e2 xi = a2xi + a3,

e3 xi = a4xi + a5,

e4 xi =
Dy

Gz

a2,

e5 xi =
Dz

Gy

a4,

e6 xi = a6

11

Subsequently, the number of strain sensors used to solve
the undecided parameters could be reduced to 6. The latter
process could lead to a solution of the following system of
linear equations:

ε∗2 = T

1 0 0 0 0 0

0 xi 1 0 0 0

0 0 0 xi 1 0

0
Dy

Gz

0 0 0 0

0 0 0
Dz

Gy

0 0

0 0 0 0 0 1

∗ a1,… , a6
T

=Q∗ a1,… , a6
T =Q∗UA a1,… , a6

T ,

12

with ε∗2 = ε∗2 xi, θi, βi
T , T = T1, T2,… , T6

T , UA =

a1,… , a6
T , and T i = c2β − vs2β, c2β − vs2β sθR, c2β − vs2β cθR,

cβsβcθ, cβsβsθ, cβsβR , i = 1,… , 6.

Once the undecided parameters vector, UA was solved,
the section strains along the beam element could be obtained
from (11).

Nevertheless, through further research, it was discovered
that the locations where the strain sensors were placed could
impact the computing stability of the undecided parameters
vector UA from the surface strain measurements through
(12). The impertinent locations might even lead to the
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Figure 2: Location of strain gauge placed on beam element.
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computing process becoming singular or ill conditioned,
such as slight changes of the surface measured strain data
might significantly change the section computing, which
might result in the deformation reconstruction through
iFEM becoming inaccurate or even to the reconstruction pro-
cess failure. When the angles βi i = 1, 2,… , 6 were set to 0,
(12) was singular.

Taking into account that the main cause of ill-condition
or singularity of the linear system of equations was that the
differences among the eigenvalues of the coefficient matrix
were too low, it was difficult to recognize the different system
inputs. Kunsoo and Stein used the following conditions to
define a well-conditioned matrix [20]:

(1) Minimized norm of the nonnormality matrix M in
Schur form, as given by

UHFU =Λ +M, 13

where U is a unitary matrix and UH is the conjugate
transpose matrix of U; F is a normal matrix of n × n
in size; Λ is a diagonal matrix with eigenvalues on
diagonal elements; M is an upper-right off-diagonal
matrix.

(2) Well-separated eigenvalues (such as large value in
min λi − λ j , i ≠ j).

In this paper, condition (2) was used to construct the
optimal placement model of sensors in the loading case of
end-node forces:

f ind f Q ξ,θ,β =max min λi − λj , i ≠ j, i, j = 1, 2,… , 6,

ξ, θ, β = ξ1, θ1, β1,… ,

s t  ξi ∈ −0 8, 0 8 ,

θi ∈ −180
°
, 180

°
,

βi = 0
°
or 45

°
,

 i = 1, 2,… , 6,

14

where λi, i = 1, 2,… , 6, are the eigenvalues of transformation
matrixQ. ξ, θ, β indicate the locations of the placed six sen-
sors. ξi = 2xi/L − 1 ∈ −1, 1 indicates a nondimensional axial
coordinate with xi ∈ 0, L . In view of application environ-
ment in engineering, the locations on clamped and free
end-nodes of the beam element are proven difficult to set
sensors. Also, the beam surface curve would affect the accu-
racy of strain measurement. Therefore, ξi ∈ −0 8,0 8 was
set, where only one sensor was placed at βi = 45° and the
other five sensors were placed at βi = 0°. The number of opti-
mized sensor locations was 6, and every location was deter-
mined by three parameters. Consequently, 18 parameters
were required to be optimized. This was a multiparameter
optimization, and the particle swarm optimization (PSO)
algorithm was used to solve the optimal model, as the

algorithm had good convergence speed and the optimal solu-
tion could be efficiently obtained through PSO in hyperspace.

Step 1. (initializing the PSO algorithm). The number of
particles was set to N = 10. The maximum iterations were
kmax = 200, the number of iterations was initialized to k = 1,
and the threshold of the algorithm breaking was set to M =
1000. The position of every particle was am =

ξm1, θm1, βm1,… , ξm6,θm6, βm6 1∗18
, which was associated

to the placed positions of strain sensors, while the corre-
sponding velocity of every particle could be written as vm =

vξ1, vθ1, vβ1,… , vξ6, vθ6, vβ6 1∗18
.

The positions and velocities of the particles were initialized
by discrete random values in the restrain range of the optimi-
zation model of (14), such as ξmj, vξj ∈ −0 8, 0 8 , θmj, vθj ∈

−180°, 150°,… , 180° , and βmj, vβj = 0° or 45° m = 1,… ,

50 ; j = 1, 2,… , 6 , and the maximum of fitness f Q ξ,θ,β m

was set as the initial global optimal solution g0. If the
global optimal solution g0 equaled M, the algorithm broke
and the current particle position was the optimal place-
ment of the sensors, or else, Step 2 followed.

Step 2. (updating the PSO algorithm). The local optimal
solution gl was determined by the fitness maximization of
10 particles when the velocity and position of every particle
were updated. If gl > g0, g0 is replacedwith gl and the corre-
sponding particle position was the current optimal place-
ment for strain sensors; else, g0 and placements of strain
sensors were invariant and let k = k + 1, moving to Step 3.

Step 3. (terminating the PSO algorithm). The iteration did
not break until the iteration number k=kmax. If the current
local optimal solution gl exceeded the previous global opti-
mal solution g0, the current particle position would be the
optimal placement of strain sensors; else, the particle position
that caused the previous g0 would be the optimal solution for
the optimization model of (14).

4. Simulation and Experimental Results

In order to assess the accuracy and effectiveness of the opti-
mal sensor placement scheme, a simple cantilevered beam
and a wing-like framework were subjected to different
end-node static forces and the corresponding deformations
were computed through iFEM. The cantilevered beam was
a finite element model, and the framework was a physical
model. Both structures were made of an aluminum alloy
of E = 73000 Mpa in Young’s modulus, a Poisson ratio of
v = 0 3, and a density of ρ = 2712 63 kg/m3. The framework
was composed of three solid circular cross-section beams and
middle plates. The span of each beam was L = 640mm and of
R = 10 mm in radius (Figure 3).

4.1. Simulation Tests. Firstly, the three different sensor place-
ments were compared, two of which (C1 and C2) originated
from the literature [16], while the third (C3) was the
proposed optimal placement (Table 1). In lieu of the
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experimentally measured surface strains on the cantilevered
beam, high-fidelity direct finite element analyses (ANSYS
14.5) were carried out, whereas for the beam member based
on Timoshenko theory accurate modeling, a beam of 188
elements was employed. The model was divided into 200
elements, and the cross-section of the beam was divided into
120 sectors (Figure 4).

The free end of the beam model was statically loaded
through a combination of two forces (Figure 5). The compar-
isons of iFEM deformation reconstructions of the cantilev-
ered beam with three different schemes of placement are
presented in Table 2.

In this paper, two evaluation criteria were defined as

MER =max dispANSYS xi − dispiFEM xi ,

RMS = 〠
201

i=1

dispANSYS xi − dispiFEM xi
2

201

2

,

 i = 1,… , 201,

15

where disp xi is the displacement of one node along the
beam centroidal axis in one direction, the superscript
“ANSYS” refers to the deformation value from ANSYS
simulation, and “iFEM” refers to the predicted value com-
puted from iFEM; MER and RMS indicate the maximum
error and root-mean-square error of deformation recon-
struction, respectively. Table 2 presents that the deforma-
tions reconstructed through iFEM were nearly similar to
the ANSYS simulation.

In view of the fact that the errors of strain measurements
consisted of the errors of strain sensor placement and the

system error of the strain measuring device, which might
impact the accuracy of the deformation reconstruction com-
puted from (5), it was assumed that the errors of the sensor
placement were set as follows:

Δξi ∈ −0 05, 0 05 ,

Δθi ∈ −9
°
, 10

°
,

Δβi ∈ −10
°
, 10

°
,

 i = 1, 2,… , 6

16

The system error of the strain measuring device was
assumed to obey a Gaussian error distribution, which had
zero mean value and three-standard deviations equal to 5%

of the ANSYS simulation strain value, such as ε′ = ε + Δε, −
5%ε ≤ Δε ≤ 5%ε. These disturbances were added 1000 times,
and the highest error was selected for the reconstruction
accuracy. The comparison of deformation reconstructions
with noise for three displacements is presented in Table 3.

As it was assumed, the computing might be abnormal
when the difference among the eigenvalues of coefficient
matrix Q in (12) was low. The lowest difference among
the eigenvalues of coefficient matrix Q for sensor placement
C1 was 0.3286. The reconstruction accuracies in directions
X, Y , and Z dropped to 16.77mm, 8.63E3mm, and
1.74E3mm in the case of maximum error; the reconstruction
accuracies were 9.69mm, 5.23E3mm, and 1.19E3mm in the
case of root-mean-square error. The lowest difference among
the eigenvalues of coefficient matrix Q for optimal sensor
placement C3 was 45.5918 and the corresponding recon-
struction accuracies in directions X, Y , and Z only dropped
to 0.026mm, 1.39mm, and 0.79mm in the case of maximum
error; these were 0.015mm, 0.53mm, and 0.41mm in the
case of root-mean-square error (Table 3). The stability of
C3 exceeded the C1 stability.

4.2. Physical Model Tests. Following, the optimal sensor
placement C3 and the normal placement C1 were used for
the deformation reconstruction of the wing-like structure
under the static end-node loadings (Figure 6(a)). The total
weight of the load was 8.92 kg (Table 4).

The surface measured strains were captured by fiber
Bragg grating (FBG) strain sensors. Also, the experimental
shapes were captured through 3D optical measurement
instruction (NDI Optotrak Certus, Figure 6(b)), which deter-
mined the position of the identification point with three CCD
cameras to capture the infrared lights emitted by the position
sensors (Figure 6(c)). Also, the number of position sensors
used in this test was 18. The instruction was also used to

Table 1: Schemes of sensor placement. Each location was written as
ξi, θi, βi , i = 1,… , 6.

C1 C2 C3

ε1 (0, −120°, 0°) (−0.33, −120°, 0°) (−0.8, −90°, 0°)

ε2 (0, −120°, 45°) (−0.33, 120°, 0°) (−0.68, 0°,0°)

ε3 (0, 0°, 0°) (−0.33, 0°, 0°) (−0.68, 180°, 45°)

ε4 (0, 0°,45°) (0.33, 0°, 45°) (0.78, 90°, 0°)

ε5 (0, 120°, 0°) (0.33,−120°, 0°) (0.8, 180°, 0°)

ε6 (0, 120°, 45) (0.33, 120°, 0°) (0.8, 0°, 0°)

f Q ξ,θ,β 0.3286 2.6240 45.5918

Figure 3: Wing-like framework.
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assess the deformation computed from iFEM, where the
accuracy of the NDI was 0.1mm. The FBG strain sensors
were placed on the surfaces of three beams with the identical
distributions of C1 and C3. As a FBG sensor could not over-
lap another sensor, it was difficult to place the two sensors on
one point, such as at 0, 0°, 0° and 0, 0°, 45° . Therefore, the
placement scheme C1 was slightly changed (Table 5). The

comparison between the measured deformation captured
from NDI and the reconstructed deformation computed
from iFEM is presented in Table 6.

In Table 6, MDNDI indicates the maximum deformation

measured by/through NDI. MDiFEMC1 and MDiFEMC3 indi-
cate the maximum deformation computed through iFEM
with the sensor placement schemes of C1 and C3. MERC1

Figure 4: Finite element model of beam and the section division.

y

Fy

Fz Z

Figure 5: Free end loads: Fy = −100N, Fz = 150N

Table 2: Comparison of reconstruction accuracies under three placements; displacements expressed in mm.

Max deformation in direction, X Max deformation in direction, Y Max deformation in direction, Z

ANSYS 0 −16.28 24.42

C1 4.4E − 6 −16.36 24.55

C2 4.4E − 6 −16.22 24.33

C3 1.13E − 16 −16.19 24.27

MER in direction, X MER in direction, Y MER in direction, Z

C1 4.4E − 06 0.09 0.13

C2 4.40E − 06 0.09 0.15

C3 1.13E − 16 0.06 0.09

RMS in direction, X RMS in direction, Y RMS in direction, Z

C1 2.54E − 06 0.064 0.096

C2 2.54E − 06 0.03 0.06

C3 6.54E − 17 0.02 0.03
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MERC3 and RMSC1 RMSC3 were computed through
(15). As the number of nodes of structural deformation
measured through NDI with position was 18, the number
of the nodes (201) in (15) should be replaced by 18, while

the measured values dispANSYS xi were replaced by

dispNDI xi , as captured from NDI. Moreover, the maxi-
mum relative error (MRE) was used to assess two schemes.

MRE =
MER

MDNDI
% 17

The results in Table 6 demonstrated that, with the C3
sensor placement, the iFEM could reconstruct the framework
deformation with high precision, whereas in most loading
cases (loading cases of 3~6), the results were more stable
and precise than the results computed through iFEM with
the C1 sensor placement (with placement C3, the relative
errors were approximately 3%; the highest error that
occurred in loading case 6 was 6.1%; while with placement
C1, the relative errors increased from 3% to 11.4% as the load
increased). In loading cases 1 and 2, the differences among
iFEM computing and NDI measurements were higher than
those in the other cases (in cases 1 and 2, the highest errors
appeared at direction Y , such as the loading direction; the
highest errors were 2.9mm in case 1 and 3.4mm in case 2,
while the corresponding relative errors were 13.2% and
11.5%, resp.), since a clearance existed between the first beam

Table 3: Comparisons among deformations computed from iFEM and deformations extracted from ANSYS. Computed results contained
system errors, combining errors of sensor-locations with errors of strain-measurements. Displacements expressed in mm.

Max deformation in direction, X Max-deformation in direction, Y Max-deformation in direction, Z

ANSYS 0 −16.28 24.42

C1 −16.77 8.61E3 1.76E3

C2 0.065 −12.75 21.84

C3 −0.026 −14.89 25.21

MER in direction, X MER in direction, Y MER in direction, Z

C1 16.77 8.63E3 1.74E3

C2 0.065 3.53 2.58

C3 0.026 1.39 0.79

RMS in direction, X RMS in direction, Y RMS in direction, Z

C1 9.69 5.23E3 1.19E3

C2 0.038 1.71 1.37

C3 0.015 0.53 0.41

(a) (b)

Position sensors FBG sensors

(c)

Figure 6: (a) Loading on end-node of entire structure. (b) NDI Optotrak Certus. (c) Position sensors and FBG sensors.

Table 4: Static loading cases.

1 2 3 4 5 6

Loading 0.94 kg 2.73 kg 3.72 kg 6.14 kg 7.25 kg 8.92 kg
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and the ring flange. The deformation on the clamped end-
node should be zero in theory, but as a clearance existed,
the boundary condition in iFEM changed. Therefore, the
accuracy and stability of deformation reconstruction of the
entire structure changed slightly. As the load increased, the
clearance disappeared, whereas the reconstruction became
accurate and steady.

5. Conclusions

This paper was focused on the discovery of a feasible stan-
dard to optimize the placement of the strain sensors in iFEM.
The iFEM could be used to reconstruct the structural defor-
mation of the beam only with in situ surface strain measure-
ment data and a low number of structure parameters, such as
the length and radius of beam, as well as the Poisson ratio.
Adversely, through the current study, it was discovered that
the locations where the strain sensors were placed would
impact the accuracy and stability of deformation reconstruc-
tion. Consequently, a minimum change among the matrix
eigenvalues was proposed to determine the eigenvalue distri-
bution of the coefficient matrix (coefficient matrix was

associated to the relationship among section strains and sur-
face strain measurement data), to select the optimal place-
ment of sensors to maintain the accuracy and stability of
the deformation reconstruction with iFEM. The simulation
and physical model tests demonstrated that the C3 optimal
placement scheme had good potential in maintaining the
structural deformation reconstruction with iFEM. Neverthe-
less, low fluctuations existed in the physical model tests, as
clearance existed between the first beam and the ring flange.
Moreover, errors occurred in the process of pasting sensors,
which would also impact the reconstruction results.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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Table 5: C1changed scheme of sensor placement.

ε1 ε2 ε3 ε4 ε5 ε6

C1 (0, −120°, 0°) (0.2, −120°, 45°) (0, 0°, 0°) (0.2, 0°, 45°) (0, 120°, 0°) (0.2, 120°, 45°)

Table 6: Comparison between NDI and iFEM reconstructions in loading case of end-node.

Direction Y Direction Z Direction Y Direction Z Direction Y Direction Z

1 2 3

MDNDI
−21.9mm 0.2mm −29.5mm 0.3mm −36.6mm 0.7mm

MDiFEMC1
−24.8mm 0.4mm −27.4mm 0.4mm −37.5mm 0.9mm

MDiFEMC3
−23.7mm 0.4mm −26.1mm 0.4mm −35.7mm 0.8mm

MERC1 2.9mm 0.3mm 2.1mm 0.2mm 1.1mm 0.3mm

MERC3 1.8mm 0.3mm 3.4mm 0.2mm 1.1mm 0.2mm

RMSC1 1.42mm 0.18mm 1.03mm 0.13mm 0.67mm 0.16mm

RMSC3 0.89mm 0.16mm 1.60mm 0.12mm 0.65m 0.12mm

MREC1 13.2% 150% 7.1% 66.7% 3% 42.9%

MREC3 8.2% 150% 11.5% 66.7% 3% 28.6%

4 5 6

MDNDI
−59.6mm 0.7mm −67.3mm 1.1mm −75.3mm 1.1mm

MDiFEMC1
−62.2mm 0.9mm −73.1mm 1.3mm −83.8mm 1.4mm

MDiFEMC3
−59.3mm 0.8mm −69.6mm 1.2mm −79.9mm 1.2mm

MERC1 2.6mm 0.3mm 5.8mm 0.3mm 8.6mm 0.4mm

MERC3 1.7mm 0.2mm 2.3mm 0.2mm 4.6mm 0.3mm

RMSC1 1.49mm 0.16mm 2.86mm 0.18mm 4.16mm 0.21mm

RMSC3 0.84mm 0.13mm 1.43mm 0.15mm 2.4mm 0.15mm

MREC1 4.4% 42.9% 8.6% 27.3% 11.4% 36.4%

MREC3 2.9% 28.6% 3.4% 18.2% 6.1% 27.3%
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