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Abstract— In this paper, a new approach for sensor place-
ment in water distribution networks (WDN) is proposed. The
sensor placement problem is formulated as an integer optimiza-
tion problem. The optimization criterion consists in minimizing
the number of non-isolable leaks according to the isolability
criteria introduced. Because of the non-linear integer and large-
scale nature of the resulting optimization problem, genetic
algorithms (GA) are used as solution approach. To validate
the results obtained, they are compared with exhaustive search
methods with higher computational cost proving that GA allow
to find near-optimal solutions with less computational load.
The proposed sensor placement algorithm is combined with
a projection-based isolation scheme. However, the proposed
methodology does not depend on the isolation method chosen
by the user and it could be easily adapted to any other isolation
scheme. Experiments on a real network allow to evaluate the
performance of such approach.

I. INTRODUCTION

Leak location is of great importance for water distribution

network systems and represents an important factor for

quality in service. In these systems, it is obvious that only

a limited number of sensors can be installed due to budget

constraints. Thus, the development of a sensor placement

strategy has become an important research issue in recent

years. Ideally, a sensor network should be configured to fa-

cilitate fault detection and maximize diagnosis performance.

Several works have been published on leak detection and

isolation methods for Water Distribution Networks (WDN).

Andrew et al. [1] present a review of existing transient-

based leak detection methods. Model-based leak detection

and isolation techniques have also been studied starting with

the seminal paper of Pudar and Liggett [2] which formulates

the leak detection and isolation problem as a least-squares

estimation problem. However, in such non-linear models the
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parameter estimation of the water networks is not an easy

task.

Alternatively, in [3], a method based on pressure mea-

surements and leak sensitivity analysis is proposed. This

methodology consists in analyzing the residuals on-line, i.e.

the difference between the measurements and their estima-

tion using the network hydraulic models, regarding a given

threshold that takes into account the model uncertainty and

the noise. When some of the residuals violate their threshold,

they are correlated against the leak sensitivity matrix in

order to discover which possible leak is present. Although

this approach has good efficiency under ideal conditions,

its performance decreases in presence of nodal demand

uncertainty and noise in the measurements. An improved

technique has recently been developed [4] where an extended

time horizon analysis of pressure measurements is considered

and a comparison between the performances depending on

the metric used is performed.

The main objectives of sensor placement are leak de-

tectability, isolability and localization. Leak detectability is

the ability of monitoring a variation in pressure due to a

loss of water occurring in the network. Leak isolability

concerns the capacity of distinguishing between two possible

occurrences, whereas leak localization refers to finding the

node where the leak is occurring. There are some works

devoted to sensor placement for fault detection and isolation

(FDI). Some approaches propose to locate sensors based on

diagnosticability criteria according to the study of structural

matrices [5]. In [6], an optimization method based on binary

integer linear programming searches for an optimal set of

sensors for model-based FDI.

Each of the previously mentioned works is used in the

general framework of FDI. However, there are several con-

tributions dedicated to sensor placement in water distribution

networks. In [7], the problem of deploying sensors in a

large water distribution network is considered in order to

detect the malicious introduction of contaminants. A strategy

based on the diagnosticability maximization [8] allows to

locate optimally the sensors in distribution networks based

on the structural model of the system under consideration.

Closer to our research, in [3], an optimal sensor placement

is formulated as an integer programming problem where

each decision variable xi associated to a node vi of the

network takes the value 0 or 1 according to the presence or

the absence of a sensor installed on this node. This binary

representation for sensor placement is used in the latest leak

detection works.

This paper proposes a new approach for sensor place-
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ment for leak location in WDN that can be used with the

projection-based location scheme proposed in [4]. The sensor

placement problem is formulated as an integer optimization

problem. The optimization criterion consists in minimizing

the number of non-isolable leaks according to the isolability

criteria introduced. Because of the non-linear integer and

large-scale nature of the resulting optimization problem,

genetic algorithms (GA) are used as solution approach.

The obtained results are compared with exhaustive search

methods with higher computational cost proving that GA

allow to find near-optimal solutions with less computational

load. Another advantage is that our methodology does not

dependent of the isolation method chosen by the user. Ex-

periments in a real network allow to evaluate the performance

of such approach.

The rest of the document is organized as follows: Section

II presents the leak localization methodology in which our

work is based. Section III describes the problem formulation.

Sections IV and V present the sensor placement algorithms

proposed in this work while in Section VI we show the ap-

plication and the results obtained in a real water distribution

network. Finally, Section VII concludes this work.

II. LEAK LOCATION METHODOLOGY

The leak location methodology used in this paper has

been introduced in [4] as an extension of the methodology

proposed in [3]. The methodology will be summarised here

since it is the basis on the top of which the sensor placement

algorithm proposed in this paper will be formulated.

The leak location methodology aims to detect and isolate

leaks in a water distribution network using pressure mea-

surements and their estimation using the hydraulic network

model. Let us consider a water distribution network with m

demand nodes and n pressure sensors. The leak detection

methodology is based on the computation of the residual

vector r = [r1 . . . rn]
T where the residual ri ∈ r is the

difference between the pressure measurements pi and its

corresponding estimation p̂i obtained from the simulation of

the hydraulic model with no leak, i.e.

ri = pi − p̂i (1)

for i = 1, . . . , n.

The leak isolation method relies on analyzing the residual

vector (1) using a sensitivity analysis which is based on

the evaluation of the effect on the available pressure mea-

surement sensors caused by all possible leaks. To perform

such sensitivity analysis the following sensitivity vectors are

derived from simulated leak scenarios [3]:

sj =











p̂
fj
1

−p̂1

fj
...

p̂
fj
n −p̂n

fj











j = 1, · · · ,m (2)

where p̂
fj
i and p̂i are the pressure estimation obtained from

the hydraulic model simulation under leak fj scenario and

leak-free scenario, respectively. For the sake of simplicity

and without loss of generality, m possible leaks (one for each

node) have been assumed. Then, leak isolation is based on

the analysis of the residual vector, together with the sensitiv-

ity vectors in order to determine which node has the highest

plausability to present a leakage. A variety of metrics can be

used to perform this isolability analysis [9]. In this work,

a method presented in [4] based on projections between

residual and sensitivity vectors will be used. According to the

mentioned study the angle method (projection considering

the inverse of cosine function) presents the best performance

for the isolation task. However, it is important to note that

the sensor placement approach proposed in this paper could

also be applied using any other isolability method based on

sensitivity analysis.

Let r be the residual vector (1) obtained from the pressure

sensors installed in the network, then its normalized projec-

tions, ψj , onto each sensitivity vector are computed as

ψj =
r
T
sj

|r||sj |
(3)

for j = 1, . . . ,m. Then, the largest projection will determine

the candidate node that presents a leak, i.e. a leak in node k

is located if

ψk = max(ψ1, · · · , ψm) (4)

III. PROBLEM FORMULATION

The objective of this work is to develop an approach to

place a given number of sensors, n, in a water distribution

network in order to obtain a sensor configuration with a

maximized leak isolabitily performance for a given leak

detection and isolated scheme. Here, for illustrative purposes,

the one presented in previous section.

It should be noted that the length of the sensitivity and

residual vectors depends on the number of sensors n installed

in the network. In fact, according to (1) and (2), these vectors

will have as many elements as installed sensors. In order

to find a sensor configuration that presents maximum isola-

bility performance regarding all the possible leak scenarios,

the following residual vectors derived from simulated leak

scenarios will be computed:

rk =







p̂
fk
1 − p̂1

...

p̂fkn − p̂n






k = 1, · · · ,m (5)

where p̂
fk
i and p̂i are the pressure estimation obtained from

the hydraulic model simulation under leak fk scenario and

leak-free scenario, respectively. Note that the magnitude of

the leaks used to compute the sensitivity vectors in (2) and

the one used to compute the residual vectors in (5) are chosen

different (fj 6= fk) in order to increase the robustness of

the method. Taking into account the mentioned residual and

sensitivity vectors, the sensitivity matrix S and the residual

matrix R are computed as follows

S =
[

s1 · · · sm

]

(6)

R =
[

r1 · · · rm

]

(7)
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Notice that, the S and R matrices have been computed

assuming all the nodes measured.

To select a configuration with n sensors, the next binary

vector is defined

q =
[

q1 · · · qm
]

(8)

where qi = 1 if the pressure in node i is measured, and qi =
0 otherwise. In turn, a diagonal matrix Q(q) is constructed

from the vector q as

Q(q) := diag(q1, · · · , qm) (9)

Then, given the vector q denoting which sensors are ins-

talled, the corresponding sensitivity and residual vectors can

be determined as

sj(q) = Q(q)sj , rk(q) = Q(q)rk (10)

for j = 1, · · · ,m, where sj and rk are the sensitivity

and residual vectors obtained with all nodes measured (i.e.

m = n, the vectors sj and the vectors rk contains m ele-

ments each). Finally, the projections in (3) can be computed

depending of the sensors regarded in q as

ψkj(q) =
r
T
kQ(q)sj

|Q(q)rk||Q(q)sj |
(11)

for j = 1, · · · ,m. Note that the property Q(qT )Q(q) =
Q(q) has been used in (11).

Now we are able to compute the projection matrix Ψ as

Ψ(q) =







ψ11(q) · · · ψ1m(q)
...

. . .
...

ψm1(q) · · · ψmm(q)






(12)

In order to infer how good a sensor configuration is to

locate a leak at node i ∈ {1, · · · ,m}, the next performance

index is introduced:

εi(q) =

{

0 if ψii(q) = max({ψi1(q), · · · , ψim(q)})
1 otherwise

(13)

such that the performance index εi = 0 as long as leak in

node i is perfectly located, and εi = 1 otherwise.

As the objective is to maximize isolability regarding leaks

in all network nodes, the performance index is computed to

account for all nodes leak as

ε̄(q) =
m
∑

i=1

εi(q)

m
(14)

Notice that ε̄(q) = 0 as long as a sensor configuration is

chosen such that all possible leaks can be perfectly located.

Indeed, ε̄(q) ∗ 100 is the percentage of non isolable leaks.

Based on the vector q and the extended performance

index ε̄(q) the sensor placement problem is casted as an

optimization problem formulated as

min
q

ε̄(q)

s.t.

m
∑

i=1

qi = n

(15)

where q is defined in (8) and n ∈ {1, . . . ,m} is the number

of sensors we want to place.

Remark. It should be noticed that the solution of the

previous optimization algorithm provides the best sensor

location when the leak size that is wanted to be located is

close to the value used for evaluating residuals (5). If the leak

size is smaller or larger that this value, the optimal sensor

location could vary. Moreover, the obtained leak isolation

error could be larger that the minimum value obtained as

the solution of the optimization problem (15). This motivates

for enhancing the sensor placement method suggested in

this paper by introducing some robustness against the leak

magnitude.

IV. SOLUTION USING A SEMI-EXHAUSTIVE

SEARCH

As stated in Section III, the problem of sensor placement

involves finding an n-sensor configuration among a set of m

candidate nodes. One trivial approach to solve the problem

would be to check all the
(

m
n

)

sensor configurations. Here,

we propose a first algorithm as an alternative to this trivial

methodology in order to ensure the optimal location in a

benchmark network.

This method involves the search of the best configura-

tion based on every possible combination but reducing the

computation cost by rejecting configurations that is proved

they can not be candidates for the optimum. The method is

described in Algorithm 1.

The goal of this algorithm is to find the optimal sensor

configuration taking into account all the possible combina-

tions of sensors and considering the method that will be used

to perform the leak location. First, the algorithm initiates

the minimum number of non localizable (NL) leaks minNL

found so far to m (line 1). Then, a loop is performed over

each possible combination k of sensors configuration (line 2).

The binary vector qk is evaluated which allows to compute

the updated sensitivity and residual matrices, i.e., Ŝk and

R̂k respectively (line 3 and 4) and the current number of NL

leaks is initiated to 0 (line 5). Then, the algorithm checks

for each potential leak α if it can be located with the current

sensor configuration. It evaluates the element (α, α) of the

matrix Ψ and for each other column β of row α, it tests

if the projection gives a higher score (line 10). If it is

the case, then the number of NL leaks is augmented (line

11) and the other columns of the Ψ matrix do not need

to be tested (line 12). When the number of NL leaks is

higher than the minimum number of NL leaks found so

far, i.e. nbkNL ≥ minNL, then the current configuration

cannot be optimal and the algorithm aborts the evaluation and

continues with the next configuration (line 16), improving

in this way the computational efficiency of the algorithm.

Otherwise, the minimum number of NL leaks is updated by

the current number of NL leaks (line 20) and the index of

the configuration is taken as best index found so far (line

21). This algorithm performs a semi-exhaustive search in the

sense that all the configurations are considered but useless

computations are avoided as much as possible.
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Algorithm 1 Sensor placement based on semi-exhaustive

search

Require: A sensitivity matrix S, a residual matrix R. The

number of sensors n, the number of nodes m and a

(d × n) matrix L where d =
(

m
n

)

, i.e. each row is a

possible combination of sensors position.

Ensure: The optimal sensors configuration of index kmin

with error ε̄min.

1: minNL ← m

2: for k = 1, · · · , d do

3: q
k ← eval Q(Lk) // c.f. (8)

4: Ŝk ← eval S(qk, S); R̂k ← eval R(qk, R) // c.f.

(10)

5: nbkNL ← 0
6: for α = 1, · · · ,m do

7: Ψk
αα ← eval Ψ(Ŝk, R̂k, α) // c.f. (11) and (12)

8: for β = 1, · · · ,m;β 6= α do

9: Ψk
α,β ← eval Ψ(Ŝk, R̂k, α, β)

10: if Ψk
αβ > Ψk

αα then

11: nbkNL ← nbkNL + 1
12: break

13: end if

14: end for

15: if nbkNL ≥ minNL then

16: break

17: end if

18: end for

19: if nbkNL < minNL then

20: minNL ← nbkNL

21: kmin = k

22: end if

23: end for

24: ε̄min = minNL

m

V. SOLUTION USING GA

Genetic algorithms (GA) are well known search and

optimization tools based on principles of natural genetics

and natural selection [10], [11]. Because of their broad

applicability, ease of use, and global perspective, GA have

been increasingly applied to various search and optimization

problems in the recent past. Some fundamental ideas of

genetics are borrowed and used artificially to construct search

algorithms that are robust and require minimal problem

information. GA transform a population of individual ob-

jects, each with an associated fitness value, into a new

generation of the population using the Darwinian principle

of reproduction and survival of the fittest and analogs of

naturally occurring genetic operations such as crossover

(sexual recombination) and mutation. Each individual in the

population represents a possible solution to a given problem.

The genetic algorithm attempts to find a very good (or

best) solution to the problem by genetically breeding the

population of individuals over a series of generations.

The GA can be used in the context of sensor placement

in water distribution networks in order to find near-optimal

placement of these sensors for leak detection. In that case, a

chromosome corresponds to the possible presence or absence

of a sensor at a given node.

Here, the sensor placement problem formulated as an

optimization problem in Section III is solved using genetic

algorithms and implemented using the GA Toolbox of MAT-

LAB. The GA needs to establish a function whose output

involves an index to be minimized. In our case, this function

corresponds to the evaluation of the error index computed in

(14) according to the computation of the projection matrix

as in (12). This error depends of the number of maximum

values in each row of the matrix that are not elements of the

diagonal in the projection matrix.

The pseudo-code of the algorithm is shown in the Algo-

rithm 2. First, we initialize the variables of the GA (line

1) including the number of generations, the bit string type

population, the tolerance as 10−10, and the elite count as 1 in

order to save one of the previous results analysed. Then, we

declare the search restriction (line 2) being that the number of

”ones” in the solution corresponds to the number of sensors

to install and a seed size z is chosen (line 3). This seed

creates an initial matrix with random sensor positions and

every location delivered by the GA is tested according to

the function declared in the algorithm. The sensor placement

is based on the construction of binary vectors where the

presence of a ”one” represents a sensor located in the

correspondent node. This vector allows to select the adequate

rows of the matrices S and R in order to compute the

projection matrix according to the selected nodes to be

measured. Once we have this projection matrix, we look for

the maximum value of each row of the matrix, expecting

the highest to be in the diagonal position. If it occurs, it

means that the leak index equal to the row in question can

be located with the selected sensor configuration. Otherwise,

the leak cannot be located using this configuration.

VI. REAL CASE STUDY: LIMASSOL NETWORK

The proposed methodology involving GA is applied to a

real network. In this paper, the Limassol network in Cyprus

is used. This network has a total of 197 demand nodes and

is represented in Figure 1. The network model is available

in EPANET, as in the case of the Hanoi network. First,

results obtained when placing three sensors are achieved

by using the semi-exhaustive algorithm. This algorithm is

time-demanding in this case since there are more than

1.2 × 106 possible combinations of nodes to be measured.

The sensor placement problem is set-up with an EC = 0.25
(leak of approximately 1.67 lps) for the sensitivities and an

EC = 0.20 (leak magnitude= 1.3 lps approximately) for

the residuals. The best configuration obtained leads to place

sensors in nodes {82, 133, 157} with an ε̄ = 0.258. This

triplet will serve as reference to evaluate the performance

of the GA approach. Then, we apply Algorithm 2 based on

GA in order to find the adequate set of sensor configurations

for various types of residual and sensitivity matrices when

varying the EC according to leak magnitudes within a given

range.
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Algorithm 2 Sensor placement based on Genetic Algorithms

Require: A sensitivity matrix S, a residual matrix R. The

number of sensors n, the number of nodes m and the

maximum number of iterations d.

Ensure: A near-optimal sensors configuration qmin with

error index ε̄min.

1: init← InitV arGA()
2: restrict← SetRestrictions(

∑m

i=1 qi = n)
3: z ← ChooseSeed()
4: for k = 1, · · · , d do

5: Create Ik matrix of size ((z + 1) × m) where each

row is a random initialization such that:

Ik
ij|i6=(z+1) ←

{

1 if row i is with a sensor in node j

0 otherwise

Ik(z+1)j ←

{

{} if k = 1
qk−1 otherwise

6: GA based search:

7: Inputs: init, restrict, R, S, Ik.

8: while An optimization criterion is not reached do

9: q← getConfig()
10: Ŝ(q)← eval S(q, S(q))

R̂(q)← eval R(q, R(q))
11: Ψ(q)← eval Ψ(R̂(q), Ŝ(q))
12: ε(q)← eval ε(Ψ(q)) // c.f. (13)

13: ε̄(q)← mean
i

(εi(q)) //c.f. (14)

14: end while

15: Find {qk, ε̄k} such that ε̄k = min
q

(ε̄(q))

16: end for

17: Find {qmin, ε̄min} such that ε̄ = min
k

(ε̄k)

TABLE I

CORRESPONDING ERROR INDEX IN LIMASSOL NETWORK FOR

CONFIGURATION IN II

Residuals EC

Sensitivities EC 0.15 0.2 0.25 0.3 0.35

0.15 0.324 0.294 0.299 0.314

0.2 0.299 0.284 0.279 0.294

0.25 0.279 0.274 0.243 0.243

0.3 0.309 0.279 0.263 0.258

0.35 0.324 0.279 0.263 0.258

The decision of how to choose the location of the sensors

in the network is based on the Algorithm 2. In order to look

for the best configuration according to sensitivities and resid-

uals, we perform the search using every possible combination

of sensitivites/residuals considering different leak magnitude

sizes (EC values). Table I shows the computed error index

for each case that was found using the genetic algorithm.

Table II presents the nodes where the sensors should be

placed in order to obtain the minimum isolation error com-

puted via genetic algorithms according to the value selected

in the computation of the sensitivities and the magnitude of

the leak tested (see Table I). Just for validation, if the same

analyses were repeated with the semi-exhaustive search, the

Fig. 1. Water network in Limassol, Cyprus

same error and configurations as the GA case would be found

but with a higher computational cost.

From previous tables, it can be noticed (as in the case of

the Hanoi network) that depending of the emitter coefficient

(leak magnitude) selected for the sensitivities and for the

residuals, the algorithm finds different configurations. In

order to find the best configuration, the following tests are

performed:

• Variation in the tested leak magnitude: We compute the

projection matrix for all the found configurations tak-

ing into account every combination of the sensitivities

computed with emitter coefficient values of 0.15, 0.2,

0.25, 0.3 and 0.35 and the same number of computation

of the residuals.

• Consideration of a limited sensor precision: To take into

account the limitation of the sensor precision, we trun-

cate the two last decimals of the pressure measurements

to compute the residual matrices.

• Application of random noise in the measurements: The

third test is the application of random noise in the mea-

surements around 0.5% of the expected measurements.

In order to select the adequate configuration of sensors, we

propose to perform the experiments described above and look

for the combination with the smallest average error index for

all the possible leak magnitudes and sensitivities to test. This

criterion is analytically established by taking the minimum

of the average error indices

min(
1

L2

L
∑

j=1

L
∑

i=1

εij) (16)

where L is the number of leak magnitudes used and εij is

the error index (c.f. (13) and (14)) obtained with residual

and sensitivity with respective indices i and j. In such a

way, the search of the best sensor placement is built as a

min-max optimization problem.

The Table III shows the averages obtained for each config-

uration when the experiments were performed as well as the
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TABLE II

SENSOR PLACEMENT IN LIMASSOL NETWORK INSTALLING 3 SENSORS

Residuals EC

Sensitivities EC 0.15 0.2 0.25 0.3 0.35

0.15 40 77 172 25 77 133 76 133 185 76 133 152

0.2 76 133 152 76 86 152 77 124 152 76 110 173

0.25 85 156 196 8 76 150 75 116 157 72 115 150

0.3 72 118 163 76 133 141 77 111 150 75 23 152

0.35 76 128 140 75 120 150 77 115 137 29 112 152

TABLE III

NORMALIZED ERROR INDEX AVERAGES IN EXPERIMENTS

Test

Configuration Magnitude Resolution Noise Average

1 75 116 157 0.3363 0.4124 0.5759 0.4415

2 85 156 196 0.3617 0.4546 0.5967 0.4710

3 72 115 150 0.3449 0.4289 0.5830 0.4523

4 76 110 173 0.3404 0.4089 0.5561 0.4351

5 77 124 152 0.3480 0.4442 0.5807 0.4576

6 76 133 152 0.3183 0.4028 0.5581 0.4264

7 76 86 152 0.3348 0.4208 0.5723 0.4426

8 25 77 133 0.3358 0.4195 0.5688 0.4414

9 76 133 185 0.3338 0.4203 0.5640 0.4393

10 40 77 172 0.3675 0.4475 0.6162 0.4771

11 76 133 152 0.3183 0.4028 0.5462 0.4224

12 8 76 150 0.3558 0.4617 0.6127 0.4767

13 72 118 163 0.3731 0.4429 0.5759 0.4640

14 76 133 141 0.3411 0.4157 0.5703 0.4424

15 76 128 140 0.3553 0.4246 0.5731 0.4510

16 75 120 150 0.3284 0.4310 0.5817 0.4470

17 77 111 150 0.3419 0.4223 0.5660 0.4434

18 77 115 137 0.3299 0.4168 0.5612 0.4360

19 75 123 152 0.3388 0.4206 0.5749 0.4448

20 29 112 152 0.3939 0.4546 0.5896 0.4794

total average for each solution. From this table, the optimal

sensor placement configuration is the one with minimum

total average error index.

As a conclusion, although the performance decreases in

presence of uncertainties related to leak magnitude, a near

optimal solution for the sensor placement can be found

placing the sensors in nodes 76, 133 and 152 in order to

maximize the leak isolability criteria.

VII. CONCLUSIONS

In this paper a new approach to sensor placement for water

distribution networks, that maximizes leak isolability, has

been proposed. This approach is combined with a projection

based isolation scheme. Nevertheless, it could be easily

adapted to any other isolation scheme.

The sensor placement problem has been formulated as

an integer optimization problem. The optimization criterion

is based on minimizing the number of non-isolable leaks

according to the isolability criteria introduced. Because of

the non-linear integer and large-scale nature of the resulting

optimization problem, GA have been proposed. To validate

the results obtained, they have been compared with those

produced by an exhaustive search method with higher com-

putational cost proving that GA allow to find near-optimal

solutions with less computational load. The effect on the

unknown leak size and its effect in the sensor placement

algorithm have also been studied.

As future work, we propose to perform the analysis based

on the behavior of the network along a time horizon taking

into account the demand pattern to improve the selection of

the best place to locate the sensors. We also want to design a

robust algorithm in which all the uncertainties are evaluated

inside the optimization function in order to obtain a sensor

placement that considers the effect of noise, sensor resolution

and different leak magnitudes.
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