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Optimal Sequencing and Arrangement in 
Distributed Single-Level Tree Networks 

with Communication Delays 
V. Bharadwaj, D. Ghose, and V. Mani 

Abstract-The problem of obtaining optimal processing time in 
a distributed computing system consisting of ( N  + 1) processors 
and :V communication links, arranged in a single-level tree 
architecture, is considered. It is shown that optimality can be 
achieved through a hierarchy of steps involving optimal load 
distribution, load sequencing, and processor-link arrangement. 
Closed-form expressions for optimal processing time is derived 
for a general case of networks with different processor speeds 
and different communication link speeds. Using these closed- 
form expressions, this paper analytically proves a number of 
significant results that in earlier studies were only conjectured 
from computational results. In addition, it also extends these 
results to a more general framework. The above analysis is 
carried out for the cases in which the root processor may or may 
not be equipped with a front-end processor. Illustrative examples 
are given for all cases considered. 

Index Terms- Communication delays, distributed processing, 
optimal arrangement, optimal load distribution, optimal load 
sequencing, optimal processing time, single-level tree networks 

I. INTRODUCTION 
HE load allocation problem involving the distribution of T processing loads to individual processors to achieve min- 

imum processing time is an important problem. The solution 
to this problem must take into account the network architec- 
ture, speeds of the processors, speeds of the communication 
linkdchannels, the number of processors and links, and the 
origination point of the load. An example of such a situation 
is the distributed intelligent sensor networks [5], [ 111, [12]. 
In such a network, the sensors/processors are geographically 
distributed, and one of the main problems is to determine the 
fractions of the total computational load to be distributed to the 
individual sensors/processors. In general, the computational 
load can be either indivisible or arbitrarily divisible. In this 
paper, we consider the latter case, which finds application in 
the areas of processing of large data files, such as in signal 
processing, Kalman filtering,and experimental data processing. 
In [6], [7], communicating processors arranged in a linear 
and tree network are considered. In [ l ] ,  [2], the problem 
of intelligent sensor network of communicating processors, 
connected through a common bus, is considered. In [l], [2], 
[6], [7 ] ,  recursive equations for optimal load distribution are 
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developed and solved computationally. A closed-form solution 
for minimum finish time for a bus architecture is also derived 
in [ l ] ,  [2]. In [lo],  the problem of a linear network of 
communicating processors is considered, and closed-form so- 
lutions and an easily implementable computational technique 
for determining optimal distribution of processing loads among 
individual processors is presented. In [8], the asymptotic 
performance analysis of linear and tree networks is presented. 

In this paper, we give closed-form solutions for processing 
time in a single-level tree network, wherein the root processor 
may or may not be equipped with a front-end processor. The 
single-level tree network can also be viewed as a star structure, 
with a processor designated as a central processor and all 
other processors connected to it through communication links. 
However, throughout this paper, we refer to this architecture as 
a single-level tree network. We show that optimal processing 
time not only can be obtained through an optimal distribution 
of load but also can be improved further through a combination 
of optimal load distribution, optimal sequence of distribution, 
and optimal arrangement of processors and communication 
links (when such a rearrangement is possible). This combina- 
tion constitutes an hierarchy of steps leading to the achievment 
of optimal processing time. 

The organization of the paper is as follows. Section I1 
formulates the problem, gives some necessary definitions, 
derives closed-form expressions, and presents some important 
previous results. Section I11 proves the main results of achiev- 
ing optimal processing time. Section IV concludes the paper 
with some relevant discussions. 

11. DEFINITIONS AND PROBLEM FORMULATION 

A. Dejinitions and Previous Results 

A single-level tree architecture with ( N  + 1) processors and 
N links is shown in Fig. l(a). All the processors are connected 
to the root processor PO via communication links. This tree 
configuration can be represented as an ordered set as follows: 

where (ZI,, p k )  represents the kth processor ( p k )  connected to 
the root ( P O )  via a link ( l k ) .  This ordered set T ( p 0 )  gives the 
arrangement of ( N  + 1) processors and N links. The order 
represents the sequence in which the root processor distributes 
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loads to other processors (i.e., from processors p l  to p~ 
through links lI to I N ) .  Note that this order need not represent 
any physical order in which the processors are arranged. 
However, for convenience, and without loss of generality, we 
also assume that the sequence of load distribution is from 
left to right in Fig. l(a). Thus, a change in the sequence 
of load distribution is equivalent to a corresponding change 
in the order shown in the ordered set T ( p 0 )  given in (1) 
or in Fig. l(a). Processing load distribution is a set of the 
fractions of the total processing load that is received and 
processed by each individual processor. This is denoted by 
(Y = { ( Y O ,  a l , .  . . a , ~ } .  It is assumed that a processor starts 
computing only after it receives the whole of the processing 
load assigned to it. For a single-level tree network T ( p o ) ,  we 
define the following terms. 

1) Processing Time: This is denoted as r ( T ( p 0 ) )  and de- 
fined as follows: 

where T k  is the time difference between the instant at 
which the kth processor stops processing and the instant 
at which the root processor initiates the process. 

2 )  Optimal Load Distribution: This is defined as the load 
distribution for a given arrangement and a given se- 
quence such that r (T(po))  is minimum. 

3) Optimal Sequence: This is defined as that sequence of 
optimal load distribution for a given arrangement such 
that I ' ( T ( p 0 ) )  is minimum. 

4) Optimal Arrangement: This is defined as the arrange- 
ment of links and processors, such that r (T(po))  is 
minimum, provided that optimal sequence and optimal 
load distribution is followed. 

Notation: 

wi : A constant inversely proportional to the speed of the 
processor p i .  

zi : A constant inversely proportional to the speed of the 
link l i .  

Tc, Time to communicate the entire processing load 
through a standard link. 

Tcp :Time to process the entire processing load by a 
standard processor. 

0: Ratio of communication time to processing time for a 
given load in a standard link and processor (i.e., 
T c m / T c p ) .  

For a standard processor and a standard link w = 1 and 

Let us define a class C of single-level tree networks in 
z = 1, respectively. 

which the following condition is satisfied. 

I 
I I 

KWKTcP 

Fig. 1 .  
front-end case. 

(a) Single-level tree architecture. (b) Timing diagram for with 

where 

zeq = z ( k  + 1,.  . . , k + r )  

i=k+2 j = a  

For this, consider (3a) is violated with strict inequality for 
some k and T = 1. Then we have the following equation: 

This means that the time taken by the front-end of the 
processor po to distribute a fraction of the load to the processor 
pk  via link l k  is more than the time taken to distribute the same 
load fraction through link Zk+l  and process it at the processor 
p k f l .  Hence, it is logical to send the load fraction (Yk to the 
processor p k + l  rather than to the processor p k .  The following 
example clearly illustrate the significance of (3e). 
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Example: Consider a single-level tree network with N = 3 
and wo = 2 .  w1 = 3.  wp = 1, ut3 = 2, z1 = 2 ,  z2 = 
0.5. z3 = 5, and T,, = Tcp = 1. Assuming all the proces- 
sors stop computing at the same time instant, the load distri- 
bution ct is given as n E {0.4321,0.1728,0.3457,0.0494} 
and r (T(po))  = 0.8462. Now observe that the condition 
(3e) holds for k = 1 and T = 1. Hence, omitting ( Z 1 , p l )  

from the network, we obtain the new load distribution. CY' = 
{0.3962.0.0.5283,0.0755} and r(T(po)) '  = 0.7924, which 
is an improvement over the original load distribution. 

In a similar way, extending the same logic, if (3a) is violated 
for some T 2 2, then by redistributing the load fraction ak 
among the set of processors p k + l ,  . . . , p k f r ,  the processing 
time can be decreased. This motivates the condition (3a). 
Further details are available in [3], [4]. Now we state the 
optimal load distribution theorem for the single-level t'ee 
network of processors and links that belongs to the class G. 

Theorem I (Optimal Distribution): In a single-level tree 
T ( p o )  E C, with a given arrangement and a given sequence, 
in order to achieve minimum processing time, the optimal 
load distribution should be such that all the processors must 
stop computing at the same time (i.e., To = TI = . . . = 7 ' ~ ) .  

A rigorous proof for this theorem is given in [3], [4]. The 
single-level tree network assumed in the subsequent Sections 
111-A and 111-B belong to the class C. Hgwever, we emphasize 
that the results proved for this class C of single-level tree 
networks can also be extended to a general single-level tree 
network. This will be shown in Section 111-C. 

B. Single-Level Tree Network with Front End 

In this architecture, the root processor PO is equipped with 
a front-end processor. The root processor divides the total 
load into ( N  + 1) parts, namely, a o , a 1 , . . . , a L ~ ~ .  The root 
processor keeps the fraction cto for itself for processing. 
It transmits the remaining fractions a1, ( ~ 2 .  . . . , ah to the 
processors p l  ~ . . . , p , ~ ,  respectively. All the processors at the 
first level of this architecture perform only computation. 

The timing diagram for optimal load distribution [7], using 
Theorem 1, is shown in Fig. l(b). The following are the 
corresponding recursive load distribution equations: 

k IUk T c p  = 0 k + 1 z k  + 1 T c ,  f (1 k+ 1 ?Ilk+ 1 Tc p 7 

k = 0.1. . ' .  , N - 1. (4) 

and the following is the normalizing equation: 

N 

Cnj = 1. ( 5 )  
J=o 

Rewriting (4) as follows: 

c t k  = ( L k + l f k + l ,  k = 0, 1. . " , N - 1, (6) 

these recursive equations can be solved by expressing all the 
n k ( k  = 0 .1 , .  . . , N - 1) in terms of n,y as follows: 

(7) 

From (3, the value of (YN is obtained as follows: 

Thus, the fraction of the processing load assigned to the kth 
processor is as follows: 

(9) 

From Fig. l(b), it can be seen that the processing time 
r(T(po))  is the processing time of the root processor given 
by a0woTcp. Thus, T ( T ( p o ) )  is as follows: 

The above closed-form solution will be used to prove some of 
the important results on the minimization of processing time. 

C. Single-Level Tree Network Without Front End 

In this architecture, the root processor po is not equipped 
with front-end. This means that the root processor cannot com- 
pute and communicate at the same time instant. Hence, the root 
processor first distributes the fraction of the processing loads 
a1 np, . . . , alv to the processors p1,  p p .  . . . , plv ,  respectively, 
and then starts processing its own fraction of the load. In this 
situation, it can be easily proved that only if the time taken by 
the root processor to process a given load is more than the time 
taken to communicate the same load through a communication 
link can the root processor shares the processing load with 
another processor through this channel. This leads to the 
following important criterion for load distribution: 

Otherwise, if the above criterion is not satisfied for any link 
( z ~ ) ,  then the root processor does not transmit any load through 
this link. The timing diagram for optimal load distribution [7], 
using Theorem 1, is shown in Fig. 2. The following are the 
corresponding recursive load distribution equations: 

a O w 0 T c p  = a , V w A r T c p ,  

(YkWkTcp  f f k + l z k + l T c m  + a k + l z k + l T . p ,  

k = 1 , 2 ; . . . N - l  . (12) 

The normalizing equation is as follows: 

N Eaj = 1. 
j = o  

Following the procedure adopted in the case with front-end 
and using (6) ,  we obtain the fraction of the processing load 
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Fig. 2. Timing diagram for without front-end case. 

assigned to the kth processor as follows: 

is given by the following equation: 

~ ( T b o ) )  = 

(15) 

In the next section, these closed-form expressions are used to 
prove some significant results on processing time minimiza- 
tion. 

111. ANALYSIS OF SINGLE-LEVEL TREE ARCHITECTURE 

A. Minimization of Processing Time: With Front-End Case 

In this section, we use the closed-form solutions given in 
Section 11-B to prove the main results. For this, we use the load 
distribution pattem between two adjacent processors-link pairs 
( I C  and k + 1) and prove some intermediate results first. Thus, 
we rewrite the closed-form solutions in such a way that only 
the terms corresponding to the ICth and (k + 1)th processor and 
link are present explicitly in the expression for processing time 
r(T(po)) .  The other terms are absorbed in constants defined 
in (16)-(20) at the bottom of this page. The above expressions 
and constants are valid for k = 1, . . . ! N - 3. These have to be 
redefined for the right extreme end of the tree as shown below: 

k = 1 , 2 ; - . , N - l >  

(14) where 
k - 1  

D k  = n fj> k = N -  2 , N -  (22) 
j - 1  

1 Q N  = I / {  1 + ( w v / w o )  + n fj N N 

i = 2  j=1 

Here the processing time r(T(p0))  is obtained from 7’1 and 

where 
N 

, = l  
) # t k . k + l . k + P  

N N  

j = k + 3  
k N 
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Lemma I :  In a single-level tree T ( p o ) ,  if Z k + l  5 Zk for any 
two adjacent processor-link pairs, then the processing time will 
decrease or remain the same when ( Z k , p k )  and ( l k + l , p k + l )  

are interchanged. 
Proof: When the pairs ( E k , p k )  and ( I k + l , p k + l )  are 

interchanged, the resulting arrangement T ~ ( p 0 )  is as follows: 

T A ( P 0 )  = { ( l l ,  pl), ( l 2 ,  p 2 ) 1  ' ' . 7 

( l k + l ,  p k + l ) ,  (lk , P k ) ,  ' ' ' ( I N  PA')}. (24) 

We have to prove that r(TA(p0)) 5 I'(Tp0)) if zk+l 5 z k .  

Using the constants defined earlier, and assuming that z k + l  = 
T Z k ,  T 5 1 ,  the processing times r(T(p0)) and r(TA(p0)) are 
obtained from (16), as shown in (25) and (26) at the bottom 
of this page. Let us denote the numerators of (25) and (26) as 
N 1  and N 2 ,  and the respective denominators as D 1  and D 2 .  

Since N I  = N 2 ,  we calculate the value of D1- DZ as follows: 

D1 - D 2  = { C ( k ) K 2 ( k ) ( w k + 2  + Z k + 2 a ) 2 / ( W k - 1 W f W : + 1 ) }  

x (wk + z k O ) ( W k + l  + T z k g ) ( 1  - T ) Z k g w O T c p .  

(27) 

Thus, in (27), the RHS 2 0 when T 5 1, which proves the 
lemma. Also note that when T < 1 ,  RHS > 0, which implies 
a definite decrease in the processing time. 

The lemma is proved here for k = 1 , 2 , .  .. , N - 3. For 
k = N - 2 and N - 1, it can be similarly proved using 

As mentioned earlier, interchanging adjacent processor-link 
pairs do not imply a physical rearrangement in the architecture, 

(2 1)-(23). 0 

but rather a change in the sequence of load distribution by the 
root processor. An immediate consequence of this result is the 
following theorem. 

Theorem 2 (Optimal Sequence): In a single-level tree 
"(PO), in order to achieve minimum processing time, the 
sequence of load distribution by the root processor po should 
follow the order in which the link speeds decrease. 

Proof: The proof directly follows from Lemma 1. 0 
Lemma 2: In a single level tree T ( p o ) ,  the following con- 

1) If w k + l  I Wk and Z k + l  > Zk for any two adjacent 
processor-link pairs (lk, p k )  and ( l k + l ,  p k + l ) ,  then the 
processing time will decrease or remain the same when 
only the processors p k  and p k + l  are interchanged. 

2) If z l ~ + ~  = Zk for any two adjacent links I I ,  and h + l ,  
then the processing time is independent of the order in 
which the processors pk and pk+l are arranged. 

ditions exist. 

Proof: 
1)  If the processors pk and p k + l  are interchanged, then the 

resulting arrangement T B ( p o )  is as follows: 

We have to prove that r ( T B ( P 0 ) )  5 r(T(p0)) if w k + l  5 
Wk, given that z k + l  2 z k .  Using the constants defined 
earlier, and assuming that w k + l  = pwk, ,B 5 1, 
and z k + l  = z k ,  T > 1,  the processing times for the 
above two cases are obtained from (16) as shown in 
(29) and (30) at the bottom of the page. Following 
the same procedure as in previous lemma, the value of 
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as follows: 

The RHS? 0 when /3 5 1, given that T > 1, thus 
proving the first part of this lemma. 
To prove the second part, we use (31). We see that when 
Zk+l = Z k ,  i.e., T = 1, the value of ( N I &  - N2D1) 
reduces to 0, regardless of the value of p, implying that 
the processing time is independent of the order in which 
the processors pk and pk+l are arranged. 

Here, too, the lemma was proved for k = 1 , 2 , .  . . , N - 3. 
It can be similarly proved for k = N - 2 and N - 1 using 
(21)-(23). 0 

Note that interchanging two adjacent processors implies 
a physical rearrangement in the architecture. An immediate 
consequence of part 2) of the above lemma is the following 
theorem. 

Theorem 3: In a single-level tree T ( p o ) ,  if all the links 
have the same speed, i.e., zi = z ,  i = 1 , 2 , .  .. , N ,  then 
the processing time is independent of the order in which the 
processors are arranged. 

Proofi The proof directly follows from Lemma 2. 0 
Note that the above theorem can also be proved using 

Lemma 1, assuming that T = 1 .  The result of this theorem was 
also observed in the numerical example given in [2]. When all 
the 2’s are equal the network behaves like a bus architecture 
discussed in [2 ] .  

Theorem 4: In a single-level tree T ( p o ) ,  in order to achieve 
minimum processing time, the processors and links should be 
arranged in such a way that Wk+1 2 W k  and Zk+l 2 Z k ,  
k = 1 , 2 , . . . , N  - 1. 

Proof: The proof directly follows from Lemma 1 and 
Lemma 2. 0 

This theorem proposes a method by which minimum pro- 
cessing time can be achieved, provided that an architectural 
rearrangement of links and processors, connected to the root 
processor, is possible. So far, the root processor was not taken 
into account during the rearrangement. The following results 
deal with this aspect of the problem. Here, though exchanging 
the root with a processor at the first level, the front-end is 
assumed to remain at the root. 

Lemma 3: In a single-level tree T ( p o ) ,  when po is equipped 
with a front-end, with Wk+l 2 W k  and Zk+l 2 Z k ,  k = 
1 , 2 , .  . . N - 1; if w1 5 W O ,  then the processing time will de- 
crease or remain the same by interchanging the root processor 
(PO) with the first left-hand-side processor ( p l ) .  

Proof: Since the processors and links are arranged in 
such a way that W k + l  2 W k  and Zk+l 2 Z k ,  the fastest 
link-processor pair will be in the first left position, i.e., 
( Z 1 , p l ) .  Suppose we interchange the root processor po with 
the processor p l .  The resulting arrangement Tc(p1) will be 

Tc(~i) = {(zi,po),(Ez,p~)~...,(l~,p~)}. (32) 

We have to prove that r ( T C ( p 1 ) )  5 r (T(p0))  if 201 5 W O .  

For this, we use the constants Kl(0) and K2(0), defined in 
(18) and (19). Letting W O  = owl,  /’3 2 1, the processing times 
r (T(p0))  and r ( T C ( p 1 ) )  are obtained as: 

Who)) = 
K2(0)(w2 + ZZOl(W1 + Zl.)PwlTc,/(pw:) 

K l (0 )  + K Z ( O ) ( W 2  + Z Z O ) { l +  (w1 + ~ l ~ ) / P w l } / w l  
(33) 

K2(0)(wz + Z 2 O ) ( P W l  + Z14wlTCp/(Pw;) 

K l ( 0 )  + K 2 ( O ) ( W Z  + z2a>{ l+  ( P W l +  Zlo)/Wl}/p2Ol. 

(34) 

Denoting the respective numerators as Nl and N2,  and de- 
nominators as D1 and D z ,  the value of N1D2 - N2D1 is 
obtained as follows: 

V C ( P 0 ) )  = 

N1Dz - N2D1 = 

{K2(O)Kl(O)(W2 + x24/Pw%} 
x ( 2 1 0  + (w2 + z20)(Z10 + ( (w1+ Z l . ) ( P W l +  z la ) /Pwl ) ) }  
x ( P  - l)WlT,, (35) 

In ( 3 9 ,  the RHS 2 0 if /3 2 1 ,  thus proving the lemma. Note 
that if P > 1, then the RHS > 0, implying a definite decrease 

Using all the above results, we state the following theorem. 
Theorem 5 (Optimal Arrangement for with Front-End Case): 

Given a set of ( N  + 1) processors and N links to be arranged 
in a single-level tree architecture, the processing time will 
be minimum if the processors and links are arranged in 

in the processing time. 0 

such a Way that, W O  5 W 1 ,  wk+l 2 wk. and Zk+l 2 z k ,  
k = l , 2 , . . * , N  - 1. 

Proof The theorem can be easily proved by a contradic- 
0 

The above results are useful in improving the performance 
of a distributed computing network. The optimal distribu- 
tion theorem (Theorem 1, proved in [4]) provides a basis 
for obtaining an optimal distribution of processing load to 
individual processors for a given sequence of distribution in 
an existing distributed computing network with a single-level 
tree architecture. The optimal sequence theorem (Theorem 
2) prescribes a sequence of optimal load distribution that 
further enhances the performance of the network. In fact, 
Theorem 2 also shows that by adopting the sequence of load 
distribution according to the order relationship between links, 
an improvement in the processing time is possible, regardless 
of the speeds of the processors. This, in a way, stresses 
the “priority” of the links over the processors in minimizing 
the processing time. Theorem 3 shows that when the links 
are identical, no improvement can be obtained by changing 
the sequence of distribution. If it is possible to rearrange 
the processors and links in the first level, then Theorem 4 
prescribes a simple way to improve the performance further. 

tion using Theorem 4 and Lemma 3. 
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In addition, if it is possible to rearrange the root also, then 
Theorem 5 provides a scheme by which best performance can 
be achieved. Theorem 5 also provides guidelines to design new 
distributed computing systems with communication delays. In 
the next section, we show that the results in Lemmas 1 and 2 
and Theorems 2 4  are also valid when the root is not equipped 
with a front-end, though Lemma 3 and Theorem 5 need not 
hold true in a general sense. 

B. Minimization of Processing Time: Without Front-End 
Case 

In this section, we use the closed-form solution given in 
Section 11-C to prove the main results. Following the proce- 
dures adopted in the previous section, closed-form solution 
for r ' ( T ( p o ) )  is rewritten as shown in (36), (37), and (38) 
at the bottom of this page. These constants are all valid 
for k = 2 , 3 . .  . . , N - 2. As in the with front-end case, the 
processing time for the left and right extremes of the tree are 
as follows. For k = 1, we get the following equation: 

and for k = N - 2. N - 1.  we get the following: 

where 

It may be noted that (16) and (36) have the same structure, 
except for some of the constants. Hence, in the case of without 
front-end, Lemmas 1 and 2 and Theorems 2, 3, and 4 are still 
valid. 

These results imply that even when the root processor 
is not equipped with a front-end, the optimal sequence of 
load distribution and the optimal arrangement of links and 
processors at the first level remain the same as the case with 
front-end. However, when the root processor is also considered 
during rearrangement, the results are somewhat different. 

When all the link speeds are equal, this architecture behaves 
like a bus architecture. In [ l ] ,  it has been conjectured that in 
such architectures, the fastest processor should be at the root to 
achieve minimum processing time. In the following analysis, 
we prove the above conjecture. 

Lemma 4: In a single-level tree T ( p o ) ,  with w k + l  2 
W k , k  = 1 , 2 , - . . . N  - 1 ,  and Zk = z . k  = 1.2  :.., N, if 
w 1  5 WO, then the minimum processing time will decrease 
or remain the same by interchanging the root processor ( p O )  
with the first left-hand-side processor ( P I ) .  

Proof: Interchanging the processors pl and P O ,  we get 
the following configuration: 

% ( P I >  = {(~l,~o),(~2.p2);..,(1~,~)~)}. (42) 

We have to prove that I ' ( T D ( p 1 ) )  5 F ( T ( p 0 ) )  if ~1 5 WO. 

We define the following constants: 

(43) N = (W2 + z2o)K2(0) 
n;-1 iv 

E=l+C n f,, (44) 
2=2 , = z + l  

using which, the closed-form expression for r(T(p0)) can now 
be written as follows: 

I ' ( T ( P 0 ) )  = { ( N / W l ) ( ( W l  + zo)/wo)WoTc,} 

/ { E  + ( W N / W O )  + ( N l W l ) } .  (45) 

As mentioned earlier, the root processor distributes the load 
only when (1 1) is satisfied. So far, we have assumed that (1 1) 
is satisfied for the initial arrangement T ( p 0 ) .  However, when 
pl and PO are interchanged, this may no longer be valid. Thus, 
we have two cases. 

Case 1 w 1  > zo: Then the expression for r ( T D ( p 1 ) )  is as 
follows: 

r ( T D ( P 1 ) )  = { ( N / W o ) ( ( W o  + 4 / W l ) W l T c p }  

/ { E  + ( ' W N / W l )  + ( N / W O ) ) .  (46) 

Let us denote the numerators of the above expressions as Nl 
and N 2 ,  and the respective denominators as D 1  and D2. Then 
the value of (N1 0 2  - N 2 D 1 )  is obtained as follows: 

NlDZ - N 2 D 1  

= (N/wlwo){zgE + W N ( ~ +  z g ( ~ o  + W I ) / W ~ W O )  - N }  
x (WO - W l ) ,  (47) 
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which can be further reduced to the following expression: 

In (48), the RHS 2 0, if 7110 2 w1, which proves the lemma. 
Case 2 w1 < 20: The processing time is as follows: 

r(TD(p1)) TfllTrp. (49) 

This is because of the condition wl < m for which the root 
processor does not distribute any load to any other processors. 
We have to prove that r ( T D ( p l ) )  5 T ( T ( p o ) ) ,  if w 1  I WO.  

From (45) and (49), we get the following: 

In (50), the RHS 2 0 if w1 5 zcr and W O  2 zcr, thus proving 
the lemma. 0 

Theorem 6 (Optimal Arrangement for  Equal Link Speeds): 
Given a set of ( N  + 1) processors with arbitrary speeds and N 
links with equal speeds, to be arranged in a single-level tree 
architecture, the processing time will be the minimum if the 
fastest processor is at the root. 

Proof: This can be proved by contradiction using Lemma 
4. 0 

Note that Theorem 6 is valid even for the case with front- 
end. In fact, Theorem 6 is a special case of Theorem 5. 
Also, when the conditions of Theorem 6 are satisfied, the 
best performance is achieved, regardless of the arrangement 
of processors at the first level, as long as the root processor 
is the fastest. 

Unlike the with front-end case, when the link speeds are 
different, the fastest processor need not be the root processor 
in order to achieve minimum processing time. This is shown 
with an example in Section IV-B. It is not possible to arrive 
at a simple condition (as in Theorem 5) to determine the root 
processor in the without front-end case. Therefore, we propose 
the following algorithm to achieve an optimal arrangement in 
this case. 

Algorithm: Let there be ( N  + 1) processors with speed 
parameters W O .  w1,  . . . , W N  and N links with speed parameters 
2 1 . 2 2 , .  . . . zw ,  respectively. The algorithm takes these speed 
parameters as its input. We denote the root processor as p ,  
and its corresponding speed parameter as w,. 

Step 0: Arrange the processors and links such that WO 5 

1, where W O  is the speed parameter of the root 
processor in this initial arrangement. Thus, the 
processors and links are arranged in decreasing 
order of speeds. 

Step I :  Set W, = 7110. Delete all the pairs ( l z . p z )  for 
which tu, 5 z 2 0 ,  I = 1 , 2 , . . . , N  . Compute the 
processing time r( T ( p o ) ) .  Restore the deleted 
pairs. Set IC = 1. 

W1, ?flk 5 ? f l k + l ,  zk 5 Zk+l, for k = 1, 2 .  ' '  ' ,  N - 

TABLE I 
OPTIMAL ARRANGEMENT FOR WITHOUT FRONT-END CASE 

T,,,, = 0.2.Tc, = 2 . 0 . 0  = 0.1 

0 1.0 1 . j  3.0 1.0 8.0 1.240816 
1 1 . 5  1.0 3.0 1.0 8.0 1.229411 
2 3.0 1.0 I..; 1.0 8.0 1.3311378 

Step 2: Interchange pl, and p,. Set w, = w k .  Delete all the 
pairs (E,,p,) for which w, 5 z,cr, i = 0 , l . .  . . , N ,  
i = /IC. Compute the processing time r (T(pk)) .  
Restore the deleted pairs. k = k + 1. If k I N ,  go 
to Step 2.  

Step 3: Find j = argrnirio,k<,r(T(p,)). The configura- 
tion T(p,) is the optimal arrangement. 

Now we present a numerical example to demonstrate the 
various steps of the proposed algorithm. The results are shown 
in Table I. Here, initially, the processors and the links have 
been arranged in decreasing order of speeds, with the root as 
the fastest processor. For IC = 1 and IC = 2, Step 2 of the 
algorithm is carried out. Finally, in Step 3, we choose the 
arrangement that gives the minimum processing time (given 
by k = 1). Note that the processing time is minimum for a 
case in which the root processor is not the fastest. 

C. Extension to General Single-Level Tree Networks 

In this section, we show that the results on optimal sequence 
and optimal arrangement proved earlier will also hold to a 
general single-level tree network T ( p o )  that may not belong 
to the class C. For this, we shall prove the following theorem. 

Theorem 7: Consider two single-level tree networks 
T ( p o )  = ((Il.P1),....(~,V,Pnr)} and T * ( p o )  = 
{ ( h , P l )  :.., ( ~ N . p N ) , ( ~ ' ~ + l . P i v + l ) } .  Then r ( 7 ' * ( P o ) )  < 
r(T(P0 1). 

Proof: Let us consider a single-level tree network in 
which the root processor po is equipped with front-end. We 
denote the numerator and denominator of ( IO)  as P and 
(1 + Q), respectively. Hence, we get the following equation: 

r ( T ( ~ o ) )  = P/(1+ Q). (51) 

Similarly, the expression for T" ( P O )  can be written as follows: 

( 5 2 )  

On comparing (51) and (52),  we see that I ' ( I '* (po) )  < 
r(T(p0)).  Similar result can be proved for without front-end 
case. 0 

Now we apply the above theorem to any general single- 
level tree network T ( p 0 ) .  Let us define an ordered set of all 
processor-link pairs (ordered according to the decreasing link 
speeds) for which the condition (3a) is violated. We prune 
off this set of processor-link pairs and append each of these 
one-by-one at the tail end of the tree, maintaining the order in 
which the link speeds decrease. At each step of this process, 
according to Theorem 7, the processing time decreases. The 
entire process is repeated at each step. Since the number of 
elements in T(p0) is finite, the process terminates resulting 

r(T*(po))  = Pf1v+1/(1+ Q f ' V + I  + fX+l). 
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in a network that belongs to class C. Further, in Lemmas 
1 4 ,  interchanging of processors and/or links does not violate 
condition (3a). Hence, a network in class C remains in class 
C, regardless of such interchanges. Thus, the optimal sequence 
and optimal arrangement theorems are valid for the general 
network, too. 

IV. CONCLUSION 
In this paper, we have proved some fundamental results 

concerning optimal load distribution, and optimal sequencing 
of the computational load in a single-level tree network 
consisting of ( N  + 1) processors and N links. We have also 
proposed a scheme to obtain an optimal arrangement of links 
and processors in the network, when such a rearrangement is 
possible. Unlike previous literature [l], [2], [6], [7], where 
some of these facts were conjectured from computational 
results, we present closed-form solutions and mathematically 
rigorous proofs. It should be pointed out that in a recent paper 
[9], results regarding optimal sequencing are presented for 
tree networks only when the root processor is equipped with 
front-end. 

There is a definite scope for much further research in this 
area. For example, the mathematical model adopted in this 
paper, and in the previous literature [ 6 ] ,  [7], assumes that the 
link speeds are independent of the processor speeds. However, 
this may not be true in practical situations. Moreover, the 
communication delay that is assumed to bear a linear relation- 
ship with the load may, in reality, have a more complicated 
relationship. These factors should be taken into account in 
analyzing a realistic situation. It would also be interesting to 
obtain a simpler scheme to determine the optimal arrangement 
for the without front-end case. 

The results given in this paper can provide a basis for 
solving the problems arising as a result of the above-mentioned 
practical issues. It also seems possible to extend these ideas 
to other distributed computing architectures to obtain closed- 
form solutions for optimal load distribution, optimal load 
sequencing, and optimal arrangement. 
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