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Abstract— The problem of optimal sensor placement for FDI
consists in determining the set of sensors that minimizes a
pre-defined cost function satisfying at the same time a pre-
established set of FDI specifications for a given set of faults.
The main contribution of this paper is to propose an algorithm
for model-based FDI sensor placement based on formulating
a mixed integer optimization problem. FDI specifications are
translated into constraints of the optimization problem consid-
ering that the whole set of ARRs has been generated, under
the assumption that all candidate sensors are installed. To show
the effectiveness of this approach, an application based on a
two-tanks system is proposed.

I. INTRODUCTION

The sensor placement problem consists in determining

the optimal set of sensors to install in a process such

that several goals are fulfilled. For instance, observability

is a key process property, seek in the design of a process

control algorithm. Other desirable properties are reliability,

precision, robustness, etc.

There are several articles devoted to the study of the

design of sensor networks using goals corresponding to

normal monitoring operations. Aside from cost, different

other objective functions such as precision [1], reliability [2],

or simply observability [1] were used. Different techniques

were also used, such as graph theory [2], mathematical

programming [3], genetic algorithms [4] and multiobjective

optimization [4], among others. The problem has also been

extended to incorporate upgrade considerations [5] and main-

tenance costs [6]. In [7][8], Bagajewicz reviews all these

methods and also discusses the applications to bilinear and

fully nonlinear systems.

Process disturbances or faults, if undetected, have a serious

impact on process economy, product quality, safety, produc-

tivity, and pollution level. In order to detect, isolate and

correct these abnormal process behaviors, efficient and ad-

vanced automated diagnostic systems are of great importance

to modern industries. Considerable research has gone into

the development of such diagnostic systems [9][10][11]. All

model-based approaches for fault detection and isolation in

some sense involve the comparison of the observed behavior

of the process to a reference model. Process behavior is

inferred using sensors measuring the important variables in

the process. Hence, the efficiency of the diagnostic approach
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critically depends on the location of sensors monitoring

process variables. The emphasis of most of the work on

model-based fault diagnosis has been more on procedures

to perform diagnosis given a set of sensors and less on the

actual location of sensors for efficient identification of faults.

This paper focuses in the design of a sensor network for

model-based Fault Detection and Isolation (FDI) such that

faults are detected and eventually isolated. Some contribu-

tions have already been done in this direction [12][13][14].

In model-based FDI, faults are modeled as deviations of

parameter values or unknown signals and diagnostic models

are often brought back to a residual form. Residual quantities

are zero in the absence of faults and each residual acts as an

alarm that is expected to trigger to a non-zero value upon the

occurrence of some faults, in which case the residual is said

to be sensitive to these faults. The expected triggering pat-

tern(s) of a set of residuals under some fault is interpreted as

the fault signature. Fault isolation is performed by checking

the observed residual pattern against different fault signatures

[15]. The main approaches to construct residuals are based

on using Analytical Redundancy Relations (ARRs) generated

either using the parity space [16] or observer approaches

[17].

As noticed in [7], the problem of sensor placement in the

model-based FDI community is still an open problem. In [13]

the sensor placement problem is solved by the analysis of a

set of possible ARRs using algorithms of cycle generation

in graphs. More recent approaches consist in finding the set

of all possible ARRs under the assumption that all possible

sensors are installed [14]. Just recently, several exhaustive

methods have been developed that claim to generate the

complete set of ARRs [18][19][20]. For sensor placement,

it is required to use an ARR generation algorithm that is

complete. Otherwise, the sensor placement could exclude

from consideration some sensor configurations just because

some ARRs were not generated. Excluded configurations

could provide better FDI results that the ones that were

generated. Or, even in some dramatic cases, the sensor

placement could not find a solution because of this lack of

completeness, whereas, in fact, if all ARRs were generated

a solution would have been found.

The main contribution of this paper is to propose an

algorithm for model-based FDI sensor placement based on

formulating a mixed integer optimization problem. FDI spec-

ifications are translated into constraints of the optimization

problem considering that the whole set of ARRs has been

generated, under the assumption that all candidate sensors

are installed. It has been inspired until some extent in [21].
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There, a mixed-integer linear programming (MILP) formula-

tion for the design of sensor networks for simultaneous pro-

cess monitoring and fault detection/isolation was presented.

The objective was to find a cost-optimal sensor set for a

chemical process that provided a good estimate of the state of

the system and detected as well as isolated a preestablished

set of faults. The optimization problem was casted as an

MILP formulation inspired in [3]. The idea was to define a

cost function based on a binary optimization vector which

stated whether a sensor was installed (1) or not (0). However,

constraints were formulated as linear inequalities based on

a digraph description of the fault propagation behavior of

the process in presence of faults [22]. In the present paper,

as already noticed, constraints are formulated on the set of

all ARRs generated from the system model considering that

the whole set of candidate sensors has been installed. For an

alternative MILP formulation of this approach see [23].

The structure of the paper is the following. Section II

introduces some model-based FDI basics and states the

sensor placement problem for FDI. In Section III, the sensor

placement problem is formulated as an optimization prob-

lem. Next, Section IV applies this optimal sensor place-

ment approach to a two-tanks system. In Section V, some

computation complexity issues are analyzed. Finally, some

conclusions and extensions are suggested in Section VI.

II. MODEL-BASED FDI

A. The ARR Table

In model-based FDI, the behavior of a plant is usually

modeled by a set of equations, E, which in general depend

not only on known variables (i.e., measured input and

output process variables) but also on unknown variables

(i.e., unmeasured internal process variables). In order to

evaluate the consistency between the model and measure-

ments taken from available sensors in the process, Analytical

Redundancy Relations (ARRs) that only depend on known

variables should be generated. ARRs can be obtained by

eliminating unknown variables through the convenient ma-

nipulation of process equations. For that purpose, structural

analysis theory has been extensively used in model-based

FDI [9][18][19][20]. A structural model is an abstraction of

the equations model, E, in which only appears the variables

involved in the relations. The structural model can be rep-

resented by a binary Incidence Matrix, IM , which crosses

model relations in rows and model variables in columns: an

entry imij of the matrix is 1 when variable j appears in

relation i, and 0 otherwise.

According to the structural analysis theory, the binary ARR

Table, A, crosses measured variables or sensors in columns

and all possible ARRs in rows, denoted by R: aij = 1 means

that ARR ri ∈ R depends on sensor sj , aij = 0 otherwise.

For instance, according to Table I, r1 only depends on the

variables measured by sensors s5, s7 and s8.

B. The Fault Signature Matrix

According to the structural analysis approach to FDI [18],

each ARR is expected or not to be sensitive to a fault,

TABLE I

EXAMPLE OF AN ARR TABLE

s5 s6 s7 s8

r1 1 0 1 1
r2 1 1 0 0
r3 0 1 1 1
r4 0 0 0 1
r5 1 0 1 0

TABLE II

EXAMPLE OF A FAULT SIGNATURE MATRIX

f1 f2 f3 f4 f5 f6 f7 f8

r1 0 0 1 0 1 0 1 1
r2 1 0 0 0 1 1 0 0
r3 0 1 1 1 0 1 1 1
r4 1 0 0 0 0 0 0 1
r5 1 0 0 1 1 0 1 0

characterizing the binary Fault Signature Matrix, M . In

this matrix, columns represent faults and rows represent all

possible ARRs R: mik = 1 means that whenever fault fk

occurs, the ARR ri ∈ R is violated.

Assume that Table II shows the Fault Signature Matrix

that corresponds to Table I. According to this table, whenever

fault f3 is present, ARRs r1 and r3 are violated.

On a given system, fault detection and isolation properties

can be stated based on the information stored by this matrix.

Possible properties are:

• Detectability: A set of faults are detectable if their

effects on the system can be observed on the available

set of ARRs. A fault fk is detectable if at least there is

a 1 present in the kth-column of M .

• Isolability1: A set of faults are (fully) isolable if their

effects can be discriminated one of each other consid-

ering the available set of ARRs. Two faults fk and fl

are isolable if the kth-column and the lth-column of M

are different.

For instance, in Table II all faults are detectable and

isolable.

C. Sensor Placement for Model-Based FDI

Let P be the set of fixed process components. A tank,

a valve, a level sensor and a controller are examples of

process components. This set contains the components that

are needed for the proper operation of the process, so that

the predesigned functional specifications are met. The term

’fixed’ denotes that these components are present in any

sensor placement configuration. Fixed process components

can be affected by faults. Assume that FP is the set of all

fixed process components faults.

Let S be the set of candidate sensors. This set contains all

possible sensors that can be installed in the system, so that

the fault detection and isolation specifications are fulfilled.

The term ’candidate’ means that the chosen sensor placement

1Under single-fault isolability assumption
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configuration will state which sensors will be present in the

process and which not. Let S∗ ⊆ S denote such set of

installed sensors. Assume that every sensor sj ∈ S can be

affected by a fault fj ∈ FS , where FS is the set of candidate

sensors faults. Then, FS∗ will denote the set of installed

sensors faults.

As sensors are a kind of process component, let F =
FS∪FP be the set of all possible process components faults.

Then, the sensor placement problem for model-based FDI

can be stated as follows:

Sensor placement problem for model-based FDI:

GIVEN a set of candidate sensors, S, a structural

model, IM (obtained from the set of model equa-

tions, E), a Target Fault Set, denoted by FD ⊆
F , and a set of model-based FDI specifications,

denoted by T , FIND a set of installed sensors,

S∗ ⊆ S, such that FD fulfils T .

Possible model-based FDI specificacions are fault de-

tectability and fault isolability, as stated in the preceding

section. The assessment of these specifications for every

possible subset of candidate sensors requires the generation

of the ARR Table and the Fault Signature Matrix, which must

be obtained from IM , since both tables are different for each

subset.

Given a set of installed sensors, S∗ ⊆ S. Let A(S∗) and

M(S∗) denote the ARR Table and the Fault Signature Matrix,

with ARRs that just depend on any subset of S∗. Let R(S∗)
be this set of ARRs. A particular case is Â = A(S) and

M̂ = M(S), denoting the Full ARR Table and the Full Fault

Signature Matrix, when all candidate sensors are installed.

In this particular case, let R̂ = R(S) denote the Full ARR

Set.

Given M̂ and Â, it is easy to obtain any possible M(S∗).

It suffices to eliminate in M̂ the ARRs which depend on

sensors s ∈ S \ S∗, according to Â. Assume that in Table

II FP = {f1, f2, f3, f4} and FS = {f5, f6, f7, f8}. Note

that for candidate sensor faults the Fault Signature Matrix

coincides with the ARR Table. The reason for this is that if

an ARR ri depends on a sensor sj , then ri is sensible to

faults affecting sj . If the set of installed sensors is S∗ =
{s5, s7, s8}, then A(S∗) just comprises ARRs belonging to

the set R(S∗) = {r1, r4, r5}. ARRs r2 and r3 has been

discarded since they depend on s6, which is not available

according to the current configuration, S∗. Consequently,

M(S∗) just comprises ARRs belonging to this set R(S∗).
Then, assuming that FD = {f1, f2, f3, f4} and according to

the resulting Fault Signature Matrix, faults f1, f3 and f4 are

detectable and isolable, whereas fault f2 is not detectable.

Consequently, a possible approach to solve the sensor

placement problem for model-based FDI involves that the

Full ARR Table and the Full Fault Signature Matrix has

already been generated using any of the available complete

algorithms [18][19][20]. From these tables, and introducing a

cost for each candidate sensor, the sensor placement problem

can be translated to an optimization problem, as presented

in next section.

III. OPTIMAL SENSOR PLACEMENT PROBLEM

FORMULATION

A. Optimization Problem Statement

Let q be a vector of binary elements that denotes which

candidate sensors are installed or not. qj = 1 means that

sensor sj ∈ S is installed, whereas qj = 0 means that sj

is not. Then, the optimal sensor placement problem can be

formulated as the following optimization problem:

min : J(q) =
m∑

j=1

wjqj

subject to

FD is detectable

FD is isolable, (1)

where m is the total number of candidate sensors and wj

is the cost of sensor sj comprising purchase, maintenance,

installation and reliability costs.

Problem (1) will be solved for two general cases:

• CASE I: F I
D = FP .

• CASE II: F II
D = FP ∪ FS∗

In CASE I, the Target Fault Set is known a priori, before

solving the optimization problem. In CASE II, this is not true,

since FS∗ will be known a posteriori, after the optimization

problem is solved.

To solve (1), fault detection and isolation specifications

must be stated as a set of optimization constraints. Next

sections describe how the Full ARR Table and the Full Fault

Signature Matrix will serve that purpose.

B. The ARR Selector

Given a set of installed sensors S∗ ⊆ S, let ρi be the

binary ARR selector denoting whether ARR ri is valid (ρi =
1) or not (ρi = 0), according to S∗.

The ARR selector can be expressed as in (2), where set S

and table Â are given, whereas q is the optimization vector.

ρi =
∏

sj∈S

[
Âij qj + (1 − Âij)

]
(2)

For each candidate sensor sj , if ri depends on sj , this

sensor is required to be installed. If ri does not depend on

sj , it is not a requirement. Then, ri is valid as long as all

required sensors are installed (i.e., they belong to the current

sensor placement configuration).

For instance, according to Table I, ρ5 = q5q7, which

means that r5 is valid as long as sensors s5 and s7 are

installed.

C. Fault Detectability Constraint Formulation

First, CASE I will be considered. The fault detectability

requirement can be expressed as (3), where sets R̂ and FP

and matrix M̂ are given, and ρi corresponds to (2).

F I
D is detectable ↔

∑

ri∈R̂

M̂ikρi ≥ 1, ∀fk ∈ FP (3)
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Constraint (3) assures that the column of M̂ which cor-

responds to fault fk contains at least one 1 associated to a

valid ARR.

For instance, given Tables I and II, the fault detectability

constraint associated to fault f1 is q5q6 + q8 + q5q7 ≥ 1 and

for fault f2 is q6q7q8 ≥ 1. So, if the set of installed sensors

is S∗ = {s5, s7}, then f1 is detectable, whereas f2 is not.

In CASE II, faults affecting fixed process components

as well as candidate sensors are considered. The constraint

formulation (see (4)) depends on the type of fault considered.

F II
D is detectable ↔

∑

ri∈R̂

M̂ikρi ≥

{
1 if fk ∈ FP ,

qk if fk ∈ FS .
∀fk ∈ F (4)

According to (4), (3) is applicable whenever a fixed

process component fault or a candidate sensor fault is

considered, as long as this candidate sensor is installed

(i.e., qk = 1). For non-installed candidate sensors, the right

hand side of the inequality becomes 0, meaning that no

detectability property is expected for them.

Given Tables I and II, the fault detectability constraint

associated to fault f1 is q5q6 + q8 + q5q7 ≥ 1 and for fault

f5 is q5q7q8 + q5q6 + q5q7 ≥ q5. So, if the set of installed

sensors is S∗ = {s5, s7}, then f1 and f5 are detectable.

D. Fault Isolability Constraint Formulation

First, CASE I will be considered. The fault isolability

requirement can be expressed as (5), where sets R̂ and FP

and matrix M̂ are given, and ρi corresponds to (2).

F I
D is isolable ↔

∑

ri∈R̂

∣∣∣M̂ik − M̂il

∣∣∣ ρi ≥ 1,∀fk, fl ∈ FP , fk 6= fl (5)

Constraint (5) assures that every two columns of M̂ are

different at least in one row associated to a valid ARR.

For instance, given Tables I and II, the fault isolability

constraint associated to faults f3 and f4 is q5q7q8+q5q7 ≥ 1.

So, if the set of installed sensors is S∗ = {s5, s7}, then f3

and f4 are isolable.

Again, the constraint formulation for CASE II (see (6))

depends on the type of fault considered.

F II
D is isolable ↔

∑

ri∈R̂

∣∣∣M̂ik − M̂il

∣∣∣ ρi ≥






1 if fk, fl ∈ FP ,

qk if fl ∈ FP and fk ∈ FS ,

ql if fk ∈ FP and fl ∈ FS ,

qkql if fk, fl ∈ FS .

∀fk, fl ∈ F, fk 6= fl (6)

According to (6), (5) is applicable whenever fixed process

component faults or candidate sensor faults are considered,

as long as the candidate sensors are installed (i.e., qk = 1
and ql = 1). For non-installed candidate sensors (either sk

qp(t)

qv(t)

hu(t)

hl(t)

uv(t)

up(t)

Fig. 1. Two-tanks system

TABLE III

VARIABLES OF THE TWO-TANKS SYSTEM

Variable Description

hu upper tank level
hl lower tank level
qv valve flow
qp pump flow
uv valve control input
up pump control input

or sl, or both), the right hand side of the inequality becomes

0, meaning that no isolability property is expected for them.

For instance, given Tables I and II, the fault isolability

constraint associated to faults f4 and f8 is q5q7q8 + q8 +
q5q7 ≥ q8. So, if the set of installed sensors is S∗ = {s5, s7},

then f4 and f8 are isolable.

IV. APPLICATION TO A TWO-TANKS SYSTEM

A. Process Description

The system is made up of two tanks interconnected by

a pump and a valve (see Fig. 1). In all, there are four

internal variables and two input variables in the system,

as summarized in Table III. So the candidate sensor set

comprises up to six sensors S = {hu, hl, qv, qp, uv, up}.

Eight hypothetical faults are considered in the system (see

Table IV): leaks in the upper and lower tanks, and wrong

readings of each candidate sensor. So the fault sets are F =
FP ∪ FS = {fu, fl} ∪ {fhu

, fhl
, fqv

, fqp
, fuv

, fup
}.

TABLE IV

HYPOTHETICAL FAULTS OF THE TWO-TANKS SYSTEM

Fault Description

fu upper tank leak
fl lower tank leak

fhu
wrong upper tank level sensor reading

fhl
wrong lower tank level sensor reading

fqv wrong valve flow sensor reading
fqp wrong pump flow sensor reading

fuv wrong valve control input sensor reading
fup wrong pump control input sensor reading
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TABLE V

RESULTS FOR CASE I

Cost distribution 1 Cost distr. 2
Sensor Cost q alternative Cost q

hu 10 X X X X 100
hl 100 X X X 10 X
qv 10 X X X X 10 X
qp 10 X X X X X X 10 X
uv 10 X X X X 100
up 100 X X X 10 X

TABLE VI

RESULTS FOR CASE II

Cost distribution 1 Cost distribution 2
Sensor Cost q alternative Cost q alternative

hu 10 X X 100 X
hl 100 X X X X 10 X X X
qv 10 X X 10 X X
qp 10 X 10 X
uv 10 X X X 100 X X
up 100 X X X X 10 X X X

B. Optimization results

Applying the exhaustive ARR generation algorithm de-

scribed in [19] a Full ARR Table and a Full Fault Signature

Matrix was created, comprising up to 35 ARRs.

Problem (1) along with constraints (3) and (5) corresponds

to CASE I. This optimization problem was implemented

in ILOG OPL Studio [24], involving 3 constraints (i.e.,

2 regarding the detectability specification and 1 for the

isolability specification). Results are given in Table V for

different candidate sensors cost distributions. A ’X’ in the

table indicates that the corresponding sensor is installed.

Cost distribution 1 suggested six alternative sensor config-

urations with the same minimum total cost of 130, whereas

cost distribution 2 produced just a unique solution, with a

minimum global cost of 40. Other cost distributions were

tested and the optimization algorithm always suggested a

sensor configuration of 4 sensors.

Problem (1) along with constraints (4) and (6) corresponds

to CASE II. This optimization problem was also implemented

in ILOG OPL Studio, now involving 36 constraints (i.e., 8

regarding the detectability specification and 28 the isolability

specification). Results are given in Table VI for different

candidate sensors cost distributions.

In this case, cost distribution 1 suggested just four alterna-

tive sensor configurations with a minimum total cost of 220.

Despite its higher cost, all these alternatives included sensors

hl and up. Thus, these sensors will be part of all solutions,

no matter what cost is assigned to them. In cost distribution

2, three alternatives where given; all included both sensors.

Again, other cost distributions were tested and the opti-

mization algorithm always suggested a sensor configuration

of 4 sensors. So, for the two-tank system, the cardinality of

S∗ will always be 4.

Notice that for CASE I the optimization algorithm pro-

duced cheaper solutions than for CASE II. This was expected,

TABLE VII

SIMPLIFIED FAULT SIGNATURE MATRIX FOR S∗
= {hl, qv, up, uv}

fu fl fhl
fqv fup fuv

r9 0 1 1 1 1 1
r18 1 0 1 1 1 1
r23 1 1 1 1 0 1
r27 1 1 1 1 1 0
r32 1 1 0 1 1 1
r34 1 1 1 0 1 1

since constraints in CASE I are more relaxed (i.e., a solution

to CASE I is more easily attainable than for CASE II).

In order to verify that the optimization algorithm is sug-

gesting feasible solutions to the FDI specifications, Table VII

shows the simplified fault signature matrix corresponding

to the first sensor configuration alternative given in Table

VI for cost distribution 1. This simplified fault signature

matrix has been obtained by eliminating, in the Full Fault

Signature Matrix, the columns that correspond to faults fhu

and fqp
, that affect sensors not installed, and the rows

that correspond to ARRs that depend on these sensors not

installed. Every column in Table VII contains at least one

1, and all columns are different. Thus, sensor configuration

S∗ = {hl, qv, up, uv} satisfies the detectability and isolabil-

ity specifications.

V. COMPUTATIONAL COMPLEXITY ISSUES

Finding a solution to problem (1) is not trivial because of

its combinatorial nature. As it is known, combinatorial prob-

lems fall in the NP category with a complexity that depends

exponentially with the number of optimization variables. In

particular, solving time for problem (1) clearly depends on

the number and complexity of the optimization constraints,

which in turn, according to section III, depend on the sizes

of the Full ARR Table and the Full Fault Signature Matrix.

On the one hand, for CASE II the number of constraints,

nC , depends on the number of faults, card(F ) (see (7)).

There is a fault detectability constraint for each fault in F

(see (4)) and a fault isolability constraint for every possible

combination of two faults out of F (see (6)).

nC = nC

∣∣
detectability

+ nC

∣∣
isolability

= card(F ) +

(
card(F )

2

)
=

card(F )(card(F ) + 1)

2
(7)

On the other hand, the complexity of the constraints

depends on the number of candidate sensors, card(S) (see

(2)), and the number of all possible ARRs, card(R̂) (see

(3)-(6)).

In the previous section, an application to a simple two-

tanks system has been presented. In this case, computational

complexity was not a real concern. In order to see the

limitations of the proposed sensor placement method, a more

demanding application was used (see [25]), involving 17

faults and 8 candidate sensors, which, according to (7), posed

an optimization problem with up to 153 constraints.
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TABLE VIII

COMPUTATIONAL COMPLEXITY STUDY

nr. of ARRs solving time (secs.)

126 7.25
169 9.88
410 47.63
701 159.06
1135 691.77
9029 > 6 hours

Several cases were analyzed corresponding to different

subsets of the Full ARR Set, whose total size was 9029. The

optimal sensor placement problem was solved for increasing

number of ARRs (i.e., increasing sizes of the Full ARR Table

and the Full Fault Signature Matrix were considered). Table

VIII, illustrates the exponential dependance of the solving

time 2 on the number of the ARRs being involved.

These results show the main drawback of the sensor

placement method presented in this paper, which clearly

limits at present its applicability to complex systems.

VI. CONCLUSIONS

This paper has addressed the problem of optimal sensor

placement for Model-based FDI. This problem consists in

determining the set of sensors that minimizes a pre-defined

cost function satisfying at the same time a pre-established

set of FDI specifications for a given set of faults. The main

contribution of this paper has been to propose an algorithm

for model-based FDI sensor placement based on formulating

a mixed integer optimization problem. Any FDI specification

could be taken into account as long as it could be translated

to a constraint of the optimization problem. Fault detectabil-

ity and isolability constraints have been formulated in this

paper, but other specifications such as fault identifiability,

fault sensitivity, etc., could be easily included in the optimal

sensor placement problem. To show the effectiveness of this

approach, an application based on a two-tanks system has

been proposed.

However, this approach presents some drawbacks that

should be addressed in further research. First, constraints

are non-linear. That leads to a mixed-integer non-linear

problem that in general has a high computational complexity.

Second, the method requires a Full ARR Table and a Full

Fault Signature Matrix, that can be obtained considering the

system model structure and all candidate sensors installed.

The size of these tables grows exponentially with the number

of sensors considered. A possible way to get around these

problems is to develop an algorithm that tries to avoid the

computational burden of the approach proposed in this paper

by constructing incrementally the optimal set of sensors to

be installed in order to fulfill the FDI requirements [25].
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Sweden, June 2006.
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