
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 20, 2022

Optimal Service Pricing and Charging Scheduling of an Electric Vehicle Sharing
System

Xie, Rui; Wei, Wei; Wu, Qiuwei; Ding, Tao; Mei, Shengwei

Published in:
IEEE Transactions on Vehicular Technology

Link to article, DOI:
10.1109/TVT.2019.2950402

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Xie, R., Wei, W., Wu, Q., Ding, T., & Mei, S. (2019). Optimal Service Pricing and Charging Scheduling of an
Electric Vehicle Sharing System. IEEE Transactions on Vehicular Technology, 69(1), 78 - 89.
https://doi.org/10.1109/TVT.2019.2950402

https://doi.org/10.1109/TVT.2019.2950402
https://orbit.dtu.dk/en/publications/ac774601-17d4-4211-a357-b31de75d2cc0
https://doi.org/10.1109/TVT.2019.2950402


1

Optimal Service Pricing and Charging Scheduling
of an Electric Vehicle Sharing System

Rui Xie, Wei Wei, Senior Member, IEEE, Qiuwei Wu, Senior Member, IEEE,

Tao Ding, Senior Member, IEEE, Shengwei Mei, Fellow, IEEE,

Abstract—Electric vehicles (EVs) has tiny environmental im-
pact and will constitute a major mean of urban transportation
in the future. Shared EV is quickly becoming a new business
model under the sharing economy initiatives, providing easy
access for commuters who possess no private cars. In this paper,
we consider a carsharing company that owns EVs and some
parking lots. Passengers can hire an EV at one parking lot and
drive it to another one and pay for the service at a certain price
determined by the company. A dedicated EV mobility model is
proposed to capture the spatial transportation of energy. Price
elasticity is described by a linear demand-price function. The
company schedules the charging of unoccupied EVs in each
parking lot, aiming at maximizing its profit. Parking lots possess
relatively large capacity and have to participate in a distribution
power market; energy consumption is paid at the locational
marginal price. The decision-making problem of the company
is formulated as a bilevel program. The lower level simulates
the distribution market clearing, and the upper level represents
pricing and charging scheduling problem faced by the company.
Starting from a global polyhedral approximation of the power
flow model, we develop an equivalent mixed-integer program
based on primal-dual optimality condition and integer algebra
technique. Case studies demonstrate that the proposed business
model can reshape the load profile by shaving the peaking and
filling the valley without harming the profit of the company.

Index Terms—bilevel program, charging schedules, distribu-
tion system, parking lots, pricing, shared electric vehicle

NOMENCLATURE

A. Parameters

T Number of time periods.

∆t Duration of period.

NS Number of parking lots.

Lij,t Energy consumption of unit vehicle in the trip from

parking lot i to j in period t.
aij,t Coefficient of demand function.

bij,t Coefficient of demand function.

ND Number of buses, excluding the slack bus.

ρt Electricity price at the slack bus in period t.
ρgj,t Generation cost at bus j in period t.
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rij Resistance of the line from i to j.

xij Reactance of the line from i to j.

S(j) Set of buses that the power from bus j flows to.

σ(i) The bus connected to parking lot i.
σ−1(j) The parking lot connected to bus j.

Ni,0 Initial total volume of EVs in parking lot i.
Ei,0 Initial stored energy of EVs in parking lot i.
Emax Stored energy of a fully-charged EV.

Emin Lower bound of the stored energy in an EV.

N i Upper bound of EV volume in parking lot i.
ei Maximum charging energy in a period.

p Maximum charging energy of per unit EV in one

period.

pdfj,t Fixed active power demand at bus j in period t.

qdfj,t Fixed reactive power demand at bus j in period t.
v Parameter of linearizing the OPF problem.

∆ei Discrete interval of the charging energy.

NB Parameter of discretizing the charging energy.

B. Optimization Variables

cij,t Service price of hiring an EV at parking lot i and

returning it at parking lot j in period t.
fij,t Volume of EVs traveling from parking lot i to

parking lot j in period t.
Ni,t Total volume of EVs in parking lot i at the end of

period t.
Ei,t Total stored energy in parking lot i at the end of

period t.
ei,t Charging energy of parking lot i in period t.
pg0,t Active power supplied by the slack bus in period t.
pgj,t Active generation power at bus j in period t.
qgj,t Reactive generation power at bus j in period t.

pdj,t Active power demand at bus j in period t.
qdj,t Reactive power demand at bus j in period t.
Pij,t Active power flowing from bus i to bus j at the

head node in period t.
Qij,t Reactive power flowing from bus i to bus j at the

head node in period t.
vi,t Squared voltage magnitude at bus i in period t.
lij,t Squared current from bus i to j in period t.
µj,t LMP at bus j in period t.
zi,t,m Integer variable in discretizing the charging energy

at parking lot i in period t.
αi,t,m Auxiliary variable in linearizing product terms of

LMP and charging energy.
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I. INTRODUCTION

THE wide deployment of electric vehicles (EVs) and

fast-growing distributed renewable generation help cut

down the usage of fossil fuels and resolve environmental

problems. The sales of EVs keep growing in the past few

years [1]. However, some practical issues such as lack of

charging facilities and battery degradation problem jeopardize

the convenience of EV usage and prevent faster popularization

of private EVs [2].

The development of information technology and the advent

of smartphone apps. precipitate the boom of sharing economy

initiatives, and carsharing is one of the most popular busi-

nesses, among others. Shared use of EV provides a broader

class of travelers more straightforward access to affordable and

clean mobility choices. In a car-hailing service, the user hires

a vehicle primarily for a one-way trip. It is different from

the so-called ride-sharing [3], in which a solo driver would

like to give another passenger a ride. As increasingly more

commuters choose not to own a private car for maintenance

cost and awareness of environmental issues, carsharing service

has thrived amid this new landscape [4].

EV sharing service first appeared in the late 1990s, such

as a demonstration program in San Francisco in 1995 [5] and

French Praxitele program in 1997 [6]. Nowadays, enabled by

smartphone apps., there are many EV sharing programs all

over the world, say, Autolib’, BlueIndy and EvCard [7].

There are three kinds of car-sharing system: round-way,

one-way and free-floating car sharing system [4]. The first

one requires clients to return hired vehicles where they depart,

which is not convenient. The second one allows returning the

vehicle at a different location belonging to the system. In the

third one, vehicles can be returned anywhere, even outside the

system. Since EVs need recharging, the one-way system is

suitable for shared EVs and also comfortable for clients.

The literature related to the one-way EV sharing system can

be classified by its perspective, either from the transportation

side or the power system side. Research works from the trans-

portation community mainly focus on the relocation problem

caused by one-way trips. Since the users can return the car at

a different parking lot, there may be accumulation or shortage

in some parking lots, and the vehicles in the system need to

be relocated to match the demand [8]. There are operator-

based and user-based relocation methods. For operator-based

relocation, the vehicles are moved by staffs. In this category,

ref. [9] proposes an optimization-trend-simulation decision

support system for vehicle relocation in a carsharing system. In

[8], an operator-based relocation framework dedicated to EVs

is offered, and it can be used to forecast the unbalancing of the

system. In user-based relocation, users are encouraged to move

vehicles and improve vehicle distribution, which helps to save

management costs. In [10], discrete event systems are applied

to represent the dynamics of the carsharing system, and a

user-based relocation policy is obtained in a rolling horizon

framework. The system offers users incentives considering

fluctuating demand and parking places in [11], and vehicle

allocation schemes are presented. Based on the EV relocation

and charging management, the optimal service region design

is studied in [12], in which travel needs coverage is maximized

under operation cost limits, and robust optimization technique

is adopted to deal with uncertainty.

Those from the power system community pay more atten-

tion to the charging scheduling in a particular parking lot

while neglects the mobility of vehicles. Ref. [13] studies the

optimal scheduling of EV charging and discharging, taking

into account electricity price, charging time, battery state and

age, and tries to earn profit from discharging. In [14], regular

and irregular EVs are considered separately, and irregular EVs

are described by probabilistic pattern. Ref. [15] focuses on the

parking lot in a multi-energy system, where the parking lot

appears as the accumulation of EVs, and is regarded as an en-

ergy storage unit with uncertainty in the multi-energy system.

Ref. [16] considers a parking deck equipped with distributed

generation and energy storage, and proposes methods for day-

ahead and real-time operation. Charging scheduling at several

charging stations is modeled as a game in [17], where EV

users minimize their waiting time.

Some research works consider the participation of EV park-

ing lots in the electricity market. In [18], a two-stage model

is designed to allocate parking lots in distribution systems,

where the interaction of parking lots and the electricity market

is considered and system costs are minimized. In [19], the

behavior of the parking lot in the energy and reserve markets

is optimized to maximize the profit, where several kinds of

demand response program are addressed respectively. Ref. [20]

investigates the equilibrium of the system consisting of energy

and reserve markets, EV parking lots, and EV owners. In [21],

a bilevel model is proposed for the interaction of parking lots

and distribution network, where parking lot operators maxi-

mize their profits and distribution system operator minimizes

the system cost by optimal power flow.

Some researchers consider charging scheduling outside of

parking lot, such as in EV fleet and smart home. In [22], the

optimal charging strategy of EV fleet manager is investigated

with given service needs information, which is shown to have

polynomial complexity. Refs. [23] and [24] present the study

of EV operation modes, including grid-to-vehicle and vehicle-

to-grid, and proposes home-to-vehicle and vehicle-to-home

modes. Ref. [25] introduces a method for minimizing the

charging cost in smart homes, utilizing vehicle-to-home and

vehicle-to-grid modes. Ref. [26] sheds light on the operation of

EV battery swapping station considering with solar generation.

Nevertheless, in the power system related research, residential

or working-place parking lots are individually studied. The

mobility of vehicles across different parking lots, which is an

important feature of EV sharing system and creates spatial

energy transportation, is not treated with enough details.

Wireless charging is an emerging technology for EVs, where

charging infrastructure is embedded in the road and EVs are

charging when they are traveling [27]. There are a couple

of works considering the mobility of EVs in the wireless

charging framework. Ref. [28] studies the siting of wireless

charging facilities in the transportation network, considering

the interaction between traffic flow and charging facility

location. According to [29], when the electricity market is

based on locational marginal price (LMP), wireless charging
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and EV mobility may have impact on the electricity price.

The independence among the electricity and transportation

networks through wireless charging of EVs is studied in [30],

and short-term operation problem is investigated. In [31], an

optimal charging scheduling method is proposed for wirelessly

charged electric buses in the public transportation system.

Given the technical maturity, this paper still confines to the

traditional charging mode.
This paper studies an EV sharing system that consists of a

number of parking lots scattering in a certain area. The novelty

is twofold.
1) A bilevel optimization model is proposed to help a

profit-driven EV sharing company make optimal decisions on

service pricing and charging scheduling, taking into account

the price elasticity of customers, EV mobility, and demand

bidding in a distribution power market. It is different from

existing research in two aspects. First, traditional work mainly

focuses on the charging scheduling of a single parking lot,

and treated every vehicle individually, such as in [13], [14],

[16], [18]–[20]. When the mobility of vehicle is taken into

account, the arrival rate and the energy demand are usually

assumed to follow certain distribution [14], [16], [18], [19].

In an EV sharing system, a customer drives a vehicle from

one parking lot and returns it at another one. This mobility is

significantly different from what has been considered in the

existing literature. In the proposed model, we track the spatial

energy transportation among parking lots instead of individual

vehicles. The model provides aggregated charging strategy

of each parking lot, and leaves single vehicle charging to a

self-scheduling problem which has been well studied in the

literature, such as [13], [14]. Second, Given the high charging

power of EV parking lots, the charging strategy may influence

the electricity price, unlike the time-of-use price, which is

used in [13]–[15], is exogenous-given constant regardless of

the demand. To capture the response of electricity price, we

explicitly model the optimal power flow of distribution system

from which the accurate locational marginal price is derived.
2) An equivalent mixed-integer quadratic program (MIQP)

is developed. To solve such a problem, we perform convex

relaxation and global polyhedral approximation of second-

order cones to make the lower-level market clearing problem

linear. Then the lower-level problem is replaced by primal-

dual optimality constraints, and the bilevel problem reduces

to a single-level one. Finally, product terms in the objective

are linearized via binary expansion, results in a MIQP. To

accelerate computation, we propose a warm start procedure to

derive a good initial feasible point, which implies a valid upper

bound of optimum, and thus the solver can prune unnecessary

branches in the early stage.
The rest of this paper is organized as follows: Basic settings

and mathematical formulation of the problem is presented in

Sect. II. The transformation to a solver compatible MIQP is

discussed in Sect. III. Case studies are provided in Sect. IV.

In the end, conclusions are drawn in Sect. V.

II. PROBLEM FORMULATION

We first introduce some basic settings and assumptions on

the operation of EV sharing system and then presents the

optimal power flow (OPF) based distribution market clearing

problem. Finally, we pose the pricing and scheduling problem

faced by the company.

A. Problem Description and Basic Settings

We consider a carsharing company that operates a one-way

EV sharing system. A typical day is divided into T periods

with equal length of ∆t. The company operates NS parking

lots where EVs can be charged, hired, and returned. In period

t, a client hires an EV at parking lot i and returns it at parking

lot j; the service is charged at price cij,t announced by the

company through a smartphone app.

To model mobility of EVs, let fij,t ∈ R be the volume of

vehicles departure from parking lot i to parking lot j in period

t, and constant Lij,t the energy consumption of unit vehicle in

the trip. Lij,t changes across periods due to the time-varying

traffic condition. Congestion in the transportation network

causes longer travel time as well as energy consumption

because of more frequent braking and acceleration. Please be

aware that fij,t is a real number rather than an integer; for

example, fij,t = 0.47 may represent 47, 470, or an arbitrary

integer number of vehicles, depending on the reference base

value. We do not model individual vehicles; instead, we con-

sider the aggregated effect. When the total number of EVs is

large enough, this setting provides reasonable outcomes while

preventing the problem size becoming unmanageable. We

assume that all trips are completed in one period; Nonetheless,

trips requiring multiple periods can be modeled in the same

way.

The volume of clients is influenced by the price, which is

approximated by a demand function fij,t = aij,t − bij,tcij,t,
where aij,t and bij,t are positive coefficients. Price elasticity

of demand is a basic concept in economics [32]; the simplest

as well as the most widely used one is the linear elasticity. For

example, linear price elasticity is used in [33] for modeling

carsharing demand, and the impacts of price elasticity param-

eter are investigated. The parameters can be calibrated from

historical data [34]. The logit-based function is also popular to

model asymptotical elastic demand. However, the carsharing

demand can be zero if the price is too high. Ref. [35] uses a

modified logit elastic demand function for pricing, and special

techniques are used to form a mixed integer convex problem.

Taking the modeling complexity and suitability into account,

we adopt the linear demand function in this study.

Let real number Ni,t ∈ R denote the total volume of EVs

in parking lot i, at the end of period t. Unoccupied EVs are

charged in the parking lot. The total stored energy in parking

lot i at the end of period t is denoted by Ei,t, and the charging

energy in period t is denoted by ei,t. We do not consider the

charging of individual vehicles, which is performed through

the parking lot self-scheduling and well studied in the existing

literature, such as [13], [14].

B. Distribution Network and Market Clearing

We envision a distribution power market where electrici-

ty consumption is charged at the nodal price or locational

marginal price (LMP). The market clearing problem relies on
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OPF. As network losses have notable impact on LMP, the

renowned direct-current power flow model for a transmission

network which is lossless is no longer appropriate. Therefore,

we resort to the branch flow model developed in [36] which is

shown to be equivalent to the exact alternating-current power

flow model [37] for radial distribution networks. Then the

OPF-based market clearing problem reads as follows

min ρpg0 +

ND
∑

j=1

ρgjp
g
j (1a)

s.t. Pij − rij lij + pgj − pdj =
∑

k∈S(j)

Pjk : µj , ∀j (1b)

Qij − xij lij + qgj − qdj =
∑

k∈S(j)

Qjk, ∀j (1c)

vj = vi − 2(rijPij + xijQij) + (r2ij + x2
ij)lij , ∀j (1d)

∥

∥

∥

∥

∥

∥

∥

2Pij

2Qij

lij − vi

∥

∥

∥

∥

∥

∥

∥

2

≤ lij + vi, ∀j (1e)

variable lower and upper bounds (1f)

where objective function (1a) aims to minimize the operation

cost; ρ and ρgj are the purchase cost at the slack bus and

generation cost of unit j respectively; pg0 stands for the power

delivered from the slack bus, so the first term is paid to the

upstream grid, and the second term is the generation cost of

local units; (1b) and (1c) are nodal power balance equations;

voltage drop along a distribution line is stipulated in (1d); (1e)

is the branch flow at the head node of each line; originally, it is

a non-convex quadratic equality P 2
ij+Q2

ij = lijvi; by replacing

= with ≤, the second-order cone (1e) becomes convex; it has

been proved that inequality (1e) naturally holds as an equality

at the optimal solution under mild conditions [38]; variable

lower and upper bounds are imposed in the last constraint.

OPF problem (1) is a second-order cone program. The LMP

can be extracted from the dual variable µj associated with the

active power balance equation (1b).

In existing power market studies, linear power flow models

are used for market clearing, such as the renowned direct-

current power flow model [39] and the linearized branch flow

model [40], [41], owing to the computational superiority of

linear program. However, the above linear power flow models

neglects network losses and inevitably involve approximation

error, especially for distribution systems where lines have a

large resistance to reactance ratio. So we resort to the branch

flow model based formulation (1), which better captures the

operating characteristics of distribution systems, for calculat-

ing electricity prices. Using convex relaxation of OPF models

for distribution market clearing has been discussed in [42]

and [43]. Nonetheless, the market clearing problem will be

incorporated in a bilevel program, yielding a more challenging

optimization problem.

C. Operation of the EV Sharing System

Operating the EV sharing system entails pricing every single

trip between any two parking lots and the aggregated charging

strategy of each parking lot. The problem is cast as follows

max

T
∑

t=1

NS
∑

i=1

NS
∑

j=1

cij,tfij,t −

T
∑

t=1

NS
∑

i=1

µσ(i),tei,t (2a)

s.t. fij,t = aij,t − bij,tcij,t, ∀i, ∀j, ∀t (2b)

Ni,t = Ni,0 +

t
∑

s=1

NS
∑

j=1

(fji,s − fij,s), ∀i, ∀t (2c)

Ei,t = Ei,0 +
t

∑

s=1

ei,s −
t

∑

s=1

NS
∑

j=1

Emaxfij,s

+

t
∑

s=1

NS
∑

j=1

(Emax − Lji,s)fji,s, ∀i, ∀t

(2d)

Emax

NS
∑

j=1

fij,t + Emin(Ni,t −

NS
∑

j=1

fij,t) ≤ Ei,t−1

(2e)

Ei,t ≤ EmaxNi,t, ∀i, ∀t (2f)

Ni,T = Ni,0, Ei,T = Ei,0, ∀i (2g)

fij,t ≥ 0, cij,t ≥ 0, ∀i, ∀j, ∀t

0 ≤ Ni,t ≤ N i, ei,t ≥ 0, ∀i, ∀t

ei,t ≤ ei, ei,t ≤ pNi,t, ∀i, ∀t

(2h)

µσ(i),t is determined from (1) (2i)

In objective function (2a), the first item is the total income

for renting EVs, and the second item is the charging cost

paid to the distribution power market. The profit is to be

maximized. The deprecation cost of EV is not considered in

the objective function, because the problem pertains to the

daily operation whose timescale is much shorter than that of

battery degradation. The deprecation cost is also neglected in

daily operation related work in [13], [15], [16]. Nevertheless,

the deprecation cost of EV can be considered in the objective

function via a linear term in fij,t.

Constraint (2b) depicts the elasticity of clients. Constraint

(2c) represents the volume of EVs in parking lot i at the

end of period t, considering those leaving to/arriving from

other parking lots. Denote by Emax the stored energy of

a fully-charged EV, and Lji,t the energy consumption of

travelling from parking lot j to parking lot i; because of

time-varying traffic condition, such an energy consumption

could be different in each time period. With these notations,

Emaxfij,s is the energy taken away by EVs setting out for

parking lot j, Lji,sfji,s is the energy used in travelling, and

(Emax−Lji,s)fji,s is the energy brought by EVs coming from

parking lot j; therefore, constraint (2d) characterizes the total

energy stored in parking lot i at the end of period t; constraints

(2c) and (2d) constitute the EV mobility model. It captures the

spatial transportation of energy.

As a consequence of the aggregated modeling paradigm,

we do not distinguish individual vehicles that are unoccupied

in the parking lot. For the ease of model setup, we assume

that an EV is available to use only it is fully charged, i.e., the

battery storage reaches Emax. This assumption brings great

convenience to practical operation and theoretical analysis.
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From the practical perspective, if a vehicle is allowed to leave

at any time regardless of its charging status, the charging-

discharging cycle may increase during a certain period, which

harms the life of the battery. Under this assumption, there is no

need to check if the energy left in the battery is sufficient for

the specific travel. From the modeling perspective, the spatial

transportation of energy can be conveniently expressed in (2d).

Without this assumption, it is non-trivial to estimate the spatial

energy flow among the parking lots.
Denote by Emin the lower bound of the stored energy in

an EV. If some vehicles are needed in period t, they must

take away total energy with the amount of Emax

∑NS

j=1 fij,t,
and the remaining vehicles in the parking lots possess total

energy with the amount of at least Emin(Ni,t −
∑NS

j=1 fij,t).
Constraint (2e) means that the total stored energy at the end of

period t−1 is adequate for ensuring that adequate vehicles are

standing by at the beginning of period t. Constraint (2f) is the

upper bound of the total stored energy. Constraints (2e) and

(2f) guarantee the energy adequacy in each charging station.
Constraint (2g) imposes equal operating states at the begin-

ning and end of each day in order to complete a daily cycle.

Constraint (2h) stipulates non-negativity on service price cij,t,
customer volume fij,t, maximal EV volume Ni,t restricted

by the total number of charging piles/slots in the parking lot,

and maximal charging power depending on the transformer

capacity of the parking lot, and maximum charging rate of EV

batteries. Because EV charging accounts for a high fraction of

distribution system load and impacts nodal electricity price,

in order to maximize profit, the company has to take the

LMP reaction from the distribution market into account, which

is stated in constraint (2i). Denote by σ(i) the bus in the

distribution system where parking lot i is connected, the LMP

µσ(i),t is determined from the dual variable of OPF problem

(1), where charging demand ei,t is added with the original

fixed demand pdf
σ(i)t, i.e.:

pdσ(i),t = pdf
σ(i),t + ei,t/∆t, ∀i, ∀t (3)

For buses without a parking lot connection, the active and

reactive power demands are known constants. For notation

brevity, time label t is omitted in OPF problem (1) without

causing confusion.
Formulation (2) is actually a bilevel optimization problem.

The lower level simulates distribution market clearing, and

the upper level represents pricing and charging scheduling

problem faced by the company.

III. AN EQUIVALENT MIQP

The difficulty of solving problem (2) is twofold: nonlinear

item µσ(i),tei,t in the objective function and LMP constraint

(2i). Furthermore, µσ(i),t is a dual variable determined by the

OPF problem, intensifying the computational challenge. In this

section, problem (2) will be approximated by an MIQP, which

can be globally solved by commercial solvers. First, the outer

polyhedral approximation is applied to second-order cones,

transforming the OPF problem into a linear program, which is

then substituted by its primal-dual optimality condition; finally,

product µσ(i),tei,t as well as remaining nonlinearity will be

linearized via integer programming technique.

A. Linearizing the OPF Problem

Solving a bilevel optimization problem often entails re-

placing the lower-level problem with its optimality condi-

tion, usually the KKT condition, leading to a mathematical

program with complementarity constraints. Complementarity

constraints are hard to tackle not only because they are non-

convex, but also due to their intrinsic numeric instability [44].

In power system applications, economy is the primary concern

and global optimality is always desired. In most existing power

market studies, the market clearing problem is linear. The

computational advantage brought by the linear market clearing

problem is that when it is replaced by the corresponding KKT

optimality condition, the linear complementarity constraints

can be linearized by the well-known big-M method [45]; then

the problem can be further reformulated as a mixed-integer

linear program that can be globally solved by off-the-shelf

solvers. However, OPF problem (1) for distribution system

is nonlinear, albeit convex, and its KKT optimality condi-

tion entails second-order cone complementarity constraints,

preventing further linearization. In this regard, we resort to

linearizing the OPF problem first, and then standard optimality

conditions can be applied.

In problem (1), the only nonlinearity originates from the

second-order cone constraint (1e). We adopt the global polyhe-

dral approximation technique proposed in [46]. Compared with

other linear OPF models, the maximum approximation error

over the entire power flow feasible region can be arbitrarily

small whenever the SOCP relaxation model (1) is exact, i.e.,

equality holds for (1e) at the optimal solution.

The technique in [46] is developed for standard second-

order cones in R
3 with the form of

√

x2
1 + x2

2 ≤ x3. To apply

this technique, constraint (1e) is decomposed into a pair of

standard second-order cones

√

(2Pij)2 + (2Qij)2 ≤Wij (4a)
√

W 2
ij + (lij − vi)2 ≤ lij + vi (4b)

Applying the global polyhedral approximation technique in

[46] to (4a) and (4b), respectively, we obtain two sets of linear

constraints

{

ξ0ij,1 ≥ 2Pij , ξ
0
ij,1 ≥ −2Pij

η0ij,1 ≥ 2Qij , η
0
ij,1 ≥ −2Qij























ξkij,1 = cos
( π

2k+1

)

ξk−1
ij,1 + sin

( π

2k+1

)

ηk−1
ij,1

ηkij,1 ≥ − sin
( π

2k+1

)

ξk−1
ij,1 + cos

( π

2k+1

)

ηk−1
ij,1

ηkij,1 ≥ sin
( π

2k+1

)

ξk−1
ij,1 − cos

( π

2k+1

)

ηk−1
ij,1

k = 1, · · · , v






ξvij,1 ≤Wij

ηvij,1 ≤ tan
( π

2v+1

)

ξvij,1

(5)
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{

ξ0ij,2 ≥Wij , ξ
0
ij,2 ≥ −Wij

η0ij,2 ≥ lij − vi, η
0
ij,2 ≥ −(lij − vi)























ξkij,2 = cos
( π

2k+1

)

ξk−1
ij,2 + sin

( π

2k+1

)

ηk−1
ij,2

ηkij,2 ≥ − sin
( π

2k+1

)

ξk−1
ij,2 + cos

( π

2k+1

)

ηk−1
ij,2

ηkij,2 ≥ sin
( π

2k+1

)

ξk−1
ij,2 − cos

( π

2k+1

)

ηk−1
ij,2

k = 1, · · · , v
{

ξvij,2 ≤ lij + vi

ηvij,2 ≤ tan(
π

2v+1
)ξvij,2

(6)

where ξkij,1, η
k
ij,1, ξ

k
ij,2, η

k
ij,2, k = 0, 1, · · · , v are auxiliary

variables; v is a positive integer, which is used to adjust

approximation accuracy.

The basic idea behind (5) and (6) is to create a rotation

mapping which preserves the norm of the complex number

ξk+ jηk. Once the angle of the complex number is close to 0,

the real part is approximately the norm. According to [46], if

the original constraint (1e) is satisfied, then (5) and (6) must

hold; conversely, if (5) and (6) hold, then
∥

∥

∥

∥

∥

∥

∥

2Pij

2Qij

lij − vi

∥

∥

∥

∥

∥

∥

∥

2

≤ (1 + δ(v))2(lij + vi) (7)

is satisfied, where

δ(v) =
1

cos( π
2v+1 )

− 1 = O(
1

4v
) (8)

Therefore, (5)-(6) provide a global outer approximation of

second-order cones defined in (4a)-(4b). Equation (8) provides

an estimation on the approximation error bound, which de-

creases rapidly with the growth of v.

In view of this relation, we can replace (1e) with (5)-(6),

and thus problem (1) becomes a linear program

min ρpg0 +

ND
∑

j=1

ρgjp
g
j

s.t. (1b)− (1d), (5)− (6)

variable lower and upper bounds

(9)

whose compact form can be written as

min
y

CT y (10a)

s.t. A1y = pd : µ (10b)

A2y ≥ B2 (10c)

where vector y encapsulates physical variables pgj , qgj , vj , Pij ,

Qij , lij and auxiliary variables ξkij,1, ηkij,1, ξkij,2, ηkij,2, and

matrices C, A1, A2, pd and B2 are constant coefficients. (10b)

corresponds to nodal active power balancing condition, where

charging demand of parking lots is merged in pd via equation

(3). µ is the dual variable associated with (10b), and its j-th

entry is the LMP at bus j. All other equality and inequality

constraints are abstracted in (10c).

To eliminate the min operator in constraint (2i), LP (10) will

be replaced by its optimality condition. There are two major

optimality conditions of LP, namely KKT optimality condition

and primal-dual optimality condition, which are equivalent

to each other for LPs. We choose primal-dual optimality

condition [47]–[49], because a large number of inequalities are

used in polyhedral approximation (5)-(6); if the KKT condition

is used, each inequality will introduce a complementarity

and slackness constraint in the KKT condition, prohibiting

an efficient solution, although they can be linearized in a

somehow different way.

To explain the primal-dual optimality condition, the dual LP

of problem (10) is

max
µ,γ

µT pd + γTB2 (11a)

s.t. AT
1 µ+AT

2 γ = C (11b)

γ ≥ 0 (11c)

Because strong duality always holds for LP, objective functions

(10a) and (11a) take the same value at the optimal solution.

Therefore, primal problem (10) and dual problem (11) achieve

optimum if and only if variables (y, µ, γ) satisfy

A1y = pd, A2y ≥ B2 (12a)

AT
1 µ+AT

2 γ = C, γ ≥ 0 (12b)

CT y = µT pd + γTB2 (12c)

where (12a) and (12b) represent primal and dual feasibility

constraints, respectively, and (12c) stipulates strong duality.

Taking into account (3) and time index t, constraint (2i) in (2)

can be replaced with the following optimality condition

A1yt = pdft +
eσ−1,t

∆t
, A2yt ≥ B2,t (13a)

AT
1 µt +AT

2 γt = C, γt ≥ 0 (13b)

CT yt =
(

pdft +
eσ−1,t

∆t

)T

µt +BT
2,tγt (13c)

for t = 1, · · · , T , where pdft is the vector of fixed active and

reactive loads in period t, and eσ−1,t is the vector of parking

lot charing demands in period t.

B. Linearizing Product Terms

Through above procedures, problem (2) is reduced to a

nonlinear program; bilinear terms µσ(i),tei,t and eσ−1(j),tµj,t

rest in objective function (2a) and constraint (13c). Such items

can be approximated by a so-called binary expansion method

[50]. To this end, we first discretize ei,t as follows

ei,t = ∆ei ·

NB−1
∑

m=0

2mzi,t,m, ∆ei =
ei
2NB

(14)

where zi,t,m ∈ {0, 1} is a binary variable. In equation (14),

the possible value of continuous variable ei,t ∈ [0, ēi] is

approximated by 2NB uniformly distributed candidates; or in

other words, the required number of binary variables is a
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logarithmic function in the number of breakpoints. With (14),

bilinear term µσ(i),tei,t can be expressed via linear functions

µσ(i),tei,t = ∆ei

NB−1
∑

m=0

2mαi,t,m (15a)

0 ≤ αi,t,m ≤Mzi,t,m (15b)

0 ≤ µσ(i),t − αi,t,m ≤M(1− zi,t,m) (15c)

eσ−1(j),tµj,t = ∆eσ−1(j)

NB−1
∑

m=0

2mασ−1(j),t,m (15d)

zi,t,m ∈ {0, 1}, ∀i, ∀t, ∀m (15e)

where M is a large enough constant. To see their equivalence,

if zi,t,m = 1, (15c) enforces αi,t,m = µσ(i),t, and (15b) is

redundant; otherwise, if zi,t,m = 0, (15b) dictates αi,t,m = 0,

and (15c) is redundant. Hence, relation αi,t,m = zi,t,mµσ(i),t

holds. Substituting it into (15a), it is a natural consequence

of multiplying both sides of (14) with µσ(i),t; nevertheless,

the right-hand side of (15a) and constraints (15b)-(15e) are all

linear. The same can be applied to bilinear term eσ−1(j),tµj,t.

C. Final MIQP

Eliminating cij,t from (2b) and substituting it into objective

function (2a), the first term remains convex. Performing all

procedures presented in previous subsection, we obtain the

final MIQP as follows

max

T
∑

t=1

NS
∑

i=1

NS
∑

j=1

(−
1

bij,t
f2
ij,t +

aij,t
bij,t

fij,t)

−

T
∑

t=1

NS
∑

i=1

∆ei

NB−1
∑

m=0

2mαi,t,m

s.t. (2b)− (2h), (13a), (13b)

(14), (15b), (15c), (15e)

CT yt = BT
2,tγt + (pdft )Tµt

+
1

∆t

∑

j

∆eσ−1(j)

NB−1
∑

m=0

2mασ−1(j),t,m

(16)

Problem (16) can be solved by commercial solvers.

To expedite computation, we propose an initiation procedure

to derive a good starting point which is feasible in (16),

because a feasible solution can imply a valid upper bound of

optimum and prune unnecessary branches in the early stage

[51], and thus decrease the computation time. The initial value

is provided by iterated optimization of EV sharing system and

power market clearing, as Algorithm 1 shows.

1 10

2 5 611

4 7 93

12 8

Fig. 1. The transportation network.

Algorithm 1 Initiation

Input: input parameters of (16)

Output: a feasible solution of (16)

1: pd,j,t ← pdf,j,t, ∀j, ∀t
2: Clear the power market by solving (1) and get µj,t

3: Solve the EV sharing system operation problem composed

of (2a)-(2h) where µj,t is fixed, and get ei,t
4: Rounding ei,t to the discretized value in (14).

5: Calculate zi,t,m and pd,j,t.
6: Solve the EV sharing system operation problem with fixed

ei,t, and get cij,t, fij,t, Ni,t, Ei,t.

7: Clear the power market, and get pg,j,t, qg,j,t, Pij,t, Qij,t,

vi,t, lij,t, µj,t, αi,t,m.

8: return The values of decision variables

First, clear the power market without considering the load

of EV sharing system, and get nodal prices. Then use these

prices and solve the EV sharing system operation problem,

which is composed of (2a)-(2h) where µ is fixed. After that,

we get a solution of service pricing and charging scheduling,

as well as charging load at nodes. Modify the solution and

make it feasible for the discretized charging energy constraint

(14). Then the power market is cleared again and nodal prices

are renewed, and the solution can serve as an initial point.

In Algorithm 1, the market clearing problem is an SOCP,

and the charging scheduling gives rise to a convex quadratic

problem. Both of them can be efficiently solved. Nevertheless,

such a solution may not be the global optimum from the

perspective of the company.

IV. CASE STUDY

A. Settings

We consider an EV sharing system on a transportation

network with 12 nodes and 40 links shown in Fig. 1. There

is a parking lot on each red node, and the EV sharing system

possesses 8 parking lots in total, labeled from 1 to 8 in Fig.

1. Detailed data can be found at [52].

A day is divided into T = 24 periods with length ∆t =
1 h. The total traffic demand varies from period to period,

causing different levels of congestions. We use classical traffic
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TABLE I
COEFFICIENT OF POWER LOAD.

Period Coefficient Period Coefficient Period Coefficient

1 0.7240 9 0.9457 17 0.8597

2 0.6787 10 0.8914 18 0.8914

3 0.6425 11 0.8145 19 0.9593

4 0.6878 12 0.7964 20 0.9321

5 0.8371 13 0.7919 21 0.9231

6 0.9864 14 0.8054 22 0.8914

7 0.9955 15 0.8145 23 0.8145

8 1.0000 16 0.8281 24 0.7330

1 2 3 4 5 6 7 8

Origin

1

2

3

4

5

6

7

8

D
e

s
ti
n

a
ti
o

n

0

1.167

3.005

2.839

2.704

3.005

1.167

0

2.705

1.672

1.673

2.844

3.343

3.004

2.704

0

1.167

2.838

3.005

2.838

1.671

1.167

0

3.341

1.671

2.838

2.704

1.672

3.341

0

1.171

1.67

2.837

3.005

2.842

1.17

0

2.836

3.001

3.341

2.837

1.671

1.669

2.836

0

1.167

3.005

2.837

2.837

3.001

1.167

0

4.374

5.542 4.376

4.374

5.541 4.374

4.374 5.54

4.373

4.373 5.54

4.375

0

1

2

3

4

5

Fig. 2. The energy consumption data Lij,14 (kWh).

assignment model [53] to predict background traffic and road

travel time. With this travel time information, shared EV users

choose the fastest path (with shortest travel time) connecting

their origin and destination. Energy consumption is a function

of the length of the traveled distance and the road travel time.

For instance, the power consumption data Lij,14 in period 14

is plotted in Fig. 2.

In the linear demand-price function (2b) of EV sharing

clients, aij,t can be regarded as the volume of potential clients,

and bij,t reflects the elasticity of the demand. We assume aij,t
is proportional to the value of O-D demand, with a maximal

value of maxt
∑

i

∑

j aij,t = 3000; bij,t = 20 is the same

for any i, j and t. Let Ni,0 = 100 for all parking lots (this

does not necessarily mean that there are 100 vehicles in each

parking lot at the beginning of the first period). Emax = 27
kWh, Emin = 3 kWh, N i = 200, ei = 2.5 MWh, p = 0.25
MWh and Ei,0 = 2.1 MWh are used in our tests.

The IEEE 33-node test system is used as the distribution

network, whose topology is shown in Fig. 3, and system data

are consistent with Matpower [54]. Bus 0 is the slack bus,

and the voltage magnitude is 1 p.u. The time-varying load is

obtained by multiplying the nodal load with a time-varying

parameter shown in Table I. Parking lot connections with the

distribution grid are marked with red squares in Fig. 3. Let ρ =
$0.20/kWh. Suppose there are gas-fired distributed generators

at the nodes 4, 9, 14, 19, 24 and 29, where the generation cost

coefficients ρg are 0.27, 0.26, 0.26, 0.25, 0.25 and 0.28 $/kWh

respectively. The power output limits are 0 ≤ pgj ≤ 0.17 and

−0.17 ≤ qgj ≤ 0.17 in per unit for all units. The node voltage

bound is 0.92 ≤ vi ≤ 1.12 (because vi actually represents

squared voltage magnitude), and the line current bound is 0 ≤
lij ≤ 1.04 in per unit.

6587

12

0 1 2 3

18 19 20 21

22 23 24

4 5 6 7

25 26 27 28

8 9 10 11

29 30 31

1612 13 14 15 17

32

34

Fig. 3. The IEEE 33-node distribution network.

0 5 10 15 20 25

Time (h)

0

1

2

3

4

5

6

S
e
rv

ic
e
 p

ri
c
e
 (

$
)

(a) The service price c6,5,t.
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(b) The times of service f6,5,t.

Fig. 4. Pricing result of travel from 6 to 5 in Case 1.

When we set up MIQP (16), v = 7, M = 5 and NB = 8
are used. The MIQP is coded in MATLAB environment using

YALMIP [55], and solved by GUROBI 8.0.1 [56]. We slightly

relax the equality constraint Ei,T = Ei,0 to Ei,0 ≤ Ei,T ≤
Ei,0 + 0.006 p.u., aiming at providing a certain degree of

flexibility. Since more stored energy makes the system more

flexible in the second day, this relaxation is reasonable. The

solver optimality gap for convergence is set to 1%.
For comparison, we consider four cases. Case 1 is the

benchmark case where the proposed method is used. Case 0

does not consider the EV sharing system (only OPF problem

is solved). Case 2 employs a simple strategy to determine

service price and charging schedule, which will be introduced

later. Case 3 adopts the dual-value time-of-use price. The two

values are determined from the average system LMP in Case

0 across the same periods. Case 4 utilizes real-time price for

the 24 periods. In each period, the electricity price is set to

the spatial average LMP in Case 0.

B. Results of the benchmark case

In the benchmark case, the computation time is 1021s,

which is acceptable for a day-ahead application problem. The

profit of the shared EV company is about $33975. The service

price cij,t for any origin parking lot i, destination parking lot

j and period t is also obtained. For example, the price curve

between parking lots 6 and 5 and the volume of clients are

plotted in Fig. 4a and Fig. 4b, respectively. The figure shows

that the service price is time-varying, and a peak occurs at the

evening rush hour.
In Case 1, the total volume of EV sharing service in each

period (
∑

i

∑

j fij,t) is shown in Fig. 5. It can be observed

that almost all 800 vehicles owned by the company are in

service from 7:00 a.m. to 8:00 p.m. Because of the price

elasticity, no more demand arises and the profit of the company

is maximized.
In Case 1, the volume of available EVs Ni,t in each parking

lot is plotted in Fig. 6a, and the average charging power
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Fig. 5. The total service volume
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j fij,t in each period.
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Fig. 6. The available EVs and charging demand at parking lots in Case 1.
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Fig. 7. The total power load and average nodal price.

ei,t/∆t in Fig. 6b. EVs are traveling between parking lots.

Their spatial distribution is changing over time, but the initial

and final conditions are equal. A charging peak is found in

period 6, because the electricity price is low.

In Fig. 7a, the total charging load
∑

j p
d
j,t is drawn. The

curve associated with Case 0 represents the traditional load

profile because EV charging is not considered in this case. It

clearly shows that with the proposed method in Case 1, the

minimum load during 03:00 to 07:00 grows larger compared to

Case 0, although the maximum load also increases, as power

load peak coincides with the traffic morning peak. The load

peak-valley differences are 0.54 p.u. in Case 0 and Case 1.

Fig. 7b shows the average nodal price which is defined as

(
∑

j µj,tpd,j,t)/(
∑

j pd,j,t), illustrating that during night, the

average price exhibits little difference, and price discrepancy

occurs between 10 a.m. and 10 p.m. Compared with Case 0,

the charging demands elevate the electricity price in Case 1.

C. Results of a simple strategy

We compare the proposed method with a simple strategy of

service pricing and charging scheduling established in Case 2.

In this case, the service price from parking lot i to j is set

to be a constant c′ij for all time periods, and the EV sharing

system can decide the service volume within the range of client

demand. Specifically, let c′ij be the average travelling price in

Case 1, i.e., c′ij = (
∑

t cij,tfij,t)/(
∑

t fij,t). This constant is

related to the distance between the two parking lots, so it is

reasonable.

For parking lot i in period t, the demand of traveling to park-

ing lot j is max{aij,t− bij,tc
′

ij , 0}, where the maximum is to

avoid a negative demand. The available EVs are used for trips

according to the demand. If
∑

k max{aik,t− bik,tc
′

ik, 0} > 0,

let

fij,t = Rij,t ·min{Ni,t−1,
∑

k

max{aik,t − bik,tc
′

ik, 0}}

Rij,t =
max{aij,t − bij,tc

′

ij , 0}
∑

k max{aik,t − bik,tc′ik, 0}

The minimum in the first equation guarantees that
∑

j fij,t ≤
Ni,t−1, so the available EVs are adequate for the service.

The number Rij,t is a proportionality coefficient reflecting the

proportion of service between trips from i to different parking

lots. If
∑

k max{aik,t − bik,tc
′

ik, 0} = 0, let fij,t = 0.

A greedy charging strategy is used: Charge EVs whenever

they are not fully-charged in the parking lots. Then

Ei,t = EmaxNi,t, ei,t =
∑

j

Lji,tfji,t (17)

For this simple strategy, constraints (2c)-(2f) hold, but the

equal operating states constraint (2g) and the upper bounds of

EV volume and charging power in (2h) may not be necessarily

true. Since there is no price regulation, parking lot daily

balancing condition (2g) is neglected.

The optimization problem in Case 2 can be solved in 28

s. The profit of Case 2 is $10897, which is much lower than

that in Case 1. The service volumes of Case 1 and Case 2 are

compared in Fig. 5. In Case 2, EVs are not fully utilized in

all periods. The load profile in Case 2 exhibits a deeper valley

than that in Case 1 because of smaller service volume, as Fig.

7a shows. The peak-valley difference is 0.57 p.u. In Fig. 7b,

the average nodal price of Case 2 is comparable to that of

Case 1 in most time periods. However, at the end of the day,

the volume of EVs at parking lots are about 132, 131, 44, 50,

65, 120, 188, 69 in Case 2, i.e., the parking lot usage is not

self-balanced. Thus, the proposed strategy performs better than

that in Case 2 in terms of economy and vehicle reallocation.

D. Results of Fixed Prices

Case 3 and Case 4 use fixed prices, i.e., the electricity price

is an exogenous-given constant rather than a variable, regard-

less of the volume of demand. So the market clearing problem

is unnecessary, and results can be obtained by independently

solving the EV sharing system operation problem comprised

of (2a)-(2h).
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TABLE II
RESULTS UNDER DIFFERENT aij,t .

Multiple Objective ($) Runtime (s)
∑

i

∑
j

∑
t fij,t

1.00 33975 1021 14763

1.25 51564 1530 15929

1.50 70017 1165 16722

1.75 88928 1962 17323

TABLE III
RESULTS UNDER DIFFERENT bij,t .

bij,t Objective ($) Runtime (s)
∑

i

∑
j

∑
t fij,t

5 172550 1042 15995

10 79949 1519 15662

15 49172 2052 15234

20 33975 1021 14763

The price curves in Case 3 and Case 4 are shown in Fig. 7b.

In Case 3, the electricity price is 0.253$/kWh during periods

10:00-23:00 and 0.210$/kWh during periods 0:00-9:00. The

runtime of Case 3 and Case 4 is about 20 seconds. The peak

charging power in the benchmark case is lower than those in

Case 3 and Case 4, because a higher load generally leads to

higher nodal prices, so the charging power cannot be too high.

In the two cases with fixed electricity price, the price does not

change even if the charging power increases, so the charging

power is higher than that in the benchmark case. By-and-large,

the charging power in Case 4 is closer to the benchmark case

compared with Case 3 as shown in Fig. 7a, because of the

more similar electricity price. The peak-valley difference is

0.57 p.u. in Case 4, which is larger than that of Case 1.

In summary, the proposed strategy brings more benefits than

fixed pricing schemes from the grid operation perspective.

E. Parameter Sensitivity Analysis

Finally, we investigate the impact of demand elasticity

parameter aij,t on the results. Multiply aij,t by a constant for

all i, j, and t. The results are shown in Table II. As demand

increases, the profit and the total service volume increase.

Table III shows the results under different bij,t. Larger bij,t
means the users are more sensitive to service price, so the

profit and the service volume decrease as bij,t increases. All

tests in Table II and Table III can be solved within an hour.

V. CONCLUSION

This paper proposes optimal pricing and operation strategy

for one-way EV sharing system. Considering EV mobility and

market participation is the main feature of the proposed model.

A bilevel model is set forth to capture the influence of EV

charging on distribution system operation and LMP, and it

is reformulated as a mixed-integer quadratic program through

polyhedral approximation of second-order cones, primal-dual

optimality condition, and product term linearization. Case

studies show that the proposed method has several advantages.

From the perspective of distribution system, the load valley

is filled because some charging demand shifts to night when

the electricity is cheaper; new demand peaks caused by EV

charging is rarely seen because LMP provides an adaptive

mechanism in response to the change of demand. From the

perspective of transportation system, some traffic demand in

rush hours may wish to switch to public transport because

of the high service price of shared vehicles, which may help

lessen traffic jams in big cities.
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