
ORIGINAL ARTICLE

Optimal sequencing of rotation angles
for five-axis machining

S. S. Makhanov & M. Munlin

Received: 14 December 2005 /Accepted: 13 June 2006
# Springer-Verlag London Limited 2006

Abstract In this paper, we propose two new algorithms to
correct the trajectories of the tool tip of a five-axis milling
machine by adjusting the rotation angles in such a way that
the kinematics error is reduced. The first algorithm is based
on the shortest-path optimization with regards to feasible
rotations of the inverse kinematics. The cost function is
represented in terms of the total angle variation. We show
that such an optimization increases the accuracy of
machining and is the most appropriate in the case of a
rough cut. The shortest-path procedure applies to either the
entire set of trajectories or to only the most inappropriate
undercuts inside the workpiece. In the latter case, the
algorithm generates an interesting family of solutions
characterized by smaller undercuts obtained at the expense
of increased overcuts. The second algorithm also exploits
the idea of the minimization of the angle variation. It is
based on the uniform distribution of the cutter contact
points with regards to the rotation angles. The method
inserts additional tool positions by numerically finding a
grid of points distributed uniformly in the angular space.
We prove that the proposed algorithm in the neighborhood
of stationary points requires 3–4 times fewer additional
points than the conventional scheme. Also, if a maximum
angular speed has been exceeded, the controller detects this

event and reduces the angular speed. Our correction
algorithms minimize the total angle variation, thus, reduc-
ing the probability of such an event. Finally, the efficiency
of the two algorithms has been verified by a five-axis
machine MAHO600E at the CIM Lab of the Asian Institute
of Technology of Thailand and HERMLE UWF920H at the
CIM Lab of the Kasetsart University of Thailand.

Keywords Five-axis machining . Tool path optimization

1 Introduction

The five-axis machine is guided by axial commands Π 2
R

5 carrying three spatial coordinates of the tool tip in the
machine coordinate system and two rotation angles. The tool
path A ¼ Π0; Π1; . . . ; Πmf g is a sequence of positions Πp

arranged into a structured spatial pattern, such as a zig-zag or
a spiral pattern. The path could also be composed of a
variety of unconventional patterns and can include tool
retractions. A full optimization scheme involves a model of
cutting operations, topologies of the prescribed tool path
patterns, and an optimization procedure. Let M be a set of
parameters related to the configuration of the machine and T

be a set of parameters related to the tool. Let S u; vð Þ ¼
xS u; vð Þ; yS u; vð Þ; zS u; vð Þð Þ be the required surface. The
model of the cutting operations, being fed withM; T; S, and
A; produces the result of machining, the output surface T.

The general optimization problem is then formulated by:

minimize Cð Þ; Π; M; T

where C denotes a criteria vector which may include the
error " � S � Tk k; the length of the path, the negative of the
machining strip (strip maximization), the machining time,
etc. (for instance, see [3, 6, 9, 10, 17]). The optimization
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could be subjected to constraints [8, 18]. The most important
constraints are: (1) the scallop height constraint, the scallops
between the successive tool tracks must not exceed a
prescribed tolerance; (2) the local accessibility constraints,
the constraint ensures against the removal of excess material
when the tool comes in contact with the desired surface, due
to the so-called curvature interference; (3) the global
accessibility constraints (see, for instance, [17]).

Given the general context above, the error analysis
and optimization with regards to variations of the
rotation angles has not been provided by commercial
CAD/CAM systems, such as Unigraphics, EdgeCam,
Vericut, etc. Only a few research papers deal with the
subject. Jung et al. [7] analyze the sequence of rotations to
minimize the number of the phase-reverse steps at
discontinuities of the first derivative of the surface (corners,
etc.). A method of avoiding singularities has been presented
by Affouard et al. [2]. However, optimal angle sequencing
was not considered. An algorithm based on global
optimization with regards to feasible rotations of the
machine was proposed by Munlin et al. [15]. However,
this paper employs the direct minimization of the kinemat-
ics error, which is a computationally expensive procedure.
Besides, their paper does not differentiate between the
overcut and undercut errors, which is an important issue for
rough machining. Finally, it is not clear how to insert
additional points if the resulting accuracy is still not
sufficient.

In this paper, we deal with the above-mentioned draw-
backs. We propose a new modification of the techniques
based on minimization with regards to the total angle
variation, which does not invoke direct evaluation of the
trajectories. We show that such a minimization reduces the
kinematics error. Additionally, we introduce a new minimi-
zation which applies only to the most inappropriate under-
cuts. Although this procedure could be computationally
expensive as well, it generates an interesting new family of
solutions characterized by smaller undercuts obtained at the
expense of an increase in overcuts. The second new
algorithm also exploits minimizing the total angle variation.
It solves a problem of inserting additional points in the
areas of large kinematics errors. The additional positions
are created by numerically finding a grid of points
uniformly distributed in the angular space. We prove
experimentally that the proposed method requires 3–4
times fewer additional points than conventional schemes
performed near the stationary points.

The efficiency of the two algorithms has been verified
by a five-axis machine MAHO600E at the CIM Lab of the
Asian Institute of Technology of Thailand and HERMLE
UWF920H at the CIM Lab of the Kasetsart University of
Thailand. It has been also verified by a virtual milling
machine simulator [16] developed by the authors.

Finally, let us introduce an additional benefit. There is
always a limit of the angular speed of specific machine
parts. As a result, a shorter tool path with many turns may
require more time than a longer tool path with fewer turns
[1]. For example, in the case of MAHO600E, the maximum
angular velocities of the primary and secondary rotational
axis are vA; max ¼ 235� s= and vB; max ¼ 235� s= . If the
maximum angular speed is exceeded, the controller detects
this event and reduces the angular speed, increasing the
machining time. Our correction algorithms minimize the
total angle variation, thus, reducing the probability of such
an event.

2 Kinematics of the five-axis milling machine

Five-axis machines are characterized by nonlinear kinemat-
ics due to the two additional degrees of freedom that control
tool orientation. In this section, a closed-form representation
of the trajectory of the tool tip is derived for general machine
kinematics. The kinematics K � K W ; <; Mð Þ of a machine
is a transformation from a point M in machine coordinates
to a point W in workpiece coordinates. Recall that M is a
set of optimization parameters and < ¼ a; bð Þ is a pair of
rotation angles. For simplicity, the transformation will be
denoted by K Mð Þwhen possible. Let K�1 Wð Þ be the inverse
transformation such that 8W ; M ; <; K�1 K Mð Þð Þ ¼ M ;

a n d K�1 K Wð Þð Þ ¼ W : L e t Πp � Mp; <p

� �
; Πpþ1 �

Mpþ1; <pþ1

� �
be two successive coordinates of the tool

path in R
5: Mp and Wp denote spatial positions of the tool

tip in the machine and workpiece coordinate systems,
respectively, and <p is the corresponding pair of rotation
angles. Now, a closed-form representation of the trajectory
of the tool tip between Wp and Wp+1 will be deduced.

Let us invoke the inverse kinematics to transform part–
surface coordinates Wp into machine coordinates Mp≡(xp,
yp, zp) as follows: Mp � K�1 M; <p; Wp

� �
: The rotation

angles < � < tð Þ ¼ a tð Þ; b tð Þð Þ and the machine coordi-
nates of the tool tip M≡M(t) are assumed to be changing
linearly between the prescribed positions, namely:

M tð Þ ¼ tMpþ1 þ 1� tð ÞMp; < tð Þ ¼ t<pþ1 þ 1� tð Þ<p

where t is a fictitious time coordinate (0≤t≤1). Trans-
forming machine coordinates M back to workpiece coor-
dinates W for every t yields:

Wp; pþ1 tð Þ¼ K M; < tð Þ;M tð Þð Þ
¼ K M; t<pþ1 þ 1� tð Þ<p; tMpþ1 þ 1� tð ÞMp

� �
ð1Þ

Now Mp and Mp+1 are eliminated by using the inverse
transformation Mp ¼ K�1 M; <p; Wp

� �
; so that the result-

ing trajectory depends only on the workpiece coordinates
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and the orientation of the tool. Substituting Mp and Mp+1

into Eq. 1 yields:

Wp; pþ1ðtÞ ¼ KðM; t<pþ1 þ 1� tð Þ<p;

tK�1 M; <pþ1; Wpþ1

� �
þ 1� tð ÞK�1 M; <p; Wp

� �Þ
ð2Þ

Equation 2, applicable to an arbitrary machine configu-
ration, allows the evaluation of the kinematics error,
defined as the difference between the desired and the actual
trajectory. In particular, we consider the kinematics of the
five-axis milling machines MAHO600E and HERMLE
UWF902H. The inverse kinematics are represented by
matrices A≡A[a(t)] and B≡B[b(t)] associated with the
rotations around the primary and the secondary axes,
respectively (see Fig. 1), namely:

K�1 <f g W½ � ¼ GB b½ � A a½ � W þ T12ð Þ þ T23ð Þ þ T34 � T4

where G ¼
0 0 �1
0 1 0
1 0 0

0
@

1
A and T12, T23, and T

34
are

respectively the coordinates of the origin of the workpiece
in the rotary table coordinates, coordinates of the origin of
the rotary table coordinates in the tilt table coordinates,
and the origin of the tilt table coordinates in the cutter
center coordinates, T4 ¼ 0 ; 0;�TL

� �
; where TL is the tool

length.

3 Kinematics error along the trajectory

In this section, we will introduce the kinematics error and
the total angle variation. We will also introduce the overcut
and undercut errors.

Let WD
p; pþ1 tð Þ 2 S u; vð Þ be a curve between Wp

and Wp+1 extracted from the surface in such a way
that it represents the desired tool path between Πp

and Πp+1. We define the error as the deviation
between WD

p; pþ1 � xDp; pþ1; y
D
p; pþ1; z

D
p; pþ1

� �
and Wp; pþ1 �

xp; pþ1; yp; pþ1; zp; pþ1

� �
given by:

" ¼ P
p

R1
0

WD
p; pþ1 �Wp; pþ1

� �2
dt

� �1=2

¼ P
p
½R1
0

xDp; pþ1 � xp; pþ1

� �2
þðyDp; pþ1 � yp; pþ1Þ

2

+ zDp; pþ1 � zp; pþ1

� �2
dt�1=2

ð3Þ

Total error (Eq. 3) is approximated as follows:

"
^ ¼

X
p

1
Lp

XLp
lp¼1

xDp; pþ1; lp
� xp; pþ1; lp

� �2

þ yDp; pþ1; lp � yp; pþ1; lp

� �2

þ zDp; pþ1; lp � zp; pþ1; lp

� �2

2
66666664

3
77777775

1 2=

ð4Þ

where Lp is the number of sampling points between Wp and
Wp+1.

Remark The definitions above can be simplified by replac-
ing the desired trajectories WD

p; pþ1 with linear trajectories
given by WL

p; pþ1 ¼ tWpþ1 þ 1� tð ÞWp; although care
should be taken when using this option. As opposed to
the machine coordinates M, trajectories in the workpiece
coordinates are not linear. However, we may use the linear
trajectories as a reference, noting that "̂� WD �Wk k �
WD �WLk k þ WL �Wk k; where L is a piecewise linear

approximation of S. Hence, when the points are close
enough, the error is approximately "̂� "L ¼ WL �Wk k:
Note that, if the orientation of the tool is fixed through the
entire cut, then ɛL=0. In other words, the three-axis mode
leads to ɛL=0, since all of the trajectories become linear.
Therefore, minimization with regards to ɛL must be
subjected to constraints specifying the orientations of the

Fig. 1 a A TRTRT machine.
b The corresponding reference
coordinate systems
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tool. Finally, the linearization is the simplest option which
can be used even when the actual surface is not known, for
instance, for a given G-code. However, the desired
trajectory WD can be extracted from the surface by a
variety of ways, for example, using interpolation in the
parametric space, geodesic curves, etc. The results pre-
sented in this paper are always valid, irrespective of the
method to obtain WD. Finally, the error induced by linear
approximation depends on the maximum distance h between
the CC points as k W

00
D

�� ��
C
h2; where k is a constant (see, for

instance, [14]).
Let us now introduce the total angle variation. Consider two

positions Wp and Wp+1. The corresponding kinematics error is

then defined by "p; pþ1 �
R1
0

WD
p; pþ1 �Wp; pþ1

� �2
dt

� �1 2=

.

Clearly, "p; pþ1 � " Δap; pþ1; Δbp; pþ1; Δlp; pþ1

� �
; where

Δlp, p+1 is the distance between Wp and Wp+1 (the spatial
step in the workpiece coordinate system).

Furthermore, Δap; pþ1 � Δap; pþ1 Δlp; pþ1

� � ¼ apþ1 �
ap and Δbp; pþ1 � Δbp; pþ1 Δlp; pþ1

� � ¼ bpþ1 � bp are the
angular steps. Practical experiments show that the angular
steps are often more important than the spatial step. In
particular, during a rough cut, decreasing the angular steps
leads to a larger decrease in the error than a decrease in the
spatial step.

The total angle variation between positions Wp and Wp+1

is given by:

cp; pþ1 ¼
Z1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@ap; pþ1

@t

	 
2

þ @bp; pþ1

@t

	 
2
s

dt

Since ap, p+1 and bp, p+1 are changing linearly,

cp; pþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δa2p; pþ1 þΔb2p; pþ1

q
: The total angle variation

across the entire tool path is then given by:

c �
X
p

cp; pþ1 ¼
X
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δa2p; pþ1 þΔb2p; pþ1

q

Note that there often exists a neighborhood of the CL
point where one of the angles changes faster than
another angle. In this case, "p; pþ1 � O Δam1

p; pþ1

� �
or

"p; pþ1 � O Δbm2
p; pþ1

� �
; where m1 and m2 depend on the

surface. In this case, minimization of the total angle
variation produces excellent results.

Finally, the case of a rough cut often requires us to
differentiate between the undercut and the overcut error. By

Fig. 2 An experimental part surface S1. P is the machined area

Fig. 3 a Conventional tool path simulated by the virtual machine. b
Surface S1 machined by HERMLE UWF902H. c Optimized tool path,
simulated by the virtual milling machine. d Optimized surface
machined by HERMLE UWF902H
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undercut, we understand it as a part of the trajectory
resulting in an excessive amount of the removed material.
The overcut is understood as removing less material than is
required.

We define the undercut and overcut error as follows:

"U¼
X
p

Z1

0

WD
p; pþ1�Wp; pþ1

� �2
if zDp; pþ1 tð Þ > zp; pþ1 tð Þ

0 otherwise

8<
: dt

"O¼
X
p

Z1

0

WD
p; pþ1�Wp; pþ1

� �2
if zDp; pþ1 tð Þ � zp; pþ1 tð Þ

0 otherwise

8<
: dt

ð5Þ
The corresponding undercut and overcut angle variation

are then defined by:

cU ¼
X
p

cU ; p; pþ1

cO ¼
X
p

cO; p; pþ1

where:

cU ; p; pþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δa2p; pþ1 þΔb2p; pþ1

q
ΔU ; p; pþ1

cO; p; pþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δa2p; pþ1 þΔb2p; pþ1

q
ΔO; p; pþ1

ΔU
p; pþ1 ¼

Z1

0

t if zDp; pþ1 tð Þ > zp; pþ1 tð Þ
0 otherwise

�
dt

ΔO
p; pþ1 ¼

Z1

0

t if zDp; pþ1 tð Þ � zp; pþ1 tð Þ
0 otherwise

�
dt

ð6Þ

Clearly, ɛ=ɛO+ɛU and c=cO+cU. Since undercut is not
repairable, reducing the undercut error is often much more
important than reducing the overcuts or the total error.

4 Optimization problem and a solution method

In this section, we will give an introductory example of the
optimization method. Next, we will introduce a general
optimization problem and a solution method.

When the tool passes through an area near a stationary
point, the rotation angles may jump considerably, leading to

tool orientation vector

baseabasea π− 

basea π +
2 baseaπ −

x

y

z

p

tool orientation vector

basea
basea π− 
basea π+ 2 baseaπ − 

p

z
baseb π −       −

baseb

a

b

Fig. 4 a Four possible rotations for the a angle. b Two possible
rotations for the b angle

Table 1 Kinematics error for the optimized and non-optimized tool path. Surface S1 MAHO600E

Grid size No optimization max error/
max angle var (mm/°)

Optimization max error/
max angle
var (mm/°)

Max error/angle var decrease (%) Path length non-opt/opt(mm)

10×20 23.862/168.779 12.426/78.072 47.925/53.743 2,825.67/2,255.54
15×20 19.300/162.186 8.517/101.524 55.870/34.403 2,500.3/2,123.02
20×20 20.228/160.08 7.558/84.927 62.636/46.947 2,367.57/2,101.15
30×20 16.253/141.89 7.162/88.23 55.934/37.818 2,183.63/2,038.27
40×20 8.711/103.885 6.878/88.399 21.042/14.907 2,069.32/2,020.11
100×20 7.395/90.898 7.103/89.102 3.949/1.976 1,916.11/1,911.17
130×20 3.999/68.416 3.999/68.416 0.000/0.000 1,876.49/1,876.49
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unexpected deviations from the prescribed trajectory and
large kinematics errors. The sharp angular jumps create

loop-like trajectories of the tool. Our introductory example
presents a cut performed for a part surface S1 as depicted in
Fig. 2 on HERMLE UWF902H. Figure 3a demonstrates a
large loop in the case of machining a curve belonging to the
surface located close to the stationary point. It also shows
that linearization of the tool path is not always applicable
and could even be dangerous, since moving the tool along
the loop-like trajectories could destroy the workpiece and
even lead to a collision with the machine parts. Figure 3b
shows that changing the sequence of the rotations leads to a
much less pronounced loop and, consequently, to a
significant reduction of the kinematics error.

Now, using our conjecture that minimizing the total
angle variation reduces the kinematics error, we formulate
the following minimization problem:

minimize
Λ

wOcO þ wUcUð Þ ð7Þ

where Λ is a set of possible rotations and wO and wU are the
weighting coefficients representing the importance of the
overcuts and undercuts. For instance, if wO=wU=1, then
the total angle variation will be minimized. If wO=0 and
wU=1, only the variation along the undercuts will be
minimized. If wO=0.1 and wU=1.0, then the variation is
minimized with regards to both the undercut and overcut, but
the importance of the undercut is 10 times larger than that of
the undercut etc. The weights may also depend on the
variation itself. For example, one may establish the following
rule “if c<c′, then wO=0 and wU=1, else wO=wU=1”, where c′
is a prescribed threshold. In other words, if the total variation
is not too large, we minimize only the undercuts; however, if
the variation is more than a prescribed c′, then the
minimization applies to the total variation.

So how to evaluate set Λ? Consider the case of a five-
axis milling machine with the rotary axis on the table, such
as MAHO600E and HERMLE UWF902H. If the tool is
aligned along the surface normal, then the rotation angles
are evaluated by:

abase ¼

tan�1 j
i

� �
i > 0 and j � 0

πþ tan�1 j
i

� �
i < 0

2πþ tan�1 j
i

� �
otherwise

8>>>><
>>>>:

bbase ¼ � sin�1 kð Þ

ð8Þ

where (i, j, k) is the surface normal. It is not hard to
demonstrate that the inverse kinematics admits four
solutions (Fig. 4a,b), given by:

Λ ¼
abase; bbase

abase � 2π; bbase
abase � π; �bbase � π
abase þ π; �bbase � π

8>><
>>: ð9Þ

Fig. 5 a Conventional tool path for S2 on HERMLE UWF902H.
Large undercuts are indicated by thick curves. b Tool path optimized
with regards to the total error. There are still many trajectories with
large undercuts. c Tool path optimized with regards to the undercut
error. The large undercuts have been replaced by large but harmless
overcuts
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Solutions similar to Eqs. 8 and 9 can be established for
other types of the machine kinematics, such as “one axis on
the tool and one on the table” and “both axis on the tool.”

It should be noted that we consider the case when the
tool vector coincides with the surface normal only for the
sake of simplicity. Usually, the tool must be inclined in
order to avoid curvature interference and global gouging.
However, there is no loss of generality, since appropriate
adjustments of the above equations for the inclined tool can
be easily made. Finally, the number of solutions depends on
the number of the rotational degrees of freedom d as 2d. In
other words, for a six-axis machine, we will have eight
solutions and so forth. It is not hard to demonstrate that the
optimization is the shortest-path problem. The correspond-
ing graph is constructed in such a way that each position
Πp is characterized by four graph nodes Λp, where the edge
between the nodes represents the kinematics error or the
angle variation (see Fig. 4). Therefore, such a minimization
could be performed by a conventional so-called greedy
discrete algorithm.

We apply a classical shortest-path algorithm to the
resulting directed acyclic graph as follows. The nodes
represent the tool positions and the arcs represent the error
or the angle variation along the trajectory. Next, we detect
the overcuts and undercuts. Every trajectory Wp; pþ1 tð Þ ¼
xp; pþ1 tð Þ; yp; pþ1 tð Þ; zp; pþ1 tð Þ� �

is subdivided by a certain
number of points tk. At every point Wp; pþ1; k ¼
xp; pþ1; k ; yp; pþ1; k ; zp; pþ1; k

� �
; we find the corresponding

parametric coordinates (uk, vk) by numerically solving the
following system:

xp; pþ1; k ¼ xS u; vð Þ
yp; pþ1; k ¼ yS u; vð Þ

�
ð10Þ

Note that, for explicit surfaces, the above equations are
linear and, therefore, a numerical solution is not required.

Now, given the solution (uk, vk) to the system Eq. 10, we
calculate zS(uk, vk) for every k. Next, we calculate the angle
variations cU, p, p+1 and cO, p, p+1 for every p and for every
graph node. Finally, we use the weights wO and wU and
apply Dijkstra’s shortest-path algorithm (see, for instance,
[21]).

5 Numerical examples and cutting experiments

We have shown that a loop due to a large variation in the
rotation angles can be almost entirely eliminated (Fig. 3a,b)
for a surface having a single stationary point. Table 1 shows
the performance of the method for the same surface
machined on MAHOO600E. The optimization was per-
formed without discriminating between ɛU and ɛO. Consid-
er Table 1. Clearly, minimizing the total angle variation
leads to minimizing the total kinematics error. On the
contrary, an increase of the number of CL points does not
necessarily lead to a decrease of the error (see lines 40×20
and 100×20), since the grids are not nested (the points of
the coarse grid do not necessarily belong to the fine grid).

A very useful optimization can be performed when the
undercuts and overcuts are differentiated. Consider machin-
ing surface S2 given by:

S2 u; vð Þ ¼
100u� 50
100v� 50

�80v v� 1ð Þ 3:55u� 14:8u2 þ 21:15u3 � 9:9u4ð Þ � 28

0
@

1
A

Table 2 Undercut error optimization. S2 on HERMLE UWF902H

Grid size No optimization max error (mm)/
max angle var (°)

Undercut optimization max error
(mm)/max angle var (°)

Path length non-opt/
opt (mm)

Angular variation non-opt/
opt (°)

Undercut Overcut Undercut Overcut

10×20 19.11/139.78 23.40/169.95 13.33/109.90 56.16/356.22 2,929.02/3,641.59 7,763.87/9,317.35
15×20 9.54/32.96 19.28/162.13 9.52/32.76 60.93/364.84 2,676.55/3,985.66 7,921.93/10,131.55
20×20 8.07/88.17 20.21/160.01 4.41/23.83 60.93/364.84 2,486.07/5,021.87 7,972.646/11,477.04
30×20 6.28/149.23 16.24/141.87 2.40/45.76 51.55/372.37 2,253.76/3,845.65 8,018.01/10,119.48
40×20 5.41/139.58 8.81/104.05 1.60/14.187 13.24/130.02 2,117.19/2,166.59 8,035.95/7,993.36
100×20 0.00/4.00 7.40 /90.83 0.00/4.00 7.13/89.27 1,924.58/1,919.35 8,055.03/8,032.72
130×20 0.00/3.09 4.00/68.34 0.00/3.09 4.00/68.34 1,880.72/1,880.72 8,056.50/8,056.50
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by HERMLE UWF902H. Let wO=0 and wU=1; that is, the
minimization is performed only with regards to the under-
cuts. Figure 5a displays the conventional tool path with
undercuts (the thick curves). Figure 5b shows how
minimization of the total error eliminates the loops located

at the right side of the workpiece. However, minimization
of only the undercut error produces an entirely different
path. The undercut loops at the boundary of the workpiece
have been replaced by large but harmless overcuts (see
Fig. 5c). Table 2 shows the behavior of the undercut and
overcut error, along with the angle variation as the number
of points in the cutting direction increases. The decrease in
the undercut error has been achieved at the expense of the
increase of the overcuts and the length of the path.

Let us demonstrate the techniques by optimizing the
undercuts on MAHO600E. The conventional tool path and
the tool path optimized by means of wO=1 and wU=1 are
displayed in Fig. 6a,b, whereas a tool path optimized with
wO=0 and wU=1 are displayed in Fig. 6c. The corre-
sponding machined surfaces are displayed in Fig. 7a–c.
Clearly, optimization with regards to only undercuts

Fig. 6 a Conventional tool path for S2 on MAHO600E. b Opti-
mization with regards to the total error. c Optimization with regards to
the undercut error, S2, MAHO600E

Fig. 7 a Without optimization, S2, MAHO600E (corresponds to
Fig. 6a). b Optimization with regards to the total error, S2,
MAHO600E (corresponds to Fig. 6b). c Optimization with regards
to the undercut error, S2, MAHO600E (corresponds to Fig. 6c)
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makes it possible to cut a rough but reasonable surface
which could be further refined, whereas cutting without the
undercut optimization may destroy the workpiece. The
behavior of the kinematics error versus the number of
points and the maximum angle variation is displayed in
Table 3. Comparing HERMLE UWF902H and MA-
HO600E (Table 2 and Table 3) shows that the accuracy of
the two cuts without optimization is comparable, whereas
the optimized cut on MAHO600E outperforms HERMLE
UWF902H.

It should be noted that the method applies to the case
when the surface is known only at some discrete set of
points. In this case, the minimization can be performed with
regards to either the angle variation or with regards to "

^

(see Eq. 2), defined by means of the difference between the
actual and the linearized tool path. In particular, the method
can be applied to optimize a CNC program, that is, a code
containing a sequence of coordinates of the tool in the five-
dimensional space. Figure 8a,b illustrates the techniques
applied to a multipatch surface designed to produce an
industrial impeller. The length of the tool path has been
reduced by 18.164% or by almost 5,000 mm.

Finally, before the above-mentioned optimization, we
perform following correction:

aiþ1; new ¼
aiþ1 � 2π if aiþ1 � ai > π
aiþ1 þ 2π if aiþ1 � ai < �π

aiþ1 otherwise

8<
:

The above correction eliminates jumps exceeding π, so
that the shortest-path routine deals only with aiþ1 � aij j �
π: Corrections of this type is not always required, since it
has been incorporated in some modern controllers, such as
the controller of HERMLE UWF902H.

6 Uniform angular grids

This section will present our algorithm based on the so-
called equi-distribution principle (see [12]) in the angular
space. The algorithm inserts additional points in such a way

that the resulting total angle variation is minimized. The
algorithm does not require evaluation of the actual
trajectories.

Many algorithms to calculate the so-called feed rate (the
step between the consecutive CL points) have been
proposed. The simplest approach is to linearize the surface
along the tool path, calculate the error, and insert additional
points until the error is within the required tolerance (see,
for example, [11]). Another approach is to interpolate the
desired trajectory by a spline or a NURBS approach and
establish the required feed rate using properties of the
curve. The feed rate may depend on the space coordinates
of the curve, as well as on the angular changes; see, for
example, [22]. However, the above methods do not include
the actual machine kinematics. A combination of the actual
kinematics of the machine with an interpolating method is
made by Lo [9, 10]. However, this paper does not consider
a global minimization and the particular impact of the
rotations.

A general framework for applying grid generation to
tool-path optimization was proposed by Makhanov et al.
[12] and developed by Makhanov and Ivanenko [13]. It was
shown that grid generation based on the Dirichlet function,
invoked in an iterative loop with a suitable preprocessing,
substantially decreases the kinematics error. Grid genera-
tion is applicable if ɛ→0 as the area of the grid cell A tends
to zero. If it is the case, we introduce a function
representing the so-called equi-distribution principle sub-
jected to the constraints mentioned in the introduction. The
equi-distribution principle requires that Aɛ≈const across the
entire grid. However, it requires the calculation of the actual
error.

In this paper, we consider a rough cut when the tool
rotation angles jump as described above. In this case, the
adaptive grid may require very small spatial cells. As a
result, the algorithm may create twisted and degenerated
cells which may not converge or may show a very slow
convergence. Besides, constructing a structured grid
requires an equal number of tool positions along each track
of the tool path. Therefore, it is often appropriate to

Table 3 Undercut error optimization, S2 on MAHO600E

Grid size No optimization max error
(mm)/max angle var (°)

Optimization max error
(mm)/max angle var (°)

Path length non-opt/opt (mm) Angular variation non-opt/opt (°)

Undercut Overcut Undercut Overcut

10×20 8.41/169.66 23.86/170.03 1.84/28.26 38.46/157.94 2,825.67/3,575.11 7,768.03/7,867.60
15×20 7.23/164.57 19.30/162.20 1.98/40.47 32.92/159.15 2,500.3/2,417.3 7,926.18/7,339.96
20×20 6.78/159.42 20.23/160.83 0.96/26.98 7.56/87.37 2,367.57/2,101.14 7,976.88/7,148.41
30×20 6.25/149.31 16.25/141.94 0.00/12.57 7.16/89.19 2,183.63/2,032.2 8,022.24/7,848.15
40×20 5.39/139.65 8.71/104.12 0.00/9.64 6.88/88.56 2,069.32/2,020.11 8,040.19/7,788.45
100×20 0.00/4.00 7.40/90.90 0.00/4.00 7.10/89.20 1,916.11/1,911.17 8,059.30/8,036.42
130×20 0.00/3.09 4.00/68.42 0.00/3.09 4.00/68.41 1,876.49/1,876.49 8,060.76/8,080.76
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construct a one-dimensional grid along each track of the
tool independently.

Suppose we have constructed a “basic” tool path
represented by a rectangular or curvilinear grid. This grid
makes it possible to perform an initial evaluation of the
angle variation. Now we are allowed to insert additional
points to decrease the error. How should these points be
inserted? We will construct local grids with equal angular

increments around points characterized by large angle
variations. We shall call such grids the uniform angular
grids. Recall that, near the stationary points, there often
exists a neighborhood such that one of the rotations is not
performed or one of the angles changes faster than another
angle. In this case, it is sufficient to construct a grid
uniform only with regards to the “fast” angle.

The algorithm consists of the following steps. First of
all, it detects points characterized by sharp angular
variations. Next, for every point, the algorithm determines
the positions between which the uniform angular grid
should be constructed. Usually, the interval includes a few
tool positions right before and after the singularity which
creates the kinematics loop. The space between every pair of
the selected pointsWp and Wp+1 must be subdivided in such
a way that Δap, p+1, i, i+1≈const or Δbp, p+1, i, i+1≈const for
every subinterval [i, i+1].

We have already noted that the stationary point is cut by
either changing sharply the first or the second rotation
angle. Irrespective of whether the singular point is a CC
point or not, the tool will follow a path “across or around
the hill,” depending on the choice of the rotation angles (see
a relevant discussion in Munlin et al. [15]). Conse-
quently, the algorithm selects the appropriate angle (say,
angle a) and subdivides the angular interval Δap, p+1 into
equal subintervals Δap, p+1, i, i+1, such that ap; pþ1; i ¼
ap þΔp; pþ1i; where Δp, p+1 is the corresponding step. The
corresponding spatial positions Si are found from the
surface equation as follows. First of all, we specify a
parametric spatial trajectory T=T(s) on the surface through
the stationary point. Next, for each i, we numerically solve
the equation a T sð Þð Þ ¼ ap; pþ1; i; where a(T(s)) denotes the
rotation angle on T(s) calculated from the surface normal.
The above equation is solved numerically by the standard
bisection method.

7 Uniform angular grids: numerical and machining
experiments

Consider the machining surface S2 by MAHO600E. This
time, we are allowed to add additional points in order to
decrease the error. First of all, consider the surface
machined using the iso-parametric tool path represented
by a local uniform grid (see Fig. 9a). The large error loops
appearing due to sharp angle variations can be eliminated
by inserting the additional points in these areas using the
uniform angular distribution of the points, as shown in
Fig. 9b. The substantial reduction of the error (50 times!)
has been achieved by inserting only eight points inside each
loop where the error is larger than a required tolerance.

It may seem that inserting a uniformly spaced set of
points may lead to the same or similar result. However, it is

Fig. 8 a Conventional tool path for impeller surface. The path length
is 30,707 mm. b Optimized tool path for the impeller. The path length
is 25,129.4 mm
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not the case. Clearly, the uniform distribution of the points
does not have a significant impact on the error. The error
has been reduced only by 4 times by inserting the eight
additional points. Table 4 displays the kinematics errors and
the rotation angles before and after applying the proposed
angle insertion. Clearly, the uniform angular grid allows us

to substantially decrease the error, whereas the conventional
spatial grid is not efficient.

Clearly, when a certain number of additional points have
been inserted, the error decrease is approximately the same
as for the space or angular insertion. Therefore, the method
is applicable only for the rough cuts characterized by sharp

Fig. 9 a Tool path and tool
orientations, S2, MAHO600E,
conventional points insertion.
b Tool path and tool orienta-
tions, S2, MAHO600E, conven-
tional points insertion. c Tool
path and tool orientations, S2,
MAHO600E, angular grid
insertion
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variations of the rotation angles. Figure 9b,c explains the
advantages of the angular grids. Clearly, the conventional
uniform grid does not remove the kinematics loops,
although the amplitude has been decreased. As opposed to
that, the angular grid changes the behavior of the
trajectories by entirely eliminating the loops. Figure 10a,b
shows the differences between the machined workpiece.

It should be noted that our cutting experiments have
been performed with the flat-ended cutter selected due to its
popularity for fast, rough milling when the sharp angular
variations are the most expected. However, the proposed
techniques are also applicable to the ball-nose cutter being
often used for finish machining. As a matter of fact, the
proposed algorithms apply to the general APT cutter

(automatically programmed tool) without major modifica-
tions. The equations of the APT cutter include the most
popular shapes, such as the flat-end shaped cutter, toroidal
cutter, the ball-nose cutter, etc. [3, 4].

Combination of the two proposed methods might lead to
even better optimizations. However, usually, the angular grid
should be constructed before the shortest-path procedure or in
an iterative loop presented below. Even when the angular grid
is applicable after the shortest-path routine, the implementa-
tion is not as straightforward as it may seem, since construct-
ing the angular grid after the shortest-path optimization
requires us to keep track of changes associated with every
point. Furthermore, applying the angular grid after Algorithm
1 is often not possible because inserting even one point may
create an entirely different graph for the shortest-path
optimization. Let us illustrate this case by an example.
Consider surface S2 with the tool path obtained after optimal
sequencing by Algorithm 1 (see Fig. 11). The largest loop
between point 141 and 142 which can not be treated by
Algorithm 1 is on the right side of the surface. The angles
before applying Algorithm 1 are a141 ¼ 319�; b141 ¼ �79�;
a142 ¼ 224�; and b142 ¼ �80�: The shortest-path optimiza-
tion produces a141¼319�; b141¼�79�; a142; new ¼ a142þ
180 ¼ 404�; and b142; new ¼ �b142 � 90 ¼ �100�: Insert-
ing a point in the middle of the loop yields amid ¼
267� and bmid ¼ �82�: Taking into account the “history,”
we modify the pair of angles as follows: amid ¼ amid þ
180�¼447� and bmid ¼ �bmid � 90 ¼ �98�; which leads
to a larger loop as depicted in Fig. 12. Note that

Table 4 Error versus number of inserted points; the basic grid size is 15×20

Number of inserted
points

Max error (mm) conventional/
angular grid

Path length (mm) conventional/
angular grid

Angular variation (°) conventional/uniform
angular grid

0 19.300/19.300 5.714/5.714 162.202/162.202
8 4.241/0.416 0.714/0.168 68.660/20.631
16 1.707/0.138 0.357/0.084 43.016/10.629
32 0.490/0.092 0.178/0.042 20.647/5.352
64 0.158/0.089 0.089/0.021 10.955/2.680
128 0.099/0.089 0.044/0.010 5.378/1.340

Fig. 10 a Spatial grid for S2, MAHO600E (corresponds to Fig. 9b).
b Angular grid, S2, MAHO600E (corresponds to Fig. 9c)

Fig. 11 Tool path for surface S2 on MAHO600E after the optimal
sequencing
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amid=2 a141; a142½ �any more. In other words, the additional
point has destroyed the particular shortest path. Since the
remaining part of the shortest path depends on these angles,
the entire path has been destroyed and the optimization
should be performed again.

The following procedure works very well when com-
bining the two methods. First, we apply Algorithm 1.
Second, we select the largest loops appearing after applying
Algorithm 1. Next, we go back to the original angles and
apply Algorithm 2, which inserts angular grids into the
selected loops. Finally, we again apply Algorithm 1 to the
modified tool path. If the required tolerance has not been
achieved (new loops have appeared), we select the largest
loops again and go back to inserting points into the original
tool path.

Finally, apart from the machine kinematics, the accuracy
of machining is often affected by the tool accelerations and
decelerations, due to frequent changes of the tool path
directions. Since the phenomenon often occurs in the areas
of sharp variations of the rotation angles, let us discuss the
proposed method with the reference to the acceleration
errors.

In order to reduce the acceleration error, the entire tool
path is usually treated as an interpolating curve parameter-
ized with regards to the chord length between two
consecutive reference points [5, 19, 20].

Generating the tool positions by incrementing the chord
length leads to feed-rate instabilities due to the difference
between the chord and the arc lengths. The instabilities
induce undesirable accelerations and jerk fluctuations.
Therefore, if the fit curve is parameterized with respect to
the arc length, these accelerations will be eliminated.
However, the above parameterization is still an open
problem, even in 3D, although there exists a convenient
nearly arc-length spline parameterization introduced by
Wang and Yang [19] and Wang and Wright [20].

Our proposed procedures apply to the regions where the
angular variations are the major source of errors. However,

the procedures do not treat the accelerations explicitly.
Therefore, when such accelerations lead to large inaccura-
cies, the proposed algorithms should be combined with the
above-mentioned spline-interpolating methods. However,
observe that reducing the angular variation leads to equal
increments in the angular space. Therefore, it reduces the
angular accelerations appearing in the five-axis mode due
to sharp variations of the tool orientations.

Ideally, in five-axis machining, the tool path must be
regarded as a curve in the five-dimensional space and
parameterized with regards to its arc length in 5D. Such
parameterizations should be associated with several sources
of error, such as the kinematics error, errors due to
accelerations, etc. Unfortunately, such parameterizations
still constitute an open problem.

8 Conclusions

Minimization of the total angle variation for rough cuts
leads to a substantial accuracy increase ranging from 10%
to 80 %. The optimization can be formulated in terms of the
total error, as well as in terms of the undercut and overcut
errors. Optimization of the undercut error ensures against
the removal of the excess material during the rough cut.
Further improvement of the accuracy can be achieved by
constructing the uniform grid in the angular space around
the CC points characterized by large angle variations. The
methods are most efficient in the case of the rough cut
characterized by large angle variations, which produce
considerable errors. Concatenation of the two methods is
not as straightforward as it may seem. The shortest-path
optimization should be applied in an iterative loop with the
angular grids.
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