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Abstract

In this article, we consider parabolic equations on a bounded open connected

subset � ofRn . We model and investigate the problem of optimal shape and location

of the observation domain having a prescribed measure. This problem is motivated

by the question of knowing how to shape and place sensors in some domain in

order to maximize the quality of the observation: for instance, what is the opti-

mal location and shape of a thermometer? We show that it is relevant to consider

a spectral optimal design problem corresponding to an average of the classical

observability inequality over random initial data, where the unknown ranges over

the set of all possible measurable subsets of � of fixed measure. We prove that,

under appropriate sufficient spectral assumptions, this optimal design problem has a

unique solution, depending only on a finite number of modes, and that the optimal

domain is semi-analytic and thus has a finite number of connected components.

This result is in strong contrast with hyperbolic conservative equations (wave and

Schrödinger) studied in Privat et al. (J Eur Math Soc, 2015) for which relaxation

does occur. We also provide examples of applications to anomalous diffusion or

to the Stokes equations. In the case where the underlying operator is any positive

(possible fractional) power of the negative of the Dirichlet-Laplacian, we show that,

surprisingly enough, the complexity of the optimal domain may strongly depend

on both the geometry of the domain and on the positive power. The results are

illustrated with several numerical simulations.
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1. Introduction

Given a bounded domain � ofRn , in this paper we model and solve the problem

of finding an optimal observation domain ω ⊂ � for general parabolic equations

settled on �. We want to optimize not only the placement but also the shape of

ω over all possible measurable subsets of � having a certain prescribed measure.

Such questions are frequently encountered in engineering applications but have

been little treated from the mathematical point of view. Our objective is here to

provide a rigorous mathematical model and setting in which these questions can

be addressed. Our results will be established in a general parabolic framework

and cover the cases of heat equations, anomalous diffusion equations or Stokes

equations. For instance for the heat equation we will answer the following question

(that we will make more precise later on):

What is the optimal shape and location of a thermometer?

Brief state of the art. Due to their relevance in engineering applications, opti-

mal design problems for the placement of sensors for processes modeled by par-

tial differential equations have been investigated in a large number of papers. Let

us mention for instance the importance of the shape and placement of sensors

for transport-reaction processes (see [4,17]). Several difficulties overlap for such

problems. On the one hand, the parabolic partial differential equations under con-

sideration constitute infinite-dimensional dynamical systems, and, consequently,

solutions live in infinite-dimensional spaces. On the other hand, the class of admis-

sible designs is not closed for the standard and natural topology. Few works take

into consideration both aspects. Indeed, in many contributions, numerical tools are

developed to solve a simplified version of the optimal design problem where either

the partial differential equation has been replaced with a discrete approximation,

or the class of optimal designs is replaced with a compact finite dimensional set

(see for example [6,25,46,62] where such problems are investigated in a more
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general setting). In other words, in most of these applications the method con-

sists in approximating appropriately the problem by selecting a finite number of

possible optimal candidates and of recasting the problem as a finite-dimensional

combinatorial optimization problem. In many studies the sensors have a prescribed

shape (for instance, balls with a prescribed radius) and then the problem consists

of placing optimally a finite number of points (the centers of the balls) and thus it

is finite-dimensional, since the class of optimal designs is replaced with a compact

finite-dimensional set. Of course, the resulting optimization problem is already

challenging. We stress however that, in the present paper, we want to optimize also

the shape of the observation set, we do not make any a priori restrictive assumption

as to the class of shapes (ω to be of bounded variation, for instance) and the search

is made over all possible measurable subsets.

From the mathematical point of view, the issue of studying a relaxed version of

optimal design problems for the shape and position of sensors or actuators has been

investigated in a series of articles. In [47], the authors study a homogenized version

of the optimal location of controllers for the heat equation problem (for fixed initial

data), noticing that such problems are often ill-posed. In [2], the authors consider a

similar problem and study the asymptotic behavior as the final time T goes to infinity

of the solutions of the relaxed problem; they prove that optimal designs converge

to an optimal relaxed design of the corresponding two-phase optimization problem

for the stationary heat equation. We also mention [21] where, for fixed initial data,

numerical investigations are used to provide evidence that the optimal location of

null-controllers of the heat equation problem is an ill-posed problem. In [55] we

proved that, for fixed initial data as well, the problem of optimal shape and location

of sensors is always well posed for heat, wave or Schrödinger equations (in the

sense that no relaxation phenomenon occurs); we showed that the complexity of

the optimal set depends on the regularity of the initial data, and in particular we

proved that, even for smooth initial data, the optimal set may be of fractal type (and

there is no relaxation).

A huge difference between these works and the problem addressed in this paper

is that all criteria introduced in the sequel take into consideration all possible initial

data. Moreover, the optimization will range over all possible measurable subsets

having a given measure. This is the idea developed in [53,54,56], where the prob-

lem of the optimal location of an observation subset ω among all possible subsets

of a given measure or volume fraction of � was addressed and solved for conserva-

tive wave and Schrödinger equations. A relevant spectral criterion was introduced,

viewed as a measure of eigenfunction concentration, in order to design an optimal

observation or control set in an uniform way, independent of the data and solutions

under consideration. Such a kind of uniform criterion was earlier introduced for

the one-dimensional wave equation in [28,29] to investigate optimal stabilization

issues.

The main difference of the previous analyses of conservative wave-like prob-

lems with respect to the present one is that, here, due to strong dissipativity of the

heat equation (or of more general parabolic equations), high-frequency components

are penalized in the spectral criterion, thus making optimal shapes to be determined
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by the low frequencies only, which, in particular, avoids spillover phenomena to

occur.

Overview of the results of this paper. Let us now provide a short overview of

the results of the present paper, without introducing (at this step) the whole general

parabolic framework in which our results are actually valid.

Let � be an open bounded connected subset of Rn . Let T be a fixed (arbitrary)

positive real number. To start with a simple model, let us consider the heat equation

∂t y − △y = 0, (t, x) ∈ (0, T ) × �, (1)

with Dirichlet boundary conditions. For any measurable subset ω of �, we observe

the solutions of (1) restricted to ω over the horizon of time [0, T ], that is, we

consider the observable z(t, x) = χω(x)y(t, x), where χω denotes the characteristic

function of ω. The subset ω models sensors, and a natural question is to determine

what is the best possible shape and placement of the sensors in order to maximize

the observability in some appropriate sense, for instance in order to maximize the

quality of the reconstruction of solutions. In other words, we ask the question of

determining what is the best shape and placement of a thermometer in �.

At this stage, a first challenge is to settle the problem properly, to make it both

mathematically meaningful and relevant in view of practical issues.

Throughout the paper, we fix a real number L ∈ (0, 1), and we will work in a

class of domains ω such that |ω| = L|�|. In other words the set of unknowns is

UL = {χω ∈ L∞(�; {0, 1}) | ω is a measurable subset of � of Lebesgue measure

|ω| = L|�|}.

This is done to model the fact that the quantity of sensors to be employed is limited

and, hence, that we cannot measure the solution over � in its whole.

We stress again that we do not make any restriction on the regularity or shape of

the subsets ω. We are trying to determine whether or not there exists an ”absolute”

optimal observation domain. We will see that such a domain exists in the parabolic

case under slight assumptions on the operator and on the domain � (in contrast to

the case of hyperbolic equations studied in [56]).

Let us now define the observability problem under consideration.

Recall that, for a given measurable subset ω of �, the heat Equation (1) is said

to be observable on ω in time T whenever there exists C > 0 such that

C

∫

�

y(T, x)2 dx ≦

∫ T

0

∫

ω

y(t, x)2 dx dt, (2)

for every solution of (1) such that y(0, ·) ∈ D(�) (the set of functions defined on

� that are smooth and of compact support). It is well known that, if � is C2, then

this observability inequality holds true (see [18,22,40,61]). Note that this result has

been recently extended in [5] to the case where � is bounded Lipschitz and locally

star-shaped.

The observability constant CT (χω) is defined as the largest possible constant

C > 0 such that (2) holds. This constant gives an account for the well-posedness
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of the inverse problem of reconstructing the solutions from measurements over

[0, T ] × ω (see, for example, the textbook [15] for such inverse problems). Of

course, the larger the constant CT (χω) is, the more stable the inverse problem will

be.

Hence it is natural to model the problem of best observation for the heat Equation

(1) as the problem of maximizing the functional CT (χω) over the set UL , that is,

sup
χω∈UL

CT (χω). (3)

Such a problem is however very difficult due to the presence of cross terms at

the right-hand side of (2) when considering spectral expansions (see Section 2.1

for details). On the other hand, actually, the observability constant CT (χω) is (by

nature) pessimistic in the sense that it corresponds to a worst possible case, and in

practice it is expected that the worst case will not occur very often. In practice, to

reconstruct solutions one is often led to achieve a large number of measurements,

and in the problem of finding a best observation domain it is reasonable to design

a set that will optimize the observability only in average.

In view of that, we define an averaged version of the observability inequality,

where the average runs over random initial data. This procedure, described in

detail in Section 2.1, consists in randomizing the Fourier coefficients of the initial

data. To explain it with just a few words, let us fix an orthonormal Hilbert basis

(φ j ) j∈N∗ of L2(�) consisting of eigenfunctions of the (negative of) Dirichlet-

Laplacian associated with the positive eigenvalues (λ j ) j∈N∗ , with λ1 ≦ · · · ≦

λ j → +∞. Every solution of (1) can be expanded as

y(t, x) =
+∞
∑

j=1

a j e
−λ j tφ j (x).

We randomize the solutions (actually, their initial data) by considering

yν(t, x) =
+∞
∑

j=1

βν
j a j e

−λ j tφ j (x),

for every event ν ∈ X , where (βν
j ) j∈N∗ is a sequence of independent real random

variables on a probability space (X ,A, P) having mean equal to 0, variance equal

to 1, and a super exponential decay (for instance, Bernoulli laws). The randomized

version of the observability inequality (2) is then defined as

CT,rand(χω)

∫

�

y(T, x)2 dx ≦ E

∫ T

0

∫

ω

yν(t, x)2 dx dt,

where the expectation E ranges over the space X with respect to the probability

measure P. Here, CT,rand(χω) is defined as the largest possible constant such that this

randomized observability inequality holds, and is called randomized observability

constant. It is easy to establish that

CT,rand(χω) = inf
j∈N∗

e2λ j T − 1

2λ j

∫

ω

φ j (x)2 dx, (4)
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for every measurable subset ω of �. Moreover, note that 0 ≦ CT (χω) ≦

CT,rand(χω) (and the second inequality may be strict, as we will see further).

Following the previous discussion, instead of considering as a criterion the

deterministic observability constant CT (χω) [and then the problem (3)], we find it

more relevant to model the problem of best observation domain as the problem of

maximizing the functional CT,rand(χω) over the set UL , that is the problem

sup
χω∈UL

CT,rand(χω) = sup
χω∈UL

inf
j∈N∗

e2λ j T − 1

2λ j

∫

ω

φ j (x)2 dx . (5)

This spectral model is discussed and settled in a more general parabolic framework

in Section 2.1. As a particular case of our main results established in Section 2.2,

we have the following result for the heat Equation (1) with homogeneous Dirichlet

boundary conditions.

Theorem. Let T > 0 be arbitrary. Assume that ∂� is piecewise C1. There exists

a unique optimal observation measurable set ω∗, solution of (5).1 Moreover:

• CT (χω∗) < CT,rand(χω∗).

• The optimal set ω∗ is open and semi-analytic. In particular, it has a finite

number of connected components and |∂ω∗| = 0.

• The optimal set ω∗ is completely characterized from a finite-dimensional spec-

tral approximation, by keeping only a finite number of modes. More precisely,

for every N ∈ N
∗, there exists a unique measurable set ωN such that χωN ∈ UL

maximizes the functional

χω �−→ inf
1≦ j≦N

e2λ j T − 1

2λ j

∫

ω

φ j (x)2 dx

over UL . Moreover ωN is open and semi-analytic. Furthermore, the sequence

of optimal sets ωN is stationary, and there exists N0 ∈ N
∗ such that ωN =

ω∗ for every N ≧ N0. The stationarity integer N0 decreases as T increases

and N0 = 1 whenever T is large enough. In that case, the optimal shape is

completely determined by the first eigenfunction.

A more general result (Theorem 1) will be established in a general parabolic

framework. In the case of the heat equation, one of the important ingredients of

the proof is a fine lower bound estimate (stated in [5]) of the spectral quantities
∫

ω
φ j (x)2 dx , which is uniform over measurable subsets ω of a given measure.

Note that this existence and uniqueness result holds for every orthonormal

basis of eigenfunctions of the Dirichlet-Laplacian, but the optimal set depends, in

principle, on the specific choice of the basis. Of course, for T > 0 large enough,

the optimal set is independent of the basis since it is completely determined by the

first eigenfunction.

1 Here, it is understood that the optimal set ω∗ is unique within the class of all measurable
subsets of � quotiented by the set of all measurable subsets of � of zero measure.
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These properties, stated here for the heat Equation (1) (and proved more gener-

ally for parabolic equations under an appropriate spectral assumption, see further)

are in strong contrast with the results of [54–56] established for conservative wave

and Schrödinger equations. In that context of wave-like equations it was proved

that:

• when considering the problem with fixed initial data, the optimal set could be

of Cantor type (hence, |∂ω| > 0) even for smooth initial data;

• the corresponding randomized observability constant is equal to inf j∈N∗
∫

ω
φ j

(x)2 dx , and, with respect to (4), the evident difference is that all weights are

equal to 1. This is not surprising in view of the conservative properties of the

wave or Schrödinger equation, however the fact that all frequencies have the

same weight causes a strong instability of the optimal sets ωN (maximizers

of the corresponding spectral approximation). It was proved in [29,54] that

the best possible set ωN for N modes is actually the worst possible one when

considering N + 1 modes (spillover phenomenon).

In contrast, for the parabolic problems under consideration, we prove that this

instability phenomenon does not occur, and that the sequence of maximizers ωN is

constant for N large enough, equal to the optimal set ω∗. This stationarity property

is of particular interest in view of designing the best observation set ω∗ in practice.

In Section 2.2 we provide more details on these results, and state them in a far

more general setting, involving in particular the Stokes equation and anomalous

diffusion equations (with fractional Laplacian). For the Stokes equation

∂t y − △y + ∇ p = 0, div y = 0, (6)

considered on the unit disk with Dirichlet boundary conditions, we establish that

there exists a unique optimal observation set inUL , sharing nice regularity properties

as above.

Let us mention a striking feature occurring for the anomalous diffusion equation

∂t y + (−△)α y = 0, (7)

considered on some domain �, where (−△)α is some positive power of the

Dirichlet-Laplacian. Note that such equations are well recognized as being rel-

evant models in many problems encountered in physics (plasma with slow or fast

diffusion, aperiodic crystals, spins, etc), in biomathematics, in economy, also in

imaging sciences (see for instance [43,45,60]). Hence they provide an important

class of parabolic equations entering into the general framework developed in the

paper.

Given T > 0 arbitrary, we prove that if ∂� is piecewise C1 and if α > 1/2 (or

if α = 1/2 and T is large enough) then there exists a unique optimal observation

domain independently on the Hilbert basis of eigenfunctions under consideration.

Furthermore, we prove the unexpected facts that:

• in the Euclidean square � = (0, π)2, when considering the usual Hilbert basis

of eigenfunctions consisting of products of sine functions, for every α > 0

there exists a unique optimal set in UL (as in the theorem), which is moreover
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open and semi-analytic and thus has a finite number of connected components

(and this, whatever the value of α > 0 may be);

• in the Euclidean disk � = {x ∈ R
2 | ‖x‖ < 1}, when considering the usual

Hilbert basis of eigenfunctions parametrized in terms of Bessel functions, for

every α > 0 there exists a unique optimal set ω∗ (as in the theorem), which is

moreover open, radial, with the following additional property:

• if α > 1/2 then ω∗ consists of a finite number of concentric rings that are

at a positive distance from the boundary;

• if α < 1/2 (or if α = 1/2 and T is small enough) then ω∗ consists of an

infinite number of concentric rings accumulating at the boundary!

This surprising result shows that the complexity of the optimal shape does not only

depend on the operator but also on the geometry of the domain �.

It must be underlined that the proof of these properties (done in Section 3.5) is

lengthy and particularly difficult in the case α < 1/2. It requires the development of

very fine estimates for Bessel functions, combined with the use of quantum limits

(semi-classical measures) in the disk, nontrivial minimax arguments and analyticity

considerations.

Several numerical simulations based on the spectral approximation described

previously are provided in Section 2.4. They show in particular what is the optimal

shape and location of a thermometer in a square or in a disk.

The paper is structured as follows.

Section 2 is devoted to model and solve the problem of finding a best observation

domain for parabolic equations. The model is discussed and defined in Section 2.1,

based on the introduction of the randomized observability inequality. The problem

is solved in a general parabolic setting in Section 2.2, where it is shown that, under

an appropriate spectral assumption, there exists a unique optimal observation set,

which can moreover be recovered from a finite dimensional spectral approximation

problem. Section 2.3 is devoted to the application to the Stokes equation on the unit

disk. In Section 2.4, we study the case of anomalous diffusion equations and then

we provide several numerical simulations illustrating our results and in particular

the stationarity feature of the sequence of optimal sets. Further comments on the

spectral assumption are presented in Section 2.5, from a semi-classical analysis

viewpoint.

All results are proved in Section 3. It must be underlined that the proof con-

cerning the anomalous diffusion equations, in particular in the case α < 1/2, is

long and very technical. It is actually unexpectedly difficult. The proof concerning

the Stokes equation is as well for a large part based on facts derived in the previous

proof.

Section 4 provides a conclusion and several further comments and open prob-

lems.

2. Optimal Sensor Shape and Location/Optimal Observability

Let � be an open bounded connected subset of Rn . Throughout the paper we

consider the problem of determining the optimal observation domain for the abstract

parabolic model
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∂t y + A0 y = 0, (8)

where A0 : D(A0) → L2(�, C) be a densely defined operator. Precise assumptions

on A0 will be done further. As the main reference, we can keep in mind the typical

example of the heat equation with Dirichlet boundary conditions overviewed in the

introduction, but our analysis and results will be established for a large class of

parabolic operators.

At this stage all what we need to assume, in order to establish the model that

we will study, is that there exists a normalized Hilbert basis (φ j ) j∈N∗ of L2(�, C)

consisting of (complex-valued) eigenfunctions of A0, associated with the (complex)

eigenvalues (λ j ) j∈N∗ .

2.1. The Model

The aim of this section is to introduce and define a relevant mathematical model

of the problem of best observation. The first ingredient is the notion of observability

inequality.

Observability inequality. For every y0 ∈ D(A0), there exists a unique solution

y ∈ C0(0, T ; D(A0))∩C1(0, T ; L2(�)) of (8) such that y(0, ·) = y0(·). For every

measurable subset ω of �, the Equation (8) is said to be observable on ω in time

T if there exists C > 0 such that

C‖y(T, ·)‖2
L2(�)

≦

∫ T

0

∫

ω

|y(t, x)|2 dx dt, (9)

for every solution of (8) such that y(0, ·) ∈ D(A0). This inequality is called observ-

ability inequality, and the constant defined by

CT (χω) = inf

{
∫ T

0

∫

ω
|y(t, x)|2 dx dt

‖y(T, ·)‖2
L2(�)

∣

∣ y0 ∈ D(A0) \ {0}

}

, (10)

is called the observability constant. It is the largest possible nonnegative constant

for which (9) holds. In other words, the Equation (8) is observable on ω in time T

if and only if CT (χω) > 0.

Remark 1. It is well known that, if A0 is the negative of the Dirichlet, or Neumann,

or Robin Laplacian, then the Equation (8) is observable (see [18,22,40,61]), for

every open subset ω of �. The observability property holds as well, for example,

for the linearized Cahn-Hilliard operator corresponding to � ⊂ R
n , A0 = (−△)2,

with the boundary conditions y|∂� = △y|∂� = 0 (see [61]). For the Stokes operator,

the observability property follows from [20, Lemma 1].2

2 More precisely, in order to derive the usual observability inequality from the Carleman
estimate proved in this reference, it suffices to estimate from below the left-hand side weight
on [T/4, 3T/4], to estimate from above the right-hand weight, and to use the fact that the
function t �→ ‖y(t, ·)‖L2 is nonincreasing.
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As explained in the introduction, throughout the paper we fix a real number

L ∈ (0, 1) and we will search an optimal domain in the set

UL = {χω ∈ L∞(�; {0, 1}) | ω is a measurable subset of � of Lebesgue measure

|ω| = L|�|}. (11)

This gives an account for the fact that we can measure the solutions only over a

part of the whole domain �.

Having in mind the observability inequality (9), it is a priori natural to model the

question of the optimal location of sensors in terms of maximizing the observability

constant CT (χω) over the set UL defined by (11), where T > 0 is fixed. Actually,

when implementing a reconstruction method, the observability constant CT (χω)

gives an account for the well-posedness of the corresponding inverse problem. More

precisely, the larger the observability constant is, the better conditioned the inverse

problem is.

However at this stage two remarks are in order.

First of all, every solution y(·) of (8) such that y(0, ·) = y0(·) can be expanded

as

y(t, x) =
+∞
∑

j=1

a j e
−λ j tφ j (x), (12)

where

a j =
∫

�

y0(x)φ j (x) dx, (13)

for every j ∈ N
∗. Using this spectral decomposition, the change of variable b j =

a j e
−λ j T and an easy density argument, we get

CT (χω) = inf
∑+∞

j=1 |b j |2=1

∫ T

0

∫

ω

∣

∣

∣

∣

∣

∣

+∞
∑

j=1

b j e
λ j tφ j (x)

∣

∣

∣

∣

∣

∣

2

dx dt. (14)

The constant CT (χω) appears as the infimum of the eigenvalues of a Gramian

operator, which is the infinite-dimensional Hermitian nonnegative matrix

GT (χω) =

(

e(λ j +λ̄k )T − 1

λ j + λ̄k

∫

ω

φ j (x)φk(x) dx

)

j,k≧1

. (15)

Due to the crossed terms appearing when expanding the square in (14), the resulting

optimal design problem, consisting of maximizing CT (χω) over the set UL , is

not easily tractable, at least in view of deriving theoretical results. Note that this

problem, which has been discussed thoroughly in [54,56], is quite similar to the

open problem of determining the best constants in Ingham’s inequalities (see [31,

32]).

Secondly, even though the problem of maximizing the observability constant

seems natural at the first glance, it is actually not so relevant with respect to the

practical issues that we have in mind. Indeed in practice one is led to deal with a

large number of solutions: when implementing a reconstruction process, one has to
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carry out in general a very large number of measures; likewise, when implementing

a control procedure, the control strategy is expected to be efficient in general, but

maybe not exactly for all cases. The issue that we raise here is the fact that the above

observability inequality (9) is deterministic, and thus the observability constant

CT (χω) is pessimistic since it gives an account for a worst possible case. It is likely

that in practice this worst case will not occur very often, and hence the deterministic

observability constant is not a relevant criterion when realizing a large number of

experiments. Therefore, in order to model the best observation problem, we should

keep in mind that the best observation domain should be designed to be the best

possible in average, that is, over a large number of experiments.

Having this remark in mind, we next define a new notion of observability

inequality by considering an average over random initial data. We then define

below a notion of randomized observability constant, which is in our view better

suited to the model of best observation. We follow [56], accordingly to early ideas

developed in [50] for harmonic analysis issues and recently in [11,12] in view of

ensuring the probabilistic well-posedness of classically ill-posed supercritical wave

or Schrödinger equations.

Randomized observability inequality. For any given y0 ∈ D(A0), the Fourier

coefficients of y0, defined by (13), are randomized by defining aν
j = βν

j a j for every

j ∈ N
∗, where (βν

j ) j∈N∗ is a sequence of independent real random variables on

a probability space (X ,F , P) having mean equal to 0, variance equal to 1, and

a super exponential decay (for instance, independent Bernoulli random variables,

see [11,12] for more details on randomization possibilities and properties). For

every ν ∈ X , the solution corresponding to the initial data y0
ν =

∑+∞
j=1 βν

j a jφ j

is then yν(t, ·) =
∑+∞

j=1 βν
j a j e

−λ j tφ j (·). Instead of considering the deterministic

observability inequality (9), we define the randomized observability inequality by

CT,rand(χω)‖y(T, ·)‖2
L2(�)

≦ E

∫ T

0

∫

ω

|yν(t, x)|2 dx dt, (16)

for every solution y of (8) such that y(0) ∈ D(A0), where E is the expectation over

the space X with respect to the probability measure P. The nonnegative constant

CT,rand(χω) is called randomized observability constant and is defined (by density)

by

CT,rand(χω) = inf
∑+∞

j=1 |b j |2=1

E

∫ T

0

∫

ω

∣

∣

∣

+∞
∑

j=1

βν
j b j e

λ j tφ j (x)

∣

∣

∣

2
dx dt. (17)

It is the randomized counterpart of the deterministic constant CT (χω) defined by

(14). Note that

0 ≦ CT (χω) ≦ CT,rand(χω), (18)

for every measurable subset ω of �. The inequalities can be strict (see Theorem 1

further).
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Proposition 1. Let T > 0 arbitrary. For every measurable subset ω of �, we have

CT,rand(χω) = inf
j∈N∗

γ j (T )

∫

ω

|φ j (x)|2 dx,

with

γ j (T ) =

⎧

⎨

⎩

e2Re(λ j )T − 1

2Re(λ j )
if Re(λ j ) �= 0,

T if Re(λ j ) = 0.

(19)

Proof. Using the Fubini theorem and the independence of the random laws, one

has

CT,rand(χω) = inf
∑+∞

j=1 |b j |2=1

∫ T

0

∫

ω

+∞
∑

j,k=1

E(βν
j β

ν
k )b j b̄ke(λ j +λ̄k )tφ j (x)φk(x) dx dt

= inf
∑+∞

j=1 |b j |2=1

+∞
∑

j=1

|b j |2
∫ T

0

e2Re(λ j )t dt

∫

ω

|φ j (x)|2 dx,

and the conclusion follows easily. ⊓⊔

This result clearly shows how the randomization procedure rules out the off-

diagonal terms in the Gramian (15).

Remark 2. Note that

∫

�

|yν(T, x)|2 dx =
+∞
∑

j=1

|a j |2e−2Re(λ j )T |βν
j |

2.

Therefore if the sequence (βν
j ) j∈N∗ consists of independent Bernoulli random vari-

ables, then |βν
j | = 1 and hence,

∫

�
|yν(T, x)|2 dx =

∫

�
|y(T, x)|2 dx . In that case,

it is interesting to note that CT,rand(χω) is the largest nonnegative constant such

that

CT,rand(χω)E(‖yν(T, ·)‖2
L2(�)

) ≦ E

∫ T

0

∫

ω

|yν(t, x)|2 dx dt,

for every solution y of (8) such that y(0) ∈ D(A0). With respect to (17), we have

then

CT,rand(χω) = inf
(b j ) j∈N∗∈ℓ2(C)\{0}

E
∫ T

0

∫

ω

∣

∣

∣

∑+∞
j=1 βν

j b j e
λ j tφ j (x)

∣

∣

∣

2
dx dt

E
∫

�
|yν(T, x)|2 dx

.

Note that, in (17), obviously the expectation and the infimum cannot be inverted

(otherwise, we recover the classical observability constant).
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Conclusion: the optimal shape design problem. For every measurable subset ω

of �, we set

J (χω) = CT,rand(χω) = inf
j∈N∗

γ j (T )

∫

ω

|φ j (x)|2 dx . (20)

Throughout the paper, we will consider the problem of maximizing the functional

J over the set UL defined by (11), where the coefficients γ j (T ) are defined by (19).

In other words, we consider the problem

sup
χω∈UL

J (χω) = sup
χω∈UL

inf
j∈N∗

γ j (T )

∫

ω

|φ j (x)|2 dx . (21)

According to the previous discussion, this optimal shape design problem models

the best sensor shape and location problem for the parabolic Equation (8).

The functional J defined by (20) corresponds to an energy concentration mea-

sure. As we will see, solving this problem requires spectral assumptions.

2.2. The Main Result

In our main result below, it will be useful to consider the functional JN defined

by

JN (χω) = inf
1≦ j≦N

γ j (T )

∫

ω

|φ j (x)|2 dx, (22)

for every measurable subset ω of �, for every N ∈ N
∗. The functional JN is the

spectral truncation of the functional J to the N first terms. We consider as well the

shape optimization problem

sup
χω∈UL

JN (χω), (23)

which is a spectral approximation of the problem (21). We call it the truncated

problem.

Let us now provide the general parabolic framework and the required spectral

assumptions.

Framework and assumptions. Let � be an open bounded connected subset of

R
n , and let L ∈ (0, 1) and T > 0 be arbitrary. Let A0 : D(A0) → L2(�, C) be a

densely defined operator, generating a strongly continuous semigroup on L2(�, C).

We assume that there exists a Hilbert basis (φ j ) j∈N∗ of L2(�, C) consisting of

(complex-valued) eigenfunctions of A0, associated with (complex) eigenvalues

(λ j ) j∈N∗ such that Re(λ1) ≦ · · · ≦ Re(λ j ) ≦ · · · , and such that the following

assumptions are satisfied:

(H1) (Strong Conic Independence Property) If there exists a subset E of � of

positive Lebesgue measure, an integer N ∈ N
∗, a N -tuple (β j )1≦ j≦N ∈

(R+)N , and C ≧ 0 such that
∑N

j=1 β j |φ j (x)|2 = C almost everywhere on

E , then there must hold C = 0 and β j = 0 for every j ∈ {1, . . . , N };
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(H2) For every a ∈ L∞(�; [0, 1]) such that
∫

�
a(x) dx = L|�|, one has

lim inf
j→+∞

γ j (T )

∫

�

a(x)|φ j (x)|2 dx > γ1(T );

(H3) The eigenfunctions φ j are analytic in �.

We start with a simple preliminary result for the truncated problem.

Proposition 2. Under (H1), for every N ∈ N
∗, the truncated problem (23) has a

unique solution χωN ∈ UL .3 Moreover, under (H3), ωN is an open semi-analytic

set, and thus, in particular, it has a finite number of connected components.4

Remark 3. If A0 is defined on a domain D(A0) such that the eigenfunctions φ j

vanish on ∂� (Dirichlet boundary conditions), then moreover there exists ηN > 0

such that the (Euclidean) distance between ωN and ∂� is larger than ηN .

Our main result is the following:

Theorem 1. Under (H1) and (H2), the optimal shape design problem (21) has a

unique solution χω∗ ∈ UL .

Moreover, there exists a smallest integer N0(T ) such that

J (χω∗) = max
χω∈UL

J (χω) = max
χω∈UL

JN (χω),

for every N ≧ N0(T ). In other words, the sequence (χωN )N∈N∗ of maximizers of

JN is stationary, that is, ω∗ = ωN0(T ) = ωN for N ≧ N0(T ).

The function T �→ N0(T ) ∈ N
∗ is nonincreasing. If Re(λ j ) → +∞ as j → +∞

and if Re(λ1) < Re(λ2), then N0(T ) = 1 whenever T is large enough.

Under the additional assumption (H3), we have moreover that:

• CT (χω∗) < CT,rand(χω∗);

• the optimal observation set ω∗ is an open semi-analytic set and thus it has a

finite number of connected components.

Proposition 2 and Theorem 1 are proved in Section 3.

Remark 4. In the next sections we will comment in detail on the assumptions

done in the theorem, and provide classes of examples where they are satisfied

(note however that proving their validity is far from obvious): heat and anomalous

diffusion equations, and the Stokes equation.

3 Here and in the sequel, it is understood that the optimal set is unique within the class
of all measurable subsets of � quotiented by the set of all measurable subsets of � of zero
measure.

4 A subset ω of a real analytic finite dimensional manifold M is said to be semi-analytic if
it can be written in terms of equalities and inequalities of analytic functions. We recall that
such semi-analytic subsets are stratifiable in the sense of Whitney (see [24,30]), and enjoy
local finitetess properties, such that: local finite perimeter, local finite number of connected
components, etc.
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We can however note, at this stage, that these assumptions are of different

natures.

The assumption (H1) will be treated essentially with analyticity considerations.

Indeed note that (H1) holds true as soon as the eigenfunctions φ j are analytic in �

(that is, under the assumption (H3)) and vanish along ∂�. This is often the case, for

instance, for elliptic operators with analytic coefficients (see for instance [7] where

the property is related with the concept of analytic vector). It can be noted that a

generalization of the property (H1) has been studied for the Dirichlet-Laplacian

in [52], where the β j are arbitrary real numbers, and is proved to hold generically

with respect to the domain �. The validity of (H1) in general (for instance, for

Neumann boundary conditions) is an open problem.

The assumption (H2), which can as well be seen from a semi-classical point

of view (see comments in Section 2.5 further) is related with nonconcentration

properties of eigenfunctions. For instance proving it for heat-like equations will

require the use of fine recent results providing lower bound estimates that are

uniform with respect to the observation domain ω.

Before coming to these applications, several remarks are in order.

Remark 5. The fact that the sequence (χωN )N∈N∗ of optimal sets of the truncated

problem (35) is stationary is in strong contrast with the results of [28,29,53,54,56]

in which such optimal design problems have been investigated for conservative

wave or Schrödinger equations. In these references it was observed and proved that

the corresponding maximizing sequence of subsets does not converge in general,

except in very particular cases. Moreover, in dimension one, this sequence of sets has

an instability property known as spillover phenomenon. Namely, the best possible

set for N modes is actually the worst possible one when considering N + 1 modes.

This instability property has negative consequences in view of practical issues for

designing a relevant notion of optimal set.

In contrast, Theorem 1 shows that, for the parabolic Equation (8), the maximiz-

ing sequence of subsets is stationary, and hence only a finite number of modes is

enough in order to capture all the information necessary to design the true optimal

set. In other words, higher modes play no role. Although this result can appear as

intuitive because we are dealing with a parabolic equation, deriving such a prop-

erty however requires the spectral property (H2), which is commented and analyzed

further.

Remark 6. The fact that the optimal set ω∗ is semi-analytic is a strong (and desir-

able) regularity property. In addition to the fact that ω∗ has a finite number of

connected components, this implies also that ω∗ is Jordan measurable, that is,

|∂ω∗| = 0. This is in contrast with the already mentioned fact that, for wave-like

equations, when maximizing the energy for fixed data, the optimal set may be a

Cantor set of positive measure, even for smooth initial data (see [55]).

Remark 7. (A convexified formulation of (21)) It is standard in shape optimization

to introduce a convexified version of a maximization problem, since it may fail to

have some solutions because of hard constraints. This is what is usually referred to

as relaxation (see, for example, [10]).
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Since the set UL [defined by (11)] does not share nice compactness properties,

we consider the convex closure of UL for the weak star topology of L∞, which is

U L =
{

a ∈ L∞(�; [0, 1]) |
∫

�

a(x) dx = L|�|
}

. (24)

Such a relaxation was used as well in [47,54,56]. Replacing χω ∈ UL with a ∈ U L ,

we define a relaxed formulation of the optimal shape design problem (21) by

sup
a∈U L

J (a), (25)

where the functional J is naturally extended to U L by

J (a) = inf
j∈N∗

γ j (T )

∫

�

a(x)|φ j (x)|2 dx, (26)

for every a ∈ U L . Moreover, one has the following existence result.

Lemma 1. For every L ∈ (0, 1), the relaxed problem (25) has at least one solution

a∗ ∈ U L .

Proof of Lemma 1. For every j ∈ N
∗, the functional a ∈ U L �→ γ j

∫

�
a(x)|φ j

(x)|2 dx is linear and continuous for the weak star topology of L∞. Hence J is

upper semicontinuous as the infimum of continuous linear functionals. Since U L

is compact for the weak star topology of L∞, the lemma follows. ⊓⊔

Note that, obviously,

sup
χω∈UL

J (χω) ≦ sup
a∈U L

J (a) = J (a∗),

but, in fact, from Theorem 1 (and from its proof) we deduce that the two suprema

coincide, and that the problem (21) and the relaxed problem (25) have the same

(unique) solution. This means that there is no gap between the optimal values of

the problem (21) and its relaxed formulation (25). A similar result was established

in [56] for wave and Schrödinger like equations under spectral assumptions on the

domain �, but, in contrast to these hyperbolic equations where relaxation occurs

except for some very distinguished discrete values of L , here, in the parabolic

setting, relaxation does not occur, at least under the assumption (H2), which is

fulfilled for the Dirichlet-Laplacian for piecewise C1 domains � (see Theorem 3

further).

In particular, in the parabolic setting, contrarily to what happens in wave-like

equations, the constant function a = L is not an optimal solution. Note that this

constant function corresponds intuitively (at the weak limit) to equi-distribute the

sensors over the domain �. This strategy is however not optimal for parabolic

problems.
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Remark 8. The assumption (H2) can be actually weakened (as can be easily seen

from the proof of the theorem). To ensure that the conclusion of Theorem 1 holds,

it is sufficient to assume that

lim inf
j→+∞

γ j (T )

∫

�

a∗(x)|φ j (x)|2 dx > γ1(T ), (27)

where a∗ ∈ U L is any optimal solution of the relaxed problem (25). In other words,

it is sufficient to restrict the assumption (H2) to the sole a∗. Note that such an

assumption is impossible to check since a∗ is not known a priori, but this remark

will however be useful in Section 3.5.

Note that, since J (L) = Lγ1, it follows that J (a∗) ≧ Lγ1, and hence in

particular there always holds

lim inf
j→+∞

γ j (T )

∫

�

a∗(x)|φ j (x)|2 dx ≧ Lγ1(T ).

Remark 9. The existence and uniqueness of an optimal set, stated in Theorem 1,

holds true for any Hilbert basis of eigenfunctions of A0 as soon as this basis satisfies

the assumptions (H1), (H2) and (H3). However the optimal set ω∗ may depend on

the specific choice of the basis.

Remark 10. As noted before, the issue of solving the optimal design problem

sup
χω∈UL

CT (χω)

where CT (χω) is the observability constant of the parabolic Equation (8) defined

by (10), is natural and interesting, although this problem is very difficult to handle

from the theoretical point of view, even for the truncated criterion, and not as much

relevant as the one we consider here, from the practical point of view (as already

discussed).

Note that the truncated version of the criterion CT,rand(χω) is the lowest eigen-

value of the diagonal matrix diag
(

γ j (T )
∫

ω
|φ j (x)|2 dx

)

1≦ j≦N
, whereas the trun-

cated version CT,N (χω) of the criterion CT (χω) is the lowest eigenvalue of the

Gramian matrix

GT,N (χω) =

(

e(λ j +λ̄k )T − 1

λ j + λ̄k

∫

ω

φ j (x)φk(x) dx

)

1≦ j,k≦N

, (28)

which is the truncation of the Gramian GT (χω) defined by (15). Under the con-

ditions of Theorem 1, the sequence of the minimizers over UL of the truncated

version of the randomized constant CT,rand(χω) is stationary. An interesting prob-

lem consists of investigating theoretically or numerically whether this stationarity

property holds true or not for the truncated version CT,N (χω) of the observability

constant CT (χω).
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Notice that, extending the definition of CT (χω) to the functions a ∈
L∞(�; [0, 1]) by

CT (a) = inf

{
∫ T

0

∫

�
a(x)|y(t, x)|2 dx dt

‖y(T, ·)‖2
L2(�)

∣

∣ y0 ∈ D(A0) \ {0}

}

,

one gets easily that the optimal design problem of maximizing CT (a) over U L has

at least one solution. Furthermore, it is interesting to note that, by adapting the

proof of [54, Proposition 2], we get the following partial result.

Lemma 2. For every L ∈ (0, 1) and every T > 0, the constant function a(·) = L

is not a maximizer of the functional a �→ CT (a) over U L .

Remark 11. Finally, let us comment on the role of the time T . Recall that T > 0

has been arbitrarily fixed at the beginning of the analysis. Its role is in the weights

γ j (T ) coming into play in the definition of the functional J [defined by (20)]. If the

eigenvalues are such that Re(λ j ) → +∞, then the larger T is, and the quicker the

weights tend to +∞. As a consequence, as stated in Theorem 1, the integer N0(T )

decreases as T increases, and if T is large enough then N0(T ) = 1. This says that,

if one can observe the solutions of the equation over a large enough horizon of time,

then the optimal observation domain can be designed from the first mode only. This

fact is in accordance with the strong damping properties of a parabolic equation,

at least, under the assumption (H2). In large time the energy of the solutions is

essentially carried by the first mode.

2.3. Application to the Stokes Equation in the Unit Disk

In this section, we assume that � = {x ∈ R
2 | ‖x‖ < 1} is the Euclidean unit

disk of R2, and we consider the Stokes Equation (6) in the unit disk of R2, with

Dirichlet boundary conditions.

Note that the Stokes system does not exactly enter in the framework defined

in Section 2.2, but it suffices to make the following very slight modification. The

Stokes operator A0 : D(A0) → H is defined by A0 = −P△, with D(A0) = {y ∈
V | A0 y ∈ H}, V = {y ∈ (H1

0 (�))2 | div y = 0}, H = {y ∈ (L2(�))2 | div y =

0, y|∂�.n = 0}, and P : (L2(�))2 = H
⊥
⊕ H⊥ → H is the Leray projection. Then

A0 is an unbounded operator in the Hilbert space H (and not on L2), endowed with

the L2-norm (see [9]).

We consider here the Hilbert basis of H of eigenfunctions, indexed by j ∈ Z,

k ∈ N
∗ and m = 1, 2, defined by

φ0,k(r, θ) =
−J ′

0(
√

λ0,kr)
√

π
√

λ0,k |J0(
√

λ0,k)|

(

− sin θ

cos θ

)

, (29)
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and

φ j,k,m(r, θ) =
J j (
√

λ j,kr) − J j (
√

λ j,k)r
j

λ j,k |J j (
√

λ j,k)|r
j (−1)m+1Y j,m(θ)

(

cos θ

sin θ

)

+
−
√

λ j,k J ′
j (
√

λ j,kr) + j J j (
√

λ j,k)r
j−1

λ j,k |J j (
√

λ j,k)|
Y j,m+1(θ)

(

− sin θ

cos θ

)

(30)

whenever j �= 0, where (r, θ) are the usual polar coordinates (see [36,41]). The

functions Y j,m(θ) are defined by Y j,1(θ) = 1√
π

cos( jθ) and Y j,2(θ) = 1√
π

sin( jθ),

with the agreement that Y j,3 = Y j,1, and J j is the Bessel function of the first kind

of order j . Denoting by z j,k > 0 is the kth positive zero of J j , the eigenvalues of

A0 are the doubly indexed sequence (−λ j,k) j∈Z,k∈N∗ , where λ j,k = z2
| j |+1,k is of

multiplicity 1 if j = 0, and 2 if j �= 0.

Note that, in (H1), (H2), and in the definition (20) of the functional J , we

replace | · | with the Euclidean norm of R2.

Theorem 2. The assumptions (H1), (H2) and (H3) are satisfied. Then Theorem 1

implies that there exists a unique optimal observation domain ω∗ (solution of the

problem (21)), which is moreover open and semi-analytic.

This result is proved in Section 3.6. The proof is technically based on the explicit

form of the basis of eigenfunctions under consideration, and we did not investigate

what can happen in higher dimension. Also, what can happen for more general

domains is not known.

2.4. Application to Anomalous Diffusion Equations

In this section, we assume that � is Lipschitz, and we consider the Dirichlet-

Laplacian △ defined on its domain D(△) = {y ∈ H1
0 (�) | △y ∈ L2(�)}. Note

that if ∂� is C2 then D(△) = H1
0 (�) ∩ H2(�).

We set A0 = (−△)α (where △ is the Dirichlet-Laplacian), with α > 0 arbitrary,

defined spectrally, based on the spectral decomposition of the Dirichlet-Laplacian.

This case corresponds to the anomalous diffusion Equation (7).

To be more precise with the functional framework, the domain of the operator

A0, as an unbounded operator in L2(�), is defined as follows. If α ∈ (0, 1)\ {1/4},
then D(A0) = H2α

0 (�); if α = 1/4 then D(A0) = H
1/2
00 (�) (Lions-Magenes

space), and if 1/4 < α < 1 then D(A0) = H1
0 (�) ∩ H2s(�) (see [42] or [8,

Appendix]).

For α > 1 the operator is defined by composing integer powers of −△ with the

fractional powers above. For instance one can take A0 = (−△)2 with the boundary

conditions y|∂� = △y|∂� = 0: in that case (8) corresponds to a linearized model

of Cahn-Hilliard type.

In the general case α > 0, the Equation (8) models a physical process exhibiting

anomalous diffusion (see for instance [43,45,60]). Of course if α = 1 then (8) is the

heat equation with Dirichlet boundary conditions, as overviewed in the introduction.
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Note that the eigenfunctions of A0 are those of the Dirichlet-Laplacian, and

therefore the assumptions (H1) and (H3) are satisfied. Only the assumption (H2)

has to be discussed in the sequel. We have the following three results.

2.4.1. A General Result

Theorem 3. Assume that ∂� is piecewise C1.5 If α > 1/2, then the assumption

(H2) is satisfied for any Hilbert basis of eigenfunctions of A0. For α = 1/2, the

conclusion holds true as well provided that T is moreover large enough.

Under these conditions, Theorem 1 can be applied and implies that there exists

a unique optimal set ω∗ (solution of the problem (21)), which is open and semi-

analytic.

In order to prove that the uniform lower bound assumption (H2) holds true, the

main ingredient is a lower bound estimate (stated in [5]) of the spectral quantities
∫

ω
φ j (x)2 dx , which is uniform over measurable subsets ω of a given measure.

It can be noted that the number N0(T ) of relevant modes needed to compute the

optimal set depends on the speed of convergence of j
2α−1

n T to +∞ (this follows

from the proof of Theorem 3, by using Weyl’s asymptotics).

2.4.2. Case of the n-Dimensional Orthotope Assume that � = (0, π)n , for

n ∈ N
∗. We consider the usual Hilbert basis consisting of products of sine eigen-

functions, given by

φ j1,..., jn (x) =
(

2

π

)n/2 n
∏

k=1

sin( jk xk), (31)

for all ( j1, . . . , jn) ∈ N
∗n , with corresponding eigenvalues λ( j1,..., jn) =

(∑n
k=1 j2

k

)α
.

Theorem 4. The assumption (H2) is satisfied, whatever the value of α > 0 may

be. Then, Theorem 1 implies that there exists a unique optimal observation domain

ω∗ (solution of the problem (21)), which is open and semi-analytic.

Note that it is not clear whether this result is satisfied or not for any Hilbert

basis of eigenfunctions, at least for α < 1/2 (indeed the case α > 1/2 is solved

with Theorem 3).

As shown in the proof of Theorem 4, it can be also noted that the conclusion

of Theorem 1 holds with N0(T ) defined as the lowest multi-index ( j1, . . . , jn) (in

lexicographical order) such that

e2λ( j1,..., jn )T − 1

2λ( j1,..., jn)

≧
e2λ(1,...,1)T − 1

2λ(1,...,1)F [n](Lπn)
.

where F is the function defined on [0, π ] by F(s) = 1
π
(s − sin s), and F [n] is the

composition of F with itself, n times.

5 Actually a more general assumption can be done: � is Lipschitz and locally star-shaped
(see [5] for the definition and details).
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Remark 12. Note that the result of Theorem 4 holds true as well for the Neumann–

Laplacian A0 = −△ defined on the domain D(A0) = {y ∈ H2(�, C) |
∫

�
y =

0 and
∂y
∂n

= 0 on ∂�}, with the usual Hilbert basis of eigenfunctions consisting

of products of cosine functions (it is indeed easy to see that the assumption (H2)

is satisfied). Fractional operators can be as well defined out of this Neumann–

Laplacian. The reason to consider the Neumann–Laplacian on functions that are

of zero average (which is standard for observability issues) is due to the fact that,

if we do not make this restriction then λ1 = 0 (and λ j > 0 for every j ≧ 2) and

φ1 = 1/
√

|�|, and (H1) fails.

2.4.3. Case of the Two-Dimensional Disk Assume that � = {x ∈ R
2 | ‖x‖ < 1}

is the Euclidean unit disk of R2. We consider the Hilbert basis of eigenfunctions

defined by the triply indexed sequence of functions

φ j,k,m(r, θ) =
{

R0,k(r)/
√

2π if j = 0,

R j,k(r)Y j,m(θ) if j ≧ 1,
(32)

for j ∈ N, k ∈ N
∗ and m = 1, 2, where (r, θ) are the usual polar coordinates. The

functions Y j,m(θ) are defined by Y j,1(θ) = 1√
π

cos( jθ) and Y j,2(θ) = 1√
π

sin( jθ),

and the functions R j,k are defined by

R j,k(r) =
√

2
J j (z j,kr)

|J ′
j (z j,k)|

=
J j (z j,kr)

√

∫ 1
0 J j (z j,kr)2r dr

, (33)

where J j is the Bessel function of the first kind of order j , and z j,k > 0 is the

kth positive zero of J j . The corresponding eigenvalues consist of a doubly indexed

sequence (−λ j,k) j∈N,k∈N∗ , where λ j,k = z2α
j,k is of multiplicity 1 if j = 0, and 2

if j ≧ 1.

Theorem 5. For everyα > 0, the optimal design problem (21) has a unique solution

χω∗ ∈ UL , where ω∗ is moreover open and radial. Furthermore:

• If α > 1/2 then the assumption (H2) is satisfied and ω∗ consists of a finite

number of concentric rings that are at a positive distance from the boundary.6

Additionally, we have lim j→+∞
∫

ω∗ φ j,k,m(x)2 dx = 0, for every k ∈ N
∗.

• If 0 < α < 1/2, or if α = 1/2 and T is small enough, then neither the

assumption (H2) nor its weakened version (27) are satisfied. The optimal set ω∗

consists of an infinite number of concentric rings accumulating at the boundary.

However the number of connected components of ω∗ intersected with any proper

compact subset of � is finite.

Theorems 3, 4 and 5 are proved in Section 3.

Theorem 5 is probably the most difficult result of the paper. Its contents contrast

with those of Theorem 4. Indeed, for instance in the two-dimensional square, the

optimal observation domain consists of a finite number of connected components,

6 This is a consequence of Theorem 3.
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which are at a positive distance from the boundary (since we are in the Dirichlet

case), and this whatever the value of α > 0 may be. In the two-dimensional disk,

we have a similar conclusion for α > 1/2, but if α < 1/2 then the optimal domain

is much more complex and has an infinite number of connected components. This

surprising result shows that the complexity of the optimal domain ω∗ depends on

the geometry of the whole �.

Note that, in Theorem 5, the result of Theorem 1 cannot be applied if α < 1/2.

We are however able to prove the existence and the uniqueness of an optimal

domain. The proof relies on a nontrivial minimax argument combined with fine

properties of Bessel functions, analyticity considerations, and the use of quantum

limits in the disk.

Remark 13. For α > 1/2, the fact that lim inf j+k→+∞
∫

ω∗ φ j,k,m(x)2 dx = 0 in

spite of (H2) is in contrast with the results given in Theorems 3 and 4 where this

limit was positive.

At this step the role of the weights γ j,k(T, α) must be underlined. Indeed, in the

disk there is the well-known whispering gallery phenomenon, according to which a

subsequence of the probability measures φ2
j,k,mdx converges vaguely to the Dirac

along the boundary (this property is recalled in a precise way in the proof of Lemma

17 in terms of semi-classical limits). Note that the whispering gallery concentration

phenomenon is however not strong enough to imply the failure of (H2) if α > 1/2,

due to the exponential increase of the coefficients γ j,k(T, α) as j + k tends to +∞
(see also Section 2.5).

In contrast, if α ∈ (0, 1/2) then the increase of the coefficients γ j,k(T, α) is

not strong enough, which is in accordance with the fact that (H2) fails.

Remark 14. As noted in the inequality (18), there holds CT (χω) ≦ CT,rand(χω),

for every measurable subset ω of �. The last part of Theorem 1 states that the

inequality is strict for the optimal set ω∗. Combining this remark with Theorem 4,

it is interesting to note the following fact.

Assume that � = (0, π)n , for some n ∈ N
∗, and fix an arbitrary α ∈ (0, 1/2).

According to Theorem 4, there exists a unique optimal set, and moreover one has

CT (χω∗) < CT,rand(χω∗). According to [44,45], the anomalous diffusion Equa-

tion (7) is not exactly null controllable for α < 1/2, and therefore (by duality)

CT (χω∗) = 0. Hence, we have here an example where CT (χω∗) = 0 whereas

CT,rand(χω∗) > 0.

2.4.4. Several Numerical Simulations We provide hereafter several numerical

simulations, illustrating the above results. The truncated problem of order N is

obtained by considering all couples ( j, k) such that j ≦ N and k ≦ N . The

simulations are made with a primal-dual approach combined with an interior point

line search filter method.7

On Fig. 1 (resp., on Fig. 2), we compute the optimal domain ωN for the operator

A0 = −△, the Dirichlet-Laplacian (resp., the Neumann–Laplacian on its domain

7 More precisely, we used the optimization routine IPOPT (see [63]) combined with the
modeling language AMPL (see [19]) on a standard desktop machine.
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Fig. 1. On this figure, � = (0, π)2, L = 0.2, T = 0.05, and A0 is the Dirichlet-Laplacian.

Row 1, from left to right: optimal domain ωN (in green) for N = 1, 2, 3. Row 2, from left

to right: optimal domain ωN (in green) for N = 4, 5, 6 (color figure online)

Fig. 2. On this figure, � = (0, π)2, L = 0.2, T = 0.05, and A0 = −△ is the Neumann–

Laplacian defined on the domain D(A0) = {y ∈ H2(�, C) |
∫

� y = 0 and
∂y
∂n

= 0 on ∂�}.
Row 1, from left to right: optimal domain ωN (in green) for N = 1, 2, 3. Row 2, from left

to right: optimal domain ωN (in green) for N = 4, 5, 6 (color figure online)

consisting of functions with zero average) on the square � = (0, π)2. We can

observe the expected stationarity property of the sequence of optimal domains ωN

from N = 4 on (that is, 16 eigenmodes).

Note that, in the numerical simulations, we have taken T = 0.05, that is, a

small value. Indeed, in accordance with Remark 11, if we take T too large then the

stationarity property is observed from N = 1 on, and then the numerical simulations

are not very meaningful.
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Fig. 3. On this figure, � = {x ∈ R
2 | ‖x‖ < 1}, L = 0.2, T = 0.05, and A0 is the

Dirichlet-Laplacian. Row 1, from left to right: optimal domain ωN (in green) for N = 1,

2, 3. Row 2, from left to right: optimal domain ωN (in green) for N = 4, 5, 6 (color figure
online)

On Figs. 3 and 4, we compute the optimal domain ωN for the operator

A0 = (−△)α , the fractional Dirichlet-Laplacian on the unit disk � = {x ∈ R
2 |

‖x‖ < 1}, for α = 1 and α = 0.15. The numerical simulations illustrate the result

stated in Theorem 5. Indeed, in the case α = 1, we can observe the expected sta-

tionarity property of the sequence of optimal domains ωN from N = 3 on (that is, 9

eigenmodes). In the case α = 0.15, the numerical simulations provide evidence of

the accumulation of concentric rings at the boundary (as expected); they are done

with values of N between 1 and 15 (that is, 225 eigenmodes).

These figures show what must be the optimal shape and placement of a ther-

mometer in a square domain or in a disk (for the corresponding boundary condi-

tions), when the observation is made over the horizon of time [0, T ].

Remark 15. The integer N being fixed, the optimal domain ωN has a finite number

of connected components according to Proposition 2. In accordance with that fact,

we indeed observe a finite number of rings on the Figs. 3 and 4. If α = 1 then we

are in the framework of Theorem 1 and hence N0(T ) = 1 if T is large enough.

With respect to what is drawn on Fig. 3, this means that if T is large enough then

the optimal set is simply the central disk. The situation is however much more

complicated if α < 1/2 (as on Fig. 4), since it is proved that a finite number of

modes is never sufficient in order to recover the optimal set. In that case, for every

value of T the optimal set will always consist of an infinite number of concentric

rings accumulating at the boundary, and it is an open and interesting question to

investigate how the optimal set behaves when T tends to +∞.
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Fig. 4. On this figure, � = {x ∈ R
2 | ‖x‖ < 1}, L = 0.2, T = 0.05, and A0 = (−△)α is

the fractional Dirichlet-Laplacian with α = 0.15. Row 1, from left to right: optimal domain

ωN (in green) for N = 1, 2, 5. Row 2, from left to right: optimal domain ωN (in green) for
N = 10, 12, 15 (color figure online)

2.5. Further Comments from a Semi-Classical Analysis Viewpoint

The assumption (H2) is of a spectral nature and can be seen from a semi-

classical analysis viewpoint as follows. The probability measure μ j = φ j (x)2 dx

is interpreted (in quantum mechanics) as the probability of being in the state φ j

with an energy λ j . Every closure point or weak limit for the vague topology of the

sequence of probability measures (μ j ) j∈N∗ is called a semi-classical measure or a

quantum limit (the general definition is however in the phase space). In this sense,

the assumption (H2) can be called a “lower-bound semi-classical assumption”.

The question of determining the set of quantum limits is widely open in gen-

eral. One is able to compute them only in very particular cases. In the standard

round sphere (in any dimension) any geodesic invariant measure is a quantum limit

(see [34]), hence in particular the Dirac along any geodesic circle is a quantum

limit. This provides an account for possible strong concentrations of eigenfunc-

tions. Similarly, in the disk with Dirichlet boundary conditions, the Dirac along

the boundary is a quantum limit (accounting for the already mentioned whispering

galleries phenomenon). In contrast, in the flat torus (in any dimension) all quantum

limits are absolutely continuous (see [33]).

In some sense the assumption (H2) stipulates that there is no very strong con-

centration phenomenon. To be more precise, we claim that:

the assumption (H2) holds true if one is able to establish that the eigen-

functions φ j are uniformly bounded in L∞ and that every semi-classical

measure (weak limit of the probability measures μ j for the vague topology)

is absolutely continuous and the corresponding densities are positive over

the whole domain �.
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This claim easily follows from the Portmanteau theorem (see also Remark 16

further), because then, using the fact that γ j (T ) is exponentially increasing, it

follows that γ j (T )
∫

�
a(x)φ j (x)2 dx → +∞ for every a ∈ U L .

Unless the case of flat tori mentioned above, we are not aware of existing

results establishing exactly such a property, however results in this direction can be

found in [3,13]. Note that this property holds true for square domains (as explained

previously).

In general, there are many possible quantum limits. The most natural one is

the uniform measure, and it is indeed an important issue in quantum physics to

determine appropriate assumptions on � under which the probability measures μ j

tend to equidistribute as j converges to +∞. The famous Schnirelman theorem (see

[16,23,27,57,66]) states that, if � is ergodic with a piecewise smooth boundary,

then there exists a subsequence of (μ j ) j∈N∗ of density one converging vaguely to

the uniform measure 1
|�|dx (Quantum Ergodicity on the base).8 Here, density one

means that there exists I ⊂ N
∗ such that #{ j ∈ I | j ≦ N }/N converges to 1 as

N → +∞, and the manifold is seen as a billiard where the geodesic flow moves

at unit speed and bounces at the boundary according to the Geometric Optics laws.

The Shnirelman theorem lets however open the possibility of having an excep-

tional sequence of measures μ j converging vaguely, for example, to an invariant

measure carried by unstable closed geodesic orbits or on some invariant tori formed

by such orbits. This kind of semi-classical measure is referred to as a scar and

accounts for an energy concentration phenomenon.

Then, with respect to our discussion concerning the validity of the assumption

(H2), the worst possible case is when there exist a quantum limit which is completely

concentrated, such as a scar. In this sense, the assumption (H2) is a “non-scarring”

assumption.

Remark 16. In the claim above (and in Theorem 1) we have assumed that the

eigenfunctions are uniformly bounded in L∞(�). This strong assumption holds

true in domains that are Cartesian products of one-dimensional domains, but for

example if � is a ball then the eigenfunctions of the Dirichlet-Laplacian are not

uniformly bounded.

It is interesting to understand why we add the strong assumption of L∞ uniform

boundedness. It is needed in the application of the Portmanteau theorem, for the fol-

lowing reason. In semi-classical analysis the vague topology for measures is usually

employed. Assuming that the quantum limits under consideration are absolutely

continuous, the convergence in vague topology means that (up to subsequence)

lim
j→+∞

∫

ω

φ2
j dx =

∫

ω

φ2 dx ∀ω measurable s.t. |∂ω| = 0,

8 Note that the results established in these references are actually stronger and derive the
QE property, not only “on the base” (that is, in the configuration space �), but in the unit
cotangent bundle S∗� of �, in the framework of pseudo-differential operators. Here, we are
concerned only with weak limits in �, and following [65] we use the wording “on the base”.



Optimal Shape and Location of Sensors 947

that is, the convergence holds on every Jordan measurable set. In contrast, the

convergence in L1 weak topology means that

lim
j→+∞

∫

ω

φ2
j dx =

∫

ω

φ2 dx ∀ω measurable,

that is, the convergence does hold true as well for those measurable subsets whose

boundary has a positive measure. Both convergence properties do coincide as soon

as we add the L∞ boundedness assumption. This explains why we added such a

strong assumption. Indeed our aim is to be able to capture any possible measurable

subset.

3. Proofs

This section is devoted to prove Proposition 2, Theorems 1, 3, 4 and 5, and

finally (in this order), Theorem 2.

3.1. Proof of Proposition 2

For every N ∈ N
∗, the functional JN defined by (22) on UL is extended to U L

(see Remark 7) by setting

JN (a) = inf
1≦ j≦N

γ j (T )

∫

�

a(x)|φ j (x)|2 dx, (34)

for every a ∈ U L . We consider the relaxed truncated problem

sup
a∈U L

JN (a). (35)

Using the same arguments as in the proof of Lemma 1, it is clear that the problem

(35) has at least one solution aN ∈ U L . Let us prove that any optimal solution aN

is the characteristic of a set ωN such that χωN ∈ UL . Define the simplex set

SN =
{

β = (β j )1≦ j≦N ∈ R
N
+

∣

∣

∣

N
∑

j=1

β j = 1
}

.

It follows from the Sion minimax theorem (see [59, Corollary 3.3]) that

sup
a∈U L

min
1≦ j≦N

γ j (T )

∫

�

a(x)|φ j (x)|2 dx

= max
a∈U L

min
β∈SN

∫

�

a(x)

N
∑

j=1

β jγ j (T )|φ j (x)|2 dx

= min
β∈SN

max
a∈U L

∫

�

a(x)

N
∑

j=1

β jγ j (T )|φ j (x)|2 dx,
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and that there exists βN ∈ SN such that (aN , βN ) is a saddle point of the functional

(a, β) ∈ U L × SN �−→
N
∑

j=1

β jγ j (T )

∫

�

a(x)|φ j (x)|2 dx .

Therefore, aN is solution of the optimal design problem

max
a∈U L

∫

�

a(x)

N
∑

j=1

βN
j γ j (T )|φ j (x)|2 dx .

Set ϕN (x) =
∑N

j=1 βN
j γ j (T )|φ j (x)|2, for every x ∈ �. It follows from (H1) that

ϕN is never constant on any subset of � of positive measure. Therefore, there exists

λN such that aN (x) = 1 whenever ϕN (x) ≧ λN , and aN (x) = 0 otherwise. In

other words, aN = χωN ∈ UL , with ωN = {x ∈ � | ϕN (x) > λN }.
The uniqueness of aN follows from the fact that, as proved above, any optimal

solution is a characteristic function. Indeed if there were two optimal sets, then any

convex combination would also be an optimal solution because JN is concave. This

raises a contradiction since any maximizer has to be a characteristic function.

Under the additional assumption (H3), the function ϕN is analytic in � and

therefore ωN is an open semi-analytic set.

3.2. Proof of Theorem 1

According to Lemma 1, the relaxed optimal design problem (25) has at least

one solution a∗ ∈ U L . The assumption (H2) applied to a∗ implies that there exists

N0 ∈ N
∗ such that

inf
j>N0

γ j (T )

∫

�

a∗(x)|φ j (x)|2 dx > γ1(T ). (36)

Since there holds in particular JN0(a
∗) ≦ γ1(T )

∫

�
a∗(x)|φ1(x)|2 dx ≦ γ1(T ), we

infer from (36) that

J (a∗) = min

(

JN0(a
∗), inf

j>N0

γ j (T )

∫

�

a∗(x)|φ j (x)|2 dx

)

= JN0(a
∗).

Using (H1) and Proposition 2, let aN0 ∈ UL be the maximizer of JN0 . Let us prove

that J (a∗) = JN0(a
N0). Since aN0 maximizes JN0 over U L , one has J (a∗) =

JN0(a
∗) ≦ JN0(a

N0). Let us argue by contradiction and assume that JN0(a
∗) <

JN0(a
N0). For every t ∈ [0, 1], we set at = a∗ + t (aN0 −a∗). Since JN0 is concave

(as an infimum of linear functionals), we get

JN0(at ) ≧ (1 − t)JN0(a
∗) + t JN0(a

N0) > JN0(a
∗) = J (a∗),

for every t ∈ (0, 1], which means that

inf
1≦ j≦N0

γ j (T )

∫

�

at (x)|φ j (x)|2 dx > inf
1≦ j≦N0

γ j (T )

∫

�

a∗(x)|φ j (x)|2 dx ≧ J (a∗),

(37)
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for every t ∈ (0, 1]. Besides, according to (36), there exists ε0 > 0 such that, for

every ε ∈ (0, ε0), there exists t > 0 small enough such that

γ j (T )

∫

�

at (x)|φ j (x)|2 dx ≧ (1 − t)γ j (T )

∫

�

a∗(x)|φ j (x)|2 dx ≧ γ1(T ) + ε,

for every j > N0. Therefore,

inf
j>N0

γ j (T )

∫

�

at (x)|φ j (x)|2 dx > γ1(T ). (38)

Since there holds in particular JN0(at ) ≦ γ1(T ), we infer from (37) and (38) that

J (at ) = JN0(at ) > J (a∗), which contradicts the optimality of a∗.

Therefore JN0(a
∗) = J (a∗) = JN0(a

N0), whence the result.

We now prove the properties claimed on the integer N0(T ). The function T �→
N0(T ) is nonincreasing since the function T �→ γ j (T ) is increasing for every

j ∈ N
∗ and hence the mapping

T �→ max
χω∈UL

inf
j∈N∗

γ j (T )

∫

�

χω(x)φ j (x)2 dx

is nondecreasing. Therefore N0(T ) converges to some integer as T goes to +∞.

It remains to prove that limT →+∞ N0(T ) = 1 whenever Re(λ1) < Re(λ2) and

Re(λ j ) → +∞ as j → +∞. Denote temporarily by χω∗(T ) (instead of χω∗ ) the

unique solution of the problem (20). According to the proof above (see in particular

(36)), it suffices to prove that

inf
j≧2

γ j (T )

∫

�

χω∗(T )(x)φ j (x)2 dx > γ1(T ) (39)

for T larger than some T0 (indeed, (39) involves the convergence of N0(T ) to an

element of the set { j ∈ N
∗ | Re(λ j ) = Re(λ1)}, and we conclude using that

Re(λ1) < Re(λ2)). Since Re(λ j ) → +∞ as j → +∞, there exist T0 > 0, c > 0

and ε > 0 such that
γ j (T )

γ1(T )
≧ ceεT for every j > 1 and T > T0. Then,

inf
j∈N∗

γ j (T )

γ1(T )

∫

�

χω∗(T )(x)φ j (x)2 dx = inf
1≦ j≦N0(T0)

γ j (T )

γ1(T )

∫

�

χω∗(T )(x)φ j (x)2 dx

≧ ceεT inf
1≦ j≦N0(T0)

∫

�

χω∗(T )(x)φ j (x)2 dx,

for every T > T0. It follows that there exists T ′
0 > 0 such that (39) holds for

every T > T ′
0. According to the remarks above, we infer that N0(T ) = 1 for every

T > T ′
0, whence the result.

It remains to prove that CT (χω∗) < CT,rand(χω∗) [assuming (H3)]. In the

conditions of Theorem 1, there exists j0 ∈ {1, . . . , N0} such that

CT,rand(χω∗) = γ j0(T )

∫

�

χω∗(x)|φ j0(x)|2 dx

= min
1≦ j≦N

γ j (T )

∫

�

χω∗(x)|φ j (x)|2 dx,
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for every N ≧ N0.

Lemma 3. There exists an integer k0 �= j0 such that
∫

�
χω∗(x)φ j0

(x)φk0(x) dx �=
0.

Proof. We argue by contradiction. Assume that
∫

�
χω∗(x)φ j0

(x)φk(x) dx = 0,

for every integer k �= j0. Since (φk)k∈N∗ is a Hilbert basis of L2(�), it follows

that there exists a constant c ∈ C such that χω∗(x)φ j0(x) = c φ j0(x), for every

x ∈ �. In particular, this implies that φ j0 must be equal to 0 on the nonempty

open set � \ ω̄∗. Since φ j0 is analytic, it must be identically zero on �. This is a

contradiction. ⊓⊔

From now on, let us fix an integer N such that N ≧ N0 and N ≧ k0.

Let (ei )i∈N∗ be the canonical basis of ℓ2(C). Using the notations of Remark

10, we have

CT (χω∗) = inf{〈GT (χω∗)X, X〉 | X ∈ ℓ2(C), ‖X‖ℓ2 = 1},

and

CT,N (χω∗) = inf{〈GT,N (χω∗)X, X〉 | X ∈ C
N , ‖X‖2 = 1}.

It follows that CT (χω∗) ≦ CT,N (χω∗).

Besides, taking X = e j0 yields that CT,N (χω∗) ≦ γ j0(T )
∫

�
χω∗(x)|φ j0(x)|2 dx

= CT,rand(χ
∗
ω). Let us now show that the latter inequality is actually strict. Consider

the integer k0 of Lemma 3, and take X = cos α e j0 + eiβ sin α ek0 . Denoting by gi j

the coefficients of the matrix GT,N (χω∗), we then have

〈GT,N (χω∗)X, X〉 = cos2 α g j0 j0 + sin2 α gk0k0 + Re(g j0k0 eiβ sin(2α)),

and hence, at the first order in α as α tends to 0, we get 〈GT,N (χω∗)X, X〉 =
g j0 j0 + 2αRe(g j0k0 eiβ). Choosing α and β such that αRe(mk1eiβ) < 0, it follows

that

CT (χω∗) ≦ CT,N (χω∗) ≦ 〈GT,N (χω∗)X, X〉 < g j0 j0 = CT,rand(χω∗).

3.3. Proof of Theorem 3

To avoid any confusion, we denote by (μ j ) j∈N∗ the (positive) eigenvalues

of the negative of the Dirichlet-Laplacian. With this notation, the eigenvalues of

A0 = (−△)α are given by λ j = μα
j , for every j ∈ N

∗. Let (φ j ) j∈N∗ be an arbitrary

Hilbert basis of eigenfunctions of A0 (and of △).

It is well known that the eigenfunctions (which are real-valued) are analytic,

and hence (H3) is satisfied.

Let us prove that the assumption (H1) holds true. Let N ∈ N
∗, (α j )1≦ j≦N ∈

(R+)N and C ≧ 0 be such that
∑N

j=1 α jφ j (x)2 = C almost everywhere on

some subset E of positive measure. By analyticity and by continuity, the function

x �→
∑N

j=1 α jφ j (x)2 must be constant on �̄ on its whole, and (H1) follows since

the functions φ j vanish on ∂�.
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Let us prove that

lim inf
j→+∞

e2λ j T − 1

2λ j

∫

�

a(x)φ j (x)2 dx = +∞,

for every a ∈ U L , which will imply (H2).

For every a ∈ U L , there exist ε > 0 and a measurable subset E of � with

positive measure such that a ≧ εχE . Therefore,

∫

�

a(x)φ j (x)2 dx ≧ ε

∫

E

φ j (x)2 dx,

for every j ∈ N
∗. Moreover, it can be assumed that there exist x0 ∈ � and

R > 0 such that E ⊂ B(x0, R) ⊂ � (this last technical assumption is required

to apply results of [5]). Now, it follows from [5, Theorem 5] that, under the reg-

ularity assumptions on �, there exists a positive constant C (depending on �, R,

|E |/|B(x0, R)|) such that

∫

E

|φ j (x)| dx ≧
e−C

√
μ j

C
,

for every j ∈ N
∗, and thus, from Cauchy-Schwarz inequality,

∫

E

φ j (x)2 dx ≧
e−2C

√
μ j

C2|E |
,

for every j ∈ N
∗. Therefore,

lim inf
j→+∞

γ j (T )

∫

�

a(x)φ j (x)2 dx ≧
ε

2C2|E |
lim inf
j→+∞

e
2μα

j T −2C
√

μ j

μα
j

= +∞

since α > 1/2.

3.4. Proof of Theorem 4: the n-Dimensional Orthotope

We proceed in two steps, studying first the case n = 1, and then the case n ≧ 2.

Case n = 1. The eigenelements of A0 are given by λ j = j2α and φ j (x) =
√

2
π

sin j x , for every j ∈ N
∗, and every x ∈ [0, π ]. The assumption (H2) is then

satisfied, as a direct consequence of the following lemma whose proof can be found

in [51,53].

Lemma 4. Let ρ ∈ L∞(0, π) be a nonnegative function. There holds

∫ π

0

ρ(x) sin2( j x) dx ≧
1

2

(∫ π

0

ρ(x) dx − sin

(∫ π

0

ρ(x) dx

))

,

for every j ∈ N
∗.
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Indeed, it follows from this lemma that
∫ π

0 a(x)φ j (x)2 dx ≧ Lπ−sin(Lπ)
π

, for

every j ∈ N
∗, which clearly implies that (H2) holds true, since γ j (T ) → +∞

as j → +∞ (independently on the value of α > 0). Moreover, the conclusion of

Theorem 1 holds true with N0 defined as the lowest integer j such that

e2 j2αT − 1

2 j2α
≧

π

2

e2T − 1

Lπ − sin(Lπ)
.

Case n ≧ 2. We consider the Hilbert basis of eigenfunctions given by (31).

Lemma 5. Letρ ∈ L∞((0, π)n)be a nonnegative function such that
∫

(0,π)n ρ(x) dx >

0. We have

inf
( j1,..., jn)∈N∗n

∫

(0,π)n

ρ(x)φ j1,..., jn (x)2 dx ≧ F [n]
(∫

(0,π)n

ρ(x) dx

)

> 0,

where F is the function defined on [0, π ] by F(s) = 1
π
(s − sin s), and F [n] is the

composition of F with itself, n times.

Proof of Lemma 5. Using the Fubini theorem and Lemma 4, we infer that

∫

�

ρ(x)φ j1,..., jn (x)2 dx

=
(

2

π

)n ∫ π

0

sin2( jn xn)

∫

[0,π ]n−1
ρ(x)

n−1
∏

k=1

sin2( jk xk) dx1 . . . dxn−1 dxn

≧ F

(

(

2

π

)n−1 ∫

[0,π ]n−1
ρ(x)

n−1
∏

k=1

sin2( jk xk) dx1 . . . dxn−1

)

,

and the conclusion follows from a simple induction argument. ⊓⊔

It follows from this lemma that
∫

(0,π)n a(x)φ j1,..., jn (x)2 dx ≧ F [n](Lπn),

for all ( j1, . . . , jn) ∈ N
∗n . Therefore the assumption (H2) holds true since

γ( j1,..., jn)(T ) → +∞ as |( j1, . . . , jn)| → +∞. Moreover, the conclusion of The-

orem 1 holds with N0 defined as the lowest multi-index ( j1, . . . , jn) (in lexico-

graphical order) such that

e2λ( j1,..., jn )T − 1

2λ( j1,..., jn)

≧
e2λ(1,...,1)T − 1

2λ(1,...,1)F [n](Lπn)
.

3.5. Proof of Theorem 5: the Unit Disk of the Euclidean Plane

According to Lemma 1, let a∗ be a maximizer of J over U L . Our objective is

to prove that a∗ is unique and is the characteristic function of a subset ω∗ sharing

the properties announced in the statement of Theorem 5.
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In order to underline the dependence on α, throughout the proof we use the

notation

γ j,k(T, α) =

⎧

⎨

⎩

e2λ j,k T − 1

2λ j,k

if λ j,k �= 0,

T if λ j,k = 0.

(40)

Setting I = N × N
∗ × {1, 2}, using the expression (32) of the eigenfunctions, we

have

J (a) = inf
( j,k,m)∈I

γ j,k(T, α)

∫ 2π

0

∫ 1

0

a(r, θ)R j,k(r)2Y j,m(θ)2 r dr dθ, (41)

for every a ∈ U L , with Y j,1(θ)2 = cos2( jθ)
π

and Y j,2(θ)2 = sin2( jθ)
π

.

To facilitate the reading of the proof, we split it into several steps. We first

introduce an associated radial problem, with a functional Jr corresponding to the

functional above restricted to radial functions. We prove that J and Jr have the same

maxima (not necessarily the same maximizers). Then we distinguish between two

cases:

1. α > 1/2;

2. 0 < α < 1/2 or α = 1/2 and T small enough.

In contrast to the first case, which can be tackled directly using Theorem 3, the

second case is much more difficult to treat. We apply a refined version of the

minimax theorem in order to prove that the optimal domain exists and is unique. This

requires to prove that a certain (switching) function is analytic, which necessitates

a very careful and technical analysis using in an instrumental way the knowledge of

some quantum limits (semi-classical measures) of the eigenfunctions and of some

fine asymptotic properties of Bessel functions. Actually, the proof of the analyticity,

which is very lengthy, takes the major part of the section.

3.5.1. Associated Radial Problem For every b ∈ L∞(0, 1), we set

Jr (b) = inf
j∈N
k∈N∗

γ j,k(T, α)

∫ 1

0

b(r)R j,k(r)2r dr.

We define the set

U
r
L =

{

χωr ∈ L∞(0, 1; {0, 1}) | ωr is a measurable subset of (0, 1)

of Lebesgue measure |ωr | =
L

2

}

.

Its weak star convex closure is U
r

L = {b ∈ L∞(0, 1; [0, 1]) |
∫ 1

0 b(r)r dr = L
2
}.

We consider the problem

sup

b∈U
r

L

Jr (b) (42)

of maximizing Jr over the set Ur
L .
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Lemma 6. The problem (42) has at least one solution b∗, and

J (a∗) = max
a∈U L

J (a) = max
b∈U

r

L

Jr (b) = Jr (b
∗). (43)

Besides, if a∗ ∈ U L is a maximizer of J , then the (radial) function ā∗ ∈ U L

defined by ā∗(r, θ) = 1
2π

∫ 2π

0 a∗(r,�) d� (which does not depend on θ ) is as well

a maximizer of J , and the function b∗ ∈ U
r

L defined by b∗(r) = ā∗(r, 0) is a

maximizer of Jr .

Proof of Lemma 6. Since the functional Jr is concave and upper semi-continuous

(as the infimum of continuous linear functionals) for the weak star topology of L∞,

and since Ur
L is compact for this topology, it follows that the problem (42) has at

least one solution b∗.

First of all, let us note that, if a function a ∈ U L does not depend on θ ,

then, setting b(r) = a(r, 0), the constraint
∫ 2π

0

∫ 1
0 a(r, θ)r dr dθ = Lπ yields

∫ 1
0 b(r)r dr = L

2
, that is b ∈ U

r

L , and using (41) and the Fubini theorem, we get

clearly the equality J (a) = Jr (b). Therefore, we get

sup
a∈U L

J (a) ≧ sup

b∈U
r

L

Jr (b).

Let us prove the converse inequality. Let a ∈ U L arbitrary. Setting b(r) =
1

2π

∫ 2π

0 a(r, θ) dθ , we have clearly b ∈ U
r

L . On the one hand, we can write

J (a) = inf

(

inf
k≧1

γ0,k(T )

2π

∫ 2π

0

∫ 1

0

a(r, θ)R0,k(r)2r dr dθ,

inf
j,k≧1

t∈[0,1]

γ j,k(T, α)

π

∫ 2π

0

∫ 1

0

a(r, θ)R j,k(r)2(t cos2( jθ)

+(1 − t) sin2( jθ))r dr dθ

)

,

and on the other hand, we have

inf
j,k≧1

t∈[0,1]

γ j,k(T, α)

π

∫ 2π

0

∫ 1

0

a(r, θ)R j,k(r)2(t cos2( jθ) + (1 − t) sin2( jθ))r dr dθ

≦ inf
j,k≧1

γ j,k(T, α)

π

∫ 2π

0

∫ 1

0

a(r, θ)R j,k(r)2

(

1

2
cos2( jθ) +

1

2
sin2( jθ)

)

r dr dθ

≦ inf
j,k≧1

γ j,k(T, α)

∫ 1

0

b(r)R j,k(r)2r dr dθ.

(44)

We infer that J (a) ≦ Jr (b), and then the converse inequality indeed follows.

We have proved (43).
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Now, let a∗ ∈ U L be a maximizer of J . We define the function ā∗ ∈ U L by

ā∗(r, θ) = 1
2π

∫ 2π

0 a∗(r,�) d�. The function ā∗ does actually not depend on θ ,

and we define also the function b̄ ∈ U
r

L by b̄(r) = ā∗(r, 0). Using (44), we get

J (a∗) ≦ J (ā∗) = Jr (b̄) ≦ Jr (b
∗). The statement follows. ⊓⊔

Remark 17. In addition to Lemma 6, we note that, if the radial problem (42) has a

unique solution, which is moreover the characteristic function of some measurable

subset ω∗
r of [0, 1] (and this is what we will prove in the sequel), then necessarily the

functional J has a unique maximizer as well, which is the characteristic function

of the set ω∗ = ω∗
r × [0, 2π ] in polar coordinates.

Indeed, let a∗ ∈ U L be a maximizer of J . Then, according to Lemma 6,

the function b∗ ∈ U
r

L defined by b∗(r) = 1
2π

∫ 2π

0 a∗(r, θ)r dr dθ is a maxi-

mizer of Jr , and therefore b∗ = χω∗
r
. Then, for almost every r ∈ [0, 1] we have

1
2π

∫ 2π

0 a∗(r, θ)r dr dθ = χω∗
r
(r), and since 0 ≦ a∗(r, θ) ≦ 1 it follows that

a∗(r, θ) = χω∗
r
(r). In other words, we have a∗ = χω∗ with ω∗ = ω∗

r × [0, 2π ].

Note that, at least at this step, Lemma 6 does not imply that any maximizer

of J is radial; but it implies that there always exists a radial maximizer, that is, a

function maximizing J and that does not depend on θ .

However, in what follows, we will eventually prove that the radial problem

(42) has indeed a unique solution, which is moreover the characteristic function of

a set ω∗
r . Then, according to Remark 17, this will finally imply that J has a unique

maximizer a∗ = χω∗ with ω∗ = ω∗
r × [0, 2π ] in polar coordinates. The properties

of ω∗ stated in Theorem 5 will then follow from the properties of the set ω∗
r that

we will establish hereafter.

We distinguish between two cases, depending on the value of α. The case

α > 1/2 is much easier to treat.

3.5.2. Case α > 1/2 Although we could make a direct proof, we already know,

according to Theorem 3, that the assumption (H2) holds true. Then, according to

Theorem 1, we have a∗ = χω∗ with χω∗ ∈ UL . The fact that ω∗ has a finite number

of connected components also follows from Theorem 1.

The same arguments can be applied to the radial problem (42). More precisely,

note first that we have

lim inf
j+k→+∞

γ j,k(T, α)

∫ 1

0

b(r)R j,k(r)2r dr > γ1,1(α, T ). (45)

Indeed it suffices to apply (H2) to a radial function. In other words, (45) is the radial

version of (H2). Then, under this condition, the proof of Theorem 1 can be straight-

forwardly adapted to the radial problem and leads to the following conclusion: the

maximizer b∗ of Jr is unique and is the characteristic function of a measurable

subset ω∗
r of [0, 1], with χω∗

r
∈ Ur

L . Moreover there exist N0 ∈ N
∗, nonnegative

real numbers (β∗
jk)0≦ j≦N0,1≦k≦N0

of sum 1, and λ∗ > 0 such that
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ω∗
r =

⎧

⎨

⎩

N0
∑

j=0

N0
∑

k=1

γ j (T )β∗
jk R j,k(r)2 > λ∗

⎫

⎬

⎭

.

Since the functions R j,k are analytic and vanish at r = 1, the set ω∗
r is the union

of a finite number of intervals that are at a positive distance of 1. Moreover, the

Lebesgue measure of ∂ω∗
r is equal to 0 (indeed ω∗

r is a finite union of intervals).

By uniqueness, we conclude that ω∗ = ω∗
r × [0, 2π ] in polar coordinates.

Besides, recall that, for every k ∈ N
∗, the sequence of probability measures

R j,k(r)2r dr converges vaguely to the Dirac at r = 1 as j tends to +∞. This fact

accounts for the phenomenon of whispering galleries, and says that the Dirac along

the boundary is a semi-classical measure (quantum limit) in the disk. Then, from

the Portmanteau theorem (note that the Lebesgue measure of ∂ω∗
r is equal to 0),

we get

lim
j→+∞

∫

ω∗
r

R j,k(r)2r dr = 0,

for every k ∈ N
∗. The additional property lim inf j→+∞

∫

ω∗ φ j,k,m(x)2 dx = 0 for

every k ∈ N
∗ follows.

3.5.3. Case 0 < α < 1/2 (or α = 1/2 and T Small Enough) This is the most

difficult case to deal with.

First estimates. Let us first prove the following lemma, providing an exponential

estimate of the functions R j,k (in the spirit of estimates derived in [48]).

Lemma 7. For every h ∈ (0, 1), for every k ∈ N
∗ there exists a constant Ck > 0

such that

R j,k(r)2 ≦ Ck j4/3 exp
(

−Ck jh3/2
)

, (46)

for every r ∈ [0, 1 − h], and for every j ∈ N
∗.

Note that the estimate (46) provides an account for the whispering galleries

phenomenon, according to which the eigenfunctions of the Dirichlet-Laplacian in

the unit disk tend to concentrate along the boundary of the disk as the index j tends

to +∞. This estimate says that this concentration is exponential.

Note that we will later need to extend the result of that lemma (see Lemma

13 further), by proving that the estimate (46) actually holds true for a larger set of

indices. But for the moment this statement is enough.

Proof of Lemma 13. We will use the so-called Kapteyn inequality, proved in [58],

and stating that

J j ( j y) ≦ exp( jg(y)), (47)

for every y ∈ [0, 1], with

g(y) =
√

1 − y2 − log
1 +

√

1 − y2

y
.
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The function g : (0, 1] → (−∞, 0] is smooth, increasing, and g(1) = 0. Besides,

for every j ∈ N
∗ the Bessel function x �→ J j (x) is known to be increasing on the

interval [0, z′
j,1], where z′

j,1 is the first positive zero of J ′
j . Moreover it is known

that

z′
j,1 = j + γ ′

1 j1/3 + o( j1/3), (48)

with γ ′
1 > 0 (see [49]), and that C1

j1/3 ≦ J j ( j) ≦ 1 (see [64]). It follows that

C1

j1/3 ≦ J j (x) whenever j ≦ x ≦ z′
j,1, and thus that

J j (z j,kr) ≧
C1

j1/3
∀r ∈

[

j

z j,k

,
z′

j,1

z j,k

]

. (49)

Using the inequality z j,k ≦ π( j + k) (see [36, Lemma 5]), we infer from (49) that

∫ 1

0

J j (z j,kr)2rdr ≧
C1

j2/3

z′
j,1

2 − j2

z2
j,k

≧
2C1γ

′
1

π2

j2/3

( j + k)2
. (50)

Besides, recall that, for every k ∈ N
∗ fixed, we have

z j,k = j + δk j1/3 + o( j1/3),

with δk > 0 (see [49]). Then, for every r ∈ [0, 1 − h], we write z j,kr = j y with

y = z j,k

j
r , and we get

y =
z j,k

j
r ≦ (1 − h)

(

1 +
δk

j2/3
+ o( j−2/3)

)

≦ 1 −
h

2

whenever j is large enough. Therefore, if j is large enough then we get, using the

Kapteyn inequality (47) and the fact that g is increasing, that

|J j (z j,kr)| ≦ exp

(

jg
(

1 −
h

2

)

)

,

for every r ∈ [0, 1 − h]. Using an asymptotic expansion of g, we get that

|J j (z j,kr)| ≦ exp

(

−
1

3
jh3/2 + o( jh3/2)

)

, (51)

for every r ∈ [0, 1 − h]. Since R j,k(r)2 = J j (z j,kr)2/
∫ 1

0 J j (z j,kr)2r dr , the

estimate (46) of the lemma finally follows by combining (50) with (51). ⊓⊔

In what follows, we consider a maximizer b∗ ∈ U
r

L of Jr .

Lemma 8. Neither the assumption (H2) nor its weakened version (27) are satisfied

for the radial problem (42).
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Proof of Lemma 8. We argue by contradiction, assuming that

lim inf
j+k→+∞

γ j,k(T, α)

∫ 1

0

b∗(r)R j,k(r)2r dr > γ1,1(T, α). (52)

Using the same arguments as for the case α > 1/2, it follows that the maximizer

b∗ of Jr is unique and is the characteristic function of a measurable subset ω∗
r of

[0, 1], with χω∗
r

∈ Ur
L . Moreover the optimal set ω∗

r ⊂ [0, 1] must consist of a finite

number of intervals that are at a positive distance from 1. The important fact that

we note here is the fact that there exists h > 0 such that ω∗
r ⊂ (0, 1 − h).

From the expansion z j,k = j + δk j1/3 + o( j1/3) (already used), it follows

that, for k fixed and j large enough, we have j ≦ z j,k ≦ 2 j . Then, using the

estimate (46) of Lemma 7, the expression (40) of γ j,k(T, α), and the inequalities

j2α < λ j,k = z2α
j,k < (2 j)2α for j large enough and k fixed, we infer that

γ j,k(T, α)

∫

ω∗
r

R j,k(r)2r dr ≦
e2T (2 j)2α

j2α
C

e−C jh3/2

j4/3

≦ C exp
(

2T (2 j)2α − C jh3/2
)

,

and therefore, since we have either α < 1/2 or α = 1/2 and T small enough, we

get

lim
j→+∞

γ j,k(T, α)

∫

ω∗
r

R j,k(r)2r dr = 0,

for every k ∈ N
∗, which raises a contradiction with (52). It follows that neither the

assumption (H2) nor its weakened version (27) are satisfied. ⊓⊔

Lemma 9. For every h ∈ (0, 1), the restriction of b∗ to the interval [1 − h, 1] is

nontrivial.

Proof of Lemma 9.. We argue by contradiction. Assume that there exists h ∈
(0, 1) such that b∗(r) = 0 for every r ∈ [1 − h, 1]. Then, as in the proof of Lemma

8, we get

γ j,k(T, α)

∫ 1

0

b∗(r)R j,k(r)2r dr ≦ γ j,k(T, α)

∫ 1−h

0

R j,k(r)2r dr

≦ C exp
(

2T (2 j)2α − C jh3/2
)

,

which converges to 0 as j tends to +∞. It follows that Jr (b
∗) = 0, which is

absurd. ⊓⊔

We are next going to prove that b∗ is unique, and is the characteristic function

of some subset.
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Existence and uniqueness of an optimal domain for the radial problem. First

of all, setting

S =

⎧

⎨

⎩

β = (β j,k)( j,k)∈N×N∗ ∈ ℓ1(R+) |
∑

( j,k)∈N×N∗

β j,k = 1

⎫

⎬

⎭

,

we clearly have the equality (by “convexifying” the infimum over discrete indices)

Jr (b) = inf
( j,k)∈N×N∗

γ j,k(T, α)

∫ 1

0

b(r)R j,k(r)2 rdr = inf
β∈S

F(b, β),

with

F(b, β) =
∑

( j,k)∈N×N∗

γ j,k(T, α)β j,k

∫ 1

0

b(r)R j,k(r)2 rdr,

for every b ∈ U
r

L . Therefore, we have

sup

b∈U
r

L

Jr (b) = sup

b∈U
r

L

inf
β∈S

F(b, β).

We are going to apply a minimax theorem to the functional F . Clearly, the

function F is upper semi-continuous with respect to its first variable (by the Fatou

lemma), lower semi-continuous with respect to its second variable (write F as

a supremum over truncated sums) and concave-convex. To derive the existence

of a saddle point, some compactness properties are required. The set U
r

L is (L∞

weakly star) compact, however the set S is not compact, so there is a difficulty

here. This difficulty can however be overcome by using an extension of Sion’s

minimax theorem due to [26], by noticing the fact that, although S is not compact,

the function F is however inf-compact (for the strong topology of ℓ1(R)). Indeed

for b(·) = L , one has

F(L , β) = L
∑

( j,k)∈N×N∗

γ j,k(α, T )β j,k,

and then, using the fact that λ j,k = z2α
j,k ≧ ( j + k)2α (see [36, Lemma 5] for

the latter inequality) and thus that the coefficients γ j,k(T, α) have an exponential

increase, it is easy to prove that the set {β ∈ S | F(L , β) ≦ λ} is compact in ℓ1(R),

for every λ ∈ R. This is the inf-compactness property. Then, it follows from [26,

Theorem 1] that there exists a saddle point (b∗, β∗) ∈ U
r

L × S of the functional F ,

which implies in particular that

Jr (b
∗) = max

b∈U
r

L

F(b, β∗) = max
b∈U

r

L

∫ 1

0

ψ(r)b(r)r dr, (53)

with the function ψ defined by

ψ(r) =
∑

( j,k)∈N×N∗

γ j,k(T, α)β∗
j,k R j,k(r)2. (54)
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In other words, the function r �→ b∗(r)r has to maximize a given integral (under a

volume constraint), and therefore is characterized in terms of the level sets of the

function ψ . More precisely, there exists a unique ξ > 0 (which can be interpreted

as a Lagrange multiplier, as in [55, Theorem 1]) such that

b∗(r) =
{

1 if ψ(r) > ξ,

0 if ψ(r) < ξ,

and the values of b∗(r) are not determined by such first-order conditions on subsets

of positive measure along which ψ(r) = ξ . Another way of expressing the latter

case is to write that ψ(r) = ξ on the set {0 < b∗ < 1}.

Remark 18. Another consequence of the minimax theorem is that

Jr (b
∗) = min

β∈S

∑

( j,k)∈N×N∗

β j,kγ j,k(T, α)

∫ 1

0

b∗(r)R j,k(r)2r dr,

from which it follows that, if β∗
j,k > 0, then necessarily there must hold

γ j,k(T, α)

∫ 1

0

b∗(r)R j,k(r)2r dr = Jr (b
∗),

and, conversely, if γ j,k(T, α)
∫ 1

0 b∗(r)R j,k(r)2r dr > Jr (b
∗) then there must hold

β∗
j,k = 0. In other words, the support of the Lagrange multipliers β∗

j,k coincides

with the set of active constraints, as is well known in constrained optimization. This

remark will be useful in the sequel.

It can be noted that the above minimax argument could have been applied as

well to the case α > 1/2 but then it does not give any additional information. Here,

this argument is instrumental in order to prove that b∗ is a characteristic function,

as proved in what follows.

Let us come back to the expression of b∗ in terms of the level sets of the function

ψ . As a consequence of that expression, if we are able to state that the function

ψ cannot be constant on any subset of positive measure, then the function a∗ can

only take the values 0 and 1, and therefore b∗ = χω∗
r

is the characteristic function

of some subset ω∗
r such that χω∗

r
∈ Ur

L . Typically this nondegeneracy assumption

is satisfied as soon as the function ψ is analytic. And indeed we have the following

result.

Proposition 3. The function ψ defined by (54) is analytic in (0, 1).

With this proposition, it follows that, necessarily, b∗ = χω∗
r

∈ Ur
L . Hence, at

this step, we can say that there exists an optimal domain for the radial problem

(42), and that any maximizer of (42) is a characteristic function.

Let us prove that the optimal domain is unique (and thus, that (42) has a unique

maximizer). The functional b �→ Jr (b) is concave on U
r

L , since it is defined as

the infimum of linear functionals. Therefore, if there were to exist two distinct

maximizers χω1
r

and χω2
r
, then, for every t ∈ (0, 1), the function t �→ χω1

r
+ (1 −
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t)χω2
r

would be a maximizer of Jr as well, but this contradicts the fact that any

maximizer of (42) is a characteristic function.

We have thus proved that the radial problem (42) has a unique optimal domain

ω∗
r . Moreover, since ψ is analytic in (0, 1), ω∗

r is semi-analytic in (0, 1) and thus

ω∗
r intersected with any proper compact subset of (0, 1) has a finite number of

connected components.

Therefore, according to Remark 17, this implies that J has a unique maximizer

a∗ = χω∗ with ω∗ = ω∗
r ×[0, 2π ] in polar coordinates. In particular, the intersection

of ω∗ with any compact ring which is a proper subset of the unit disk is the union

of a finite number of rings. Note that there remains a problem in the neighborhood

of r = 0. We will tackle this problem later. Indeed at this step it could happen that

there is an accumulation of rings at r = 0. We will see later that this is not the case.

Let us next prove Proposition 3. Since its proof is very lengthy and technical,

we encapsulate it in the next paragraph.

Proof of Proposition 3: the function ψ is analytic in �. The proof necessitates

the use of fine properties and estimates of the eigenfunctions. We split this proof

in several lemmas.

We will use in an instrumental way the following asymptotic properties of the

functions R j,k defined by (33), already mentioned and used in [56]:

• for every j ∈ N, the sequence of probability measures R j,k(r)2r dr converges

vaguely to dr as k tends to +∞;

• for every k ∈ N
∗, the sequence of probability measures R j,k(r)2r dr converges

vaguely to the Dirac at r = 1 as j tends to +∞;

• when taking the limit of R j,k(r)2r dr with a fixed ratio j/k, and making this

ratio vary, we obtain the family of probability measures

μs = fs(r) dr =
1

√
1 − s2

r
√

r2 − s2
χ(s,1)(r) dr, (55)

parametrized by s ∈ [0, 1). We can even extend to s = 1 by defining μ1 as the

Dirac at r = 1.

To be more precise with the latter property, let z′
j,1 be the first positive zero of

J ′
j . Then the first positive zero of R′

jk is r1
j,k =

z′
j,1

z j,k
. The function r �→ R j,k(r)

is positive and increasing on the interval (0, r1
j,k), reaches a (global) maximum at

r1
j,k , and then oscillates and has k zeros on (r1

j,k, 1], as can be seen on Fig. 5. If j

and k tend to +∞ with a constant ratio j/k then r1
j,k converges to s ∈ [0, 1], where

s is the real number appearing in the formula (55). Moreover, in accordance with

the two first vague convergence properties recalled above, s tends to 0 whenever

the ratio j/k tends to 0, and s tends to 1 whenever the ratio j/k tends to +∞.

Note that these convergence properties provide some semi-classical measures

(quantum limits) in the disk. The second one in particular accounts for the phe-

nomenon of whispering galleries. The quantum limits (55) do not seem to be well

known. They will be of particular importance in the sequel.

It can be noted that the above limits are in the sense of the vague topology only.

Since this topology is weaker than the weak star topology of L∞, applying these
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Fig. 5. The function r �→ R j,k(r) on [0, 1], with j = 20, k = 10

convergence properties will raise some additional difficulties that are not obvious to

overcome. In particular, in the sequel we will need to use the Portmanteau theorem,

in combination with a uniform bound in some appropriate Lebesgue space. This is

the reason why the following results will be useful.

Lemma 10. For every h > 0, the family of functions ( fs)0≦s≦1−h [defined by (55)]

is uniformly bounded in L3/2(0, 1).

Proof. Easy computations, not reported here, show that the function

s �→
∫ 1

0

fs(r)3/2dr =
1

(1 − s2)3/4

∫ 1

s

r3/2

(r2 − s2)3/4
dr

is a continuous increasing function from [0, 1) to [1,+∞). The lemma follows. ⊓⊔

Unfortunately, this lemma alone is not sufficient in order to ensure that the

functions r �→ R j,k(r)2r that are converging vaguely to the fs are also uniformly

bounded in L3/2(0, 1) (indeed the convergence is vague only). This uniform bound

holds true however, but the proof of this fact requires a particular technical treatment.

Lemma 11. For every α > 0, the sequence of functions r �→ R j,k(r)2r with

j ∈ N
∗ and k ∈ N

∗ such that j ≦ αk, is uniformly bounded in L3/2(0, 1).

Note that this uniform bound depends on α and tends to +∞ as α tends to +∞
(that is, when the functions approach the whispering galleries modes).
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Proof of Lemma 11. From (33), we have

R j,k(r)2r = 2
J j (z j,kr)2r

(J ′
j (z j,k))2

.

Let us first provide an asymptotic estimate of (J ′
j (z j,k))

2. First of all, using [1,

9.3.27 p. 367], we have J ′
j ( j + x j1/3) ∼ − 22/3

j2/3 Ai′(−21/3x) as j → +∞ for every

x > 0, where Ai is the Airy function. Combining with the fact that

z j,k ∼ j + δk j1/3 as j → +∞, (56)

with δk = ak2−1/3 > 0 (see [49]), where ak > 0 is the kth positive zero of the

function x �→ Ai(−x), it follows that J ′
j (z j,k) ∼ − 22/3

j2/3 Ai′(−ak) as j → +∞.

Now, using [37], we have, on the one hand, that Ai(−x) ∼ 1√
πx1/4 cos

(

2
3

x3/2 − π
4

)

as x → +∞, from which it follows that 2
3
a

3/2
k + π

4
= kπ (and thus, ak ∼ ( 3

2
πk)2/3

as k → +∞), and on the other hand, that Ai′(−x) ∼ − x1/4
√

π
sin
(

2
3

x3/2 − π
4

)

as

x → +∞, from which we infer that Ai′(−ak) ∼ a
1/4
k√
π

=
(

3
2

)1/6 k1/6

π1/3 as k → +∞.

We conclude that |J ′
j (z j,k)| ∼ 31/6

√
2

π1/3
k1/6

j2/3 as j and k tend to +∞.

Now, using the estimate

|J j (z j,kr)| ≦
2

√
π

1

|z2
j,kr2 − j2 + 1/4|1/4

,

coming from [37], and valuable for every r ≧ 0, and using the inequality z j,k ≧ j ,

it follows that

R j,k(r)2r ≦ Cα

r

| j2r2 − j2 + 1/4|1/2

j4/3

k1/3
≦

4

πCα

r
√

|r2 − 1|
≦

Cα√
1 − r

(

j

k

)1/3

,

for every r ∈ [0, 1], for some constant Cα > 0. The lemma follows easily. ⊓⊔

Having in mind Remark 18, let us prove a result on the active Lagrange multi-

pliers. We define I(b∗) as the subset of all indices ( j, k) ∈ N × N
∗ for which the

infimum is reached in the functional Jr , that is,

∀( j, k) ∈ I(b∗) γ j,k(T, α)

∫ 1

0

b∗(r)R j,k(r)2r dr = Jr (b
∗),

∀( j, k) ∈ N × N
∗ \ I(b∗) γ j,k(T, α)

∫ 1

0

b∗(r)R j,k(r)2r dr > Jr (b
∗).

According to Remark 18, we have β∗
j,k = 0 for all ( j, k) ∈ N × N

∗ \ I(b∗).
Actually, we are going to prove that all indices ( j, k) such that j + k tends to

+∞ with a ratio j/k bounded from above, are not active (in other words, β∗
j,k = 0

for such indices). According to (48) and (56), these indices are those for which we

avoid the whispering galleries at the limit, and are such that r1
j,k =

z′
j,1

z j,k
< 1 − h

for some h > 0 as j + k tends to +∞.

More precisely, let us prove the following lemma.
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Lemma 12. Let h > 0 arbitrary. Assume that j +k tends to +∞ with r1
j,k =

z′
j,1

z j,k
<

1 − h
2

. Then

γ j,k(T, α)

∫ 1

0

b∗(r)R j,k(r)2r dr → +∞. (57)

Proof of Lemma 12. Let h > 0 arbitrary. To prove (57), we are going to use

the weak limits (55). Since the limits are valuable in vague topology only, they

cannot be applied directly to the function b∗, which is of class L∞ only. It is

because of this defect in the convergence that we have to deal with indices such that

r1
j,k =

z′
j,1

z j,k
< 1 − h

2
, and then we are going to deal with a smooth approximation

of b (to which we will be able to apply the weak limits (55), in vague topology),

and use Lemmas 9 and 11.

From Lemmas 10 and 11, there exists C > 0 such that ‖ fs‖L3/2 ≦ C for every

s ∈ [0, 1 − h
2
], and ‖R2

j,kr‖L3/2 ≦ C for all indices ( j, k) such that r1
j,k < 1 − h

2
.

From Lemma 9, the function b∗ is nontrivial on the subinterval [1 − h
2
, 1]. By

an easy computation, we have that 1 ≦ fs1 < fs2(r) for every r ∈ [0, 1), whenever

0 ≦ s1 < s2 < 1. Then we get, for every s ∈ [0, 1 − h
2
],

∫ 1

0

b∗(r) fs(r) dr ≧

∫ 1

1− h
2

b∗(r)
1

√
1 − s2

r
√

r2 − s2
dr ≧

∫ 1

1− h
2

b∗(r) dr > 0.

(58)

Let b be a nonnegative smooth function defined on [0, 1] such that

‖b∗ − b‖L3 ≦
1

4C

∫ 1

1− h
2

b∗(r) dr. (59)

Such a function b can be obtained by convolution.

Now, we write

∫ 1

0

b∗(r)R j,k(r)2r dr =
∫ 1

0

b∗(r) fs(r) dr +
∫ 1

0

b(r)
(

R j,k(r)2r − fs(r)
)

dr

+
∫ 1

0

(b∗(r) − b(r))
(

R j,k(r)2r − fs(r)
)

dr. (60)

Using the Hölder inequality, we have, using (59),

∣

∣

∣

∣

∫ 1

0

(b∗(r) − b(r))
(

R j,k(r)2r − fs(r)
)

dr

∣

∣

∣

∣

≦ ‖b∗ − b‖L3

(

‖R2
j,kr‖L3/2 + ‖ fs‖L3/2

)

≦ 2C‖b∗ − b‖L3

≦
1

2

∫ 1

1− h
2

b∗(r) dr. (61)
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Then, from (58), (60) and (61), we get that

∫ 1

0

b∗(r)R j,k(r)2r dr ≧
1

2

∫ 1

1− h
2

b∗(r) dr +
∫ 1

0

b(r)
(

R j,k(r)2r − fs(r)
)

dr,

and then if we take indices ( j, k) such that r1
j,k =

z′
j,1

z j,k
< 1 − h

2
, with j + k large

enough, then according to the limit (55) which is valuable in vague topology, it

follows (note that b is smooth) that the integral
∫ 1

0 b(r)
(

R j,k(r)2r − fs(r)
)

dr is

small, and we get, if j + k is large enough, that

γ j,k(T, α)

∫ 1

0

b∗(r)R j,k(r)2r dr ≧
1

4
γ j,k(T, α)

∫ 1

1− h
2

b∗(r) dr.

Since the right-hand side of the inequality tends to +∞, the result follows. ⊓⊔

It follows from this lemma that we only need to consider indices such that r1
j,k

converges to 1 as j + k tends to +∞. This case involves indices ( j, k) such that

k is fixed and j tends to +∞, and indices such that j and k tend to +∞ with a

ratio j/k tending as well to +∞. In other words, this case concerns all indices for

which we obtain the whispering galleries at the limit.

Therefore, at this step we have obtained that the function ψ defined by (54) can

be written as

ψ(r) =
∑

( j,k)∈N×N
∗

r1
j,k≧1− h

2

γ j,k(T, α)β∗
j,k R j,k(r)2, (62)

The function ψ is written as a series of analytic functions. In order to prove the

analyticity of ψ , we are going to prove that all functions appearing in the sum,

and all their derivatives, are bounded from above by some appropriate exponential

functions, decreasing with j . To reach this objective, the estimate (46) derived in

Lemma 7 is not enough, since it was established for k fixed. Let us then first extend

the result of Lemma 7, in order to prove that the estimate (46) actually holds true

for the set of indices appearing in the sum in the formula (62).

Lemma 13. For every h ∈ (0, 1), there exists a constant C > 0 such that

R j,k(r)2 ≦ C j4/3 exp(−C jh3/2), (63)

for every r ∈ [0, 1 − h], and for all indices ( j, k) such that r1
j,k ≧ 1 − h

2
.

Note that the estimate Lemma 7 was weaker (it was established for k fixed),

but has been crucial in order to prove that the function b∗ was nontrivial on any

interval [1 − h, 1]. Note also that, in the statement above, it is important to assume

that r ≦ 1 − h and r1
j,k ≧ 1 − h

2
(the gap of h

2
is crucial in the proof below).

Proof of Lemma 13. The beginning of the proof is the same as the proof of Lemma

7. In particular, we still have the inequality (49). Moreover, using the inequalities

z j,k ≧ j + k (see [36, Lemma 5]) and z′
j,1 = j + γ ′

1 j1/3 + o( j1/3) ≦ 2 j for j
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large enough, indices such that r1
j,k =

z′
j,1

z j,k
≧ 1 − h

2
are such that k

j
≦ 2

1− h
2

− 1.

Then, the inequality (49) implies that

∫ 1

0

J j (z j,kr)2rdr ≧
C1γ

′
1

π2

(

1 −
h

2

) 1

j4/3
. (64)

However, we cannot use the expansion z j,k = j + δk j1/3 + o( j1/3), which is

valuable for k fixed only. Then, from that step the proof differs from the one of

Lemma 7.

Using the assumption that r1
j,k =

z′
j,1

z j,k
≧ 1 − h

2
, we get z j,k ≦ z′

j,1/(1 − h
2
).

Since z′
j,1 = j + γ ′

1 j1/3 + o( j1/3) ≦ j (1 + h
4
) for j large enough, it follows that

z j,k

j
≦ (1 + h

4
)/(1 − h

2
).

Then, for every r ∈ [0, 1 − h], we write z j,kr = j y with y = z j,k

j
r , and we get

y =
z j,k

j
r ≦

(1 − h)(1 + h
4
)

1 − h
2

≦ 1 −
h

4
,

whenever j is large enough. Therefore, as in the end of the proof of Lemma 7, we

get that, if j is large enough, then

|J j (z j,kr)| ≦ exp

(

jg
(

1 −
h

4

)

)

,

for every r ∈ [0, 1 − h]. Using an asymptotic expansion of g, we get that

|J j (z j,kr)| ≦ exp

(

−
√

2

12
jh3/2 + o( jh3/2)

)

, (65)

for every r ∈ [0, 1 − h]. Since R j,k(r)2 = J j (z j,kr)2/
∫ 1

0 J j (z j,kr)2r dr , the

estimate (63) of the lemma finally follows by combining (64) with (65). ⊓⊔

It is now required to estimate also all derivatives of the functions R j,k(r)2. Let

us do that, first, with the four first derivatives (before iterating) of R j,k(r).

Lemma 14. For every h ∈ (0, 1), there exists a constant C > 0 such that

∣

∣

∣

∣

dn

drn
(R j,k(r))

∣

∣

∣

∣

≦ C jn+2e−C jh3/2

. (66)

for every r ∈ [h, 1 − h], for every n ∈ {0, 1, 2, 3, 4}, and for all indices ( j, k) such

that r1
j,k ≧ 1 − h

2
.

Note that, in the above estimates, we have excluded a neighborhood of r = 0.

This is technically due to the singularity of the polar coordinates, as seen in the

proof below.
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Proof of Lemma 14. Let us fix h, C , j and k as in Lemma 13. Using (33), we have

d

dr
(R j,k(r)) =

z j,k J ′
j (z j,kr)

∫ 1
0 J j (z j,kr)2r dr

.

Using the well-known identity 2J ′
j = J j−1 − J j+1 (see [64]), using the inequality

(64) and the estimate (63), we get

∣

∣

∣

∣

d

dr
(R j,k(r))

∣

∣

∣

∣

≦
2π2

C1γ
′
1

1

1 − h
2

j4/3z j,k |J j−1(z j,kr) + J j+1(z j,kr)|. (67)

Concerning the term z j,k , using [36, Lemma 5], we get

z j,k ≦ π( j + k) = π j (1 +
k

j
) ≦

2π

1 − h
2

j, (68)

since r1
j,k ≧ 1 − h

2
implies that 1 + k

j
≦ 2/(1 − h

2
).

Besides, using again the assumption that r1
j,k =

z′
j,1

z j,k
≧ 1 − h

2
, we get z j,k ≦

z′
j,1/(1 − h

2
). Since z′

j,1 = j + γ ′
1 j1/3 + o( j1/3) ≦ j (1 + h

4
) for j large enough,

it follows that
z j,k

j−1
≦ (1 + h

8
)(1 − h

2
). Then, for every r ∈ [0, 1 − h], we write

z j,kr = ( j − 1)y with y = z j,k

j
r , and we get

y =
z j,k

j − 1
r ≦

(1 − h)(1 + h
8
)

1 − h
2

≦ 1 −
3h

8
,

whenever j is large enough. Therefore, as in the end of the proof of Lemma 7 or

of Lemma 13, using the Kapteyn inequality we get that, if j is large enough, then

|J j−1(z j,kr)| ≦ exp

(

jg
(

1 −
3h

8

)

)

, (69)

for every r ∈ [0, 1 − h].
In a completely similar way, we get as well that, if j is large enough, then

|J j+1(z j,kr)| ≦ exp

(

jg
(

1 −
3h

8

)

)

, (70)

for every r ∈ [0, 1 − h].
Using an asymptotic expansion of g, it follows from (67), (68), (69) and (70)

that

|R′
j,k(r)| ≦ C j7/3 exp(−C jh3/2).

The estimate (66) with n = 1 follows.

In order to derive the estimate (66) with n = 2, we use the differential equation

satisfied by R j,k(r), which is

r2 R′′
j,k(r) + r R′

j,k(r) + (z2
j,kr2 − j2)R j,k(r) = 0. (71)
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It follows from (71) that

|R′′
j,k(r)| ≦

1

r
|R′

j,k(r)| +
|z2

j,kr2 − j2|
r2

|R j,k(r)|.

At this step, we can see that there is a difficulty in the neighborhood of r = 0.

We are thus obliged, in what follows, to distinguish between what happens in a

neighborhood of r = 0, and in the rest.

Let us assume that r ≧ h. Then, we get easily that

|R′′
j,k(r)| ≦ C j4 exp(−C jh3/2), (72)

for some constant C > 0, and for r ∈ [h, 1 − h].
The estimates (66) with n = 3 and n = 4 are established in a similar way, by

derivating with respect to r the differential Equation (71) and then proceeding as

above. We do not give the details. ⊓⊔

Now, we are going to extend the estimates of Lemma 14 to all possible deriva-

tives, using an induction argument. The result is the following.

Lemma 15. For every h ∈ (0, 1), there exists a constant C > 0 such that
∣

∣

∣

∣

dn

drn
(R j,k(r))

∣

∣

∣

∣

≦ Ce2n jn+2 exp(−C jh3/2), (73)

for every r ∈ [h, 1 − h], for every n ∈ N, and for all indices ( j, k) such that

r1
j,k ≧ 1 − h

2
.

Proof of Lemma 15. We are going to proceed with an induction argument. Let us

assume that

|R(i)
j,k(r)| ≦ Cci j i+2 exp(−C jh3/2), (74)

for every i ∈ {0, . . . , n − 1}, and for every r ∈ [h, 1 − h], and let us determine

what can be an estimate of cn . Derivating the differential equation (71) n −2 times,

we get

r2 R
(n)
j,k (r) + 2nr R

(n−1)
j,k (r) + n(n − 1)R

(n−2)
j,k (r)

= −r R
(n−1)
j,k (r) − R

(n−2)
j,k (r) − (z2

j,kr2 − j2)R
(n−2)
j,k (r) − 2nz2

j,kr R
(n−3)
j,k (r)

−n(n − 1)z2
j,k R

(n−4)
j,k (r),

from which it follows that

|R(n)
j,k (r)| ≦

2n + 1

r
|R(n−1)

j,k (r)| +
n(n − 1) + 1 + |z2

j,kr2 − j2|
r2

|R(n−2)
j,k (r)|

+
2nz2

j,k

r
|R(n−3)

j,k (r)| + n(n − 1)
z2

j,k

r2
|R(n−4)

j,k (r)|.

Now, using the inequalities (74), we see that we can define cn by

cn = ncn−1 + (n2 + 1)cn−2 + ncn−3 + n2cn−4.
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An easy study of this recurrence relation leads to the estimate cn ≦ 2 exp
(

1+
√

5
2

n
)

.

We finally conclude that

|R(n)
j,k (r)| ≦ Ce2n jn+2 exp(−C jh3/2).

The lemma is proved. ⊓⊔

As an immediate corollary, we have the following result.

Lemma 16. For every h ∈ (0, 1), there exists a constant C > 0 such that
∣

∣

∣

∣

dn

drn
(R j,k(r)2)

∣

∣

∣

∣

≦ C(2e2)n jn+4 exp(−2C jh3/2), (75)

for every r ∈ [h, 1 − h], for every n ∈ N, and for all indices ( j, k) such that

r1
j,k ≧ 1 − h

2
.

Proof of Lemma 16. Using the estimates (73) of Lemma 15, we have

∣

∣

∣

∣

dn

drn
(R j,k(r)2)

∣

∣

∣

∣

≦

n
∑

i=0

(

n

i

)

R
(i)
j,k(r)R

(n−i)
j,k (r)

≦ C

n
∑

i=0

(

n

i

)

e2n jn+4 exp(−2C jh3/2)

≦ C2ne2n jn+4 exp(−2C jh3/2)

and the estimate follows. ⊓⊔

Let us finally finish the proof of Proposition 3. Recall that the function ψ is

given by the formula (62). From the expression (40), and using the inequality (68)

which is valuable because of the assumption that r1
j,k ≧ 1 − h

2
, we have

γ j,k(α, T ) ≦ exp

⎛

⎝

(

2π

1 − h
2

)2α

j2α

⎞

⎠ .

Using the estimates (75) of Lemma 16, It follows that, for every r ∈ (h, 1 − h), we

have

|ψ (n)(r)| ≦
∑

( j,k)∈N×N
∗

r1
j,k≧1− h

2

γ j,k(T, α)β∗
j,k

∣

∣

∣

∣

dn

drn
(R j,k(r)2)

∣

∣

∣

∣

≦ C(2e2)n

+∞
∑

j=0

jn+4 exp
(

C j2α − 2C jh3/2
)

,

where the constant C > 0 is independent of n. Now, using the easy fact that

+∞
∑

j=0

jne− j ≦

+∞
∑

j=0

( j + 1)( j + 2) · · · ( j + n)e− j =
n!

(1 − e−1)n+1
,
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we finally get that |ψ (n)(r)| ≦ Cnn!, for every n ∈ N and every r ∈ (h, 1 − h), for

some C > 0 independent of n. From these estimates, and from standard theorems

on analytic functions, we finally infer that the function ψ is analytic on (h, 1 − h).

Since h was taken arbitrary, Proposition 3 is proved.

End of the proof of Theorem 3. First of all, we are going to tackle the problem

that has arised at r = 0. Actually, due to polar coordinates, we have created a

spurious singularity at r = 0. Let us then prove directly that the optimal domain ω∗

has a finite number of connected components, also in a neighborhood of the center

of the disk. Actually, let us prove directly that ω∗ is semi-analytic in a neighborhood

of the center of the disk.

With this aim, we are going to apply a minimax argument again. Using the

notation I = N × N
∗ × {1, 2} (already introduced) and setting

T =

⎧

⎨

⎩

β = (β j,k,m)( j,k,m)∈I ∈ ℓ1(R+) |
∑

( j,k,m)∈I

β j,k,m = 1

⎫

⎬

⎭

,

we have the equality

J (a) = inf
( j,k,m)∈I

γ j,k(T, α)

∫

�

a(x)φ j,k,m(x)2 dx = inf
β∈S

G(a, β),

with

G(a, β) =
∑

( j,k,m)∈I

γ j,k(T, α)β j,k,m

∫

�

a(x)φ j,k,m(x)2 dx,

for every a ∈ U L . Therefore, we have

sup
a∈U L

J (a) = sup
a∈U L

inf
β∈T

G(a, β).

We can then apply the minimax theorem of [26] as previously, noticing that G

satisfies the same assumptions as the function F of the radial case (in particular,

the inf-compactness property must be underlined and its proof is similar). Then,

there exists a saddle point (a∗, β∗) ∈ U L ×T , and according to the whole analysis

that has been done, we have a∗ = χω∗ . Moreover, there exists a unique � > 0 such

that

a∗(x) =
{

1 if �(x) > �,

0 if �(x) < �,

with

�(x) =
∑

( j,k,m)∈I

γ j,k(T, α)β∗
j,k,mφ j,k,m(x)2. (76)

The only fact that remains to be proved is the fact that ω∗ is semi-analytic in a

neighborhood of the center of the disk. To this aim, it suffices to prove that the

function � defined by (76) is analytic in the open unit disk. The proof of that fact

follows exactly the same lines as the proof of Proposition 3. The only difference
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is that, instead of using polar coordinates, we keep the “intrinsic” variable x ∈ �,

and, in order to iterate the estimates of the derivatives of the eigenfunctions, we use

the fact that, by definition, △φ j,k,m = −z2
j,kφ j,k,m and we make use of Sobolev

embeddings (as in the proof of Theorem 2 in [55]). We do not provide all details

here, because the proof is already very lengthy and the arguments used here are

similar to those given before. It can be noted that we could as well have applied the

latter minimax argument at the beginning of the proof, instead of focusing on the

radial problem, but then in order to prove that the optimal domain is radial it would

have been required anyway to study the radial problem. Here, we made the choice

of beginning with the radial problem.

Now, combining all facts that have been proved earlier, we can assert that, if

0 < α < 1/2, or if α = 1/2 and T is small enough, then there exists a unique

optimal domain ω∗, which is radial, and for which neither the assumption (H2)

nor its weakened version (27) are satisfied. Moreover, the number of connected

components of ω∗ intersected with any proper compact subset of � is finite.

It remains to prove that the optimal set ω∗ has an infinite number of concentric

rings accumulating at the boundary. Assume now by contradiction that the number

of connected components of ω∗
r is finite. Then, there must exist η ∈ (0, 1) such that

(1 − η, 1) ⊂ ωr and we deduce from [38, Lemma 3.1, (3.11)] that

inf
( j,k)∈N×N∗

∫

ω∗
r

R j,k(r)2r dr > 0.9

Since the coefficients γ j,k grow exponentially, it follows immediately that the

assumption (27) is satisfied, which raises a contradiction.

The proof of Theorem 3 is complete.

3.6. Proof of Theorem 2

First of all, it is clear that the assumptions (H1) and (H3) are satisfied. Using

the Hilbert basis of eigenfunctions given by (29) and (30), we have

J (a) = inf
j∈N

k∈N∗

min
m=1,2

∫ 2π

0

∫ 1

0

a(r cos θ, r sin θ)φ j,k,m(r, θ)2r drdθ,

for every a ∈ U L . First of all, by a straightforward adaptation of the proof of

Lemma 6, we prove that the problem of maximizing J over U L is equivalent to the

problem of maximizing J over the radial functions of U L . In other words, we have

max
a∈U L

J (a) = max
b∈L∞(0,1;[0,1])
∫ 1

0 b(r) rdr= L
2

Jr (b),

9 Note that this can also be inferred straightforwardly from the quantum limits mentioned
at the beginning of the proof of Lemma 17.
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where

Jr (b) = inf
j∈N

k∈N∗

γ j,k(T )

2

∫ 1

0

b(r)

(

j2

r2
f j,k(r)2 + f ′

j,k(r)2

)

r dr,

and

f j,k(r) =
J j (
√

λ j,kr) − J j (
√

λ j,k)r
j

λ j,k |J j (
√

λ j,k)|r
.

We are going to prove that

lim
j+k→+∞

γ j,k(T )

∫ 1

0

b(r)

(

j2

r2
f j,k(r)2 + f ′

j,k(r)2

)

rdr = +∞, (77)

for every b ∈ L∞(0, 1; [0, 1]) such that
∫ 1

0 b(r)r dr = L
2

(this implies (H2) for the

radial problem).

Indeed, for such a function b, there exists ε > 0 and a nontrivial subinterval

[α, β] ⊂ [0, 1], with α > 0, such that the restriction of b to the interval (α, β)

is nontrivial. More precisely, we assume that the restriction of b to the interval

(α,
α+β

2
) is nontrivial and also that the restriction of b to the interval (

α+β
2

, β) is

nontrivial

In order to prove (77), it suffices to prove that

lim
j+k→+∞

γ j,k(T )

∫ β

α

b(r)

(

j2

r2
f j,k(r)2 + f ′

j,k(r)2

)

r dr = +∞. (78)

It suffices to prove that fact for j ≧ 0 (and then we assume j ≧ 0 in what follows,

which avoids to write | j | in the sequel). To prove (78), let us first note, that, using

the fact that (x−n Jn(αx))′ = −αx−n Jn+1(αx) for every α > 0, every x ≧ 0 and

every n ∈ N (see [64]), we first get

r− j J j (
√

λ j,kr) − J j (
√

λ j,k) =
√

λ j,k

∫ 1

r

J j+1(
√

λ j,k x)

x j
dx

and then

f j,k(r) =
r j

λ j,k |J j (
√

λ j,k)|r

(

r− j J j (
√

λ j,kr) − J j (
√

λ j,k)
)

=
r j−1

√

λ j,k

∫ 1

r

J j+1(
√

λ j,k x)

x j |J j (
√

λ j,k)|
dx .

This implies that

∫ β

α
b(r) f ′

j,k(r)2r dr + 2
j − 1

λ j,k

∫ β

α
b(r)r j−2

J j+1(
√

λ j,kr)

|J j (
√

λ j,k)|

∫ 1

r

J j+1(
√

λ j,k x)

x j |J j (
√

λ j,k)|
dxdr

≧
1

λ j,k

∫ β

α
b(r)

J j+1(
√

λ j,kr)2

r J j (
√

λ j,k)2
dr.
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Noticing that for every j ≧ 2,

2( j − 1)
√

λ j,k

∫ β

α

b(r)
J j+1(

√

λ j,kr)

|J j (
√

λ j,k)|
f j,k(r)

r
dr

= 2( j − 1)2

∫ β

α

b(r)
f j,k(r)2

r2
dr

−2( j − 1)

∫ β

α

b(r)
f j,k(r) f ′

j,k(r)

r
dr

≦
j

α

∫ β

α

b(r)

(

j2

r2
f j,k(r)2 + f ′

j,k(r)2

)

r dr,

we obtain
∫ β

α

b(r)

(

j2

r2
f j,k(r)2 + f ′

j,k(r)2

)

rdr

≧
α

λ j,k( j + α)

∫ β

α

b(r)
J j+1(

√

λ j,kr)2

r J j (
√

λ j,k)2
dr

≧
α

2π2β2( j + k)2( j + α)

∫ β

α

b(r)R j+1,k(r)2 rdr, (79)

where the functions R j,k are defined by (33), and where we have used the estimate

of [36, Lemma 5], as already done before.

Now, in order to derive (78) with the estimate (79), it suffices to prove the

following lemma.

Lemma 17. We have

lim
j+k→+∞

γ j−1,k(T )

( j + k)2( j + α)

∫ β

α

b(r)R jk(r)2 rdr = +∞. (80)

Proof of Lemma 17. We are going to use the quantum limits recalled at the begin-

ning of the proof of Proposition 3. Recall in particular the notation r1
j,k =

z′
j,1

z j,k
used

in that proof, and its role.

Let j ∈ N and k ∈ N
∗ be such that j + k is large. We distinguish between two

cases, in function of the value of r1
jk with respect to

α+β
2

.

If r1
j,k ≧

α+β
2

then

R jk(r) >
J j (x)

√

∫ 1
0 J j (z jkr)2r dr

,

for x > 0 small enough, for every r ∈ [x, r1
jk], due to the fact that the function J j is

increasing on [0, r1
jk]. Now, using the facts that J j (y) = 1

π

∫ π

0 cos( jτ − sin τ)dτ

(see [1]) and thus |J j (y)| ≦ 1, and that J j (x) ∼ x j

2 j j ! for x > 0 small (see [64]),

it follows that R jk(r) > x j

2 j j ! for some given x > 0, for every r ∈ [max(α, x), β]
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(assuming x < β). Besides, there holds γ jk(T ) = e
2λ jk T −1

2λ jk
, and λ jk = z2

jk > j2.

Then (80) follows easily, using the fact that b is nontrivial along (α,
α+β

2
).

If r1
j,k <

α+β
2

, then as in the proof of Lemma 12, we are going to use weak

limits that are established for the vague convergence only. It is then required to

approximate b with a smooth function b1. Let then ε > 0 arbitrary, and let b1

be a nonnegative smooth function defined on [0, 1] (and obtained for instance by

convolution) such that

‖b − b1‖L3 ≦ ε. (81)

Moreover, since b is nontrivial along (
α+β

2
, β), we can assume as well that the

restriction of b1 to (
α+β

2
, β) is nontrivial.

Now we proceed as in the proof of Lemma 12. We write
∫ β

α+β
2

b(r)R j,k(r)2r dr =
∫ β

α+β
2

b(r) fs(r) dr

+
∫ β

α+β
2

b1(r)
(

R j,k(r)2r − fs(r)
)

dr

+
∫ β

α+β
2

(b(r) − b1(r))
(

R j,k(r)2r − fs(r)
)

dr. (82)

From Lemmas 10 and 11, there exists C > 0 such that ‖ fs‖L3/2 ≦ C for every

s ∈ [0,
α+β

2
], and ‖R2

j,kr‖L3/2 ≦ C for all indices ( j, k) such that r1
j,k <

α+β
2

.

Using the Hölder inequality, we have, using (81),
∣

∣

∣

∣

∣

∫ β

α+β
2

(b(r) − b1(r))
(

R j,k(r)2r − fs(r)
)

dr

∣

∣

∣

∣

∣

≦ ‖b − b1‖L3

(

‖R2
j,kr‖L3/2 + ‖ fs‖L3/2

)

≦ 2C‖b∗ − b‖L3

≦ 2Cε. (83)

Then, from (82) and (83), we get that
∫ β

α+β
2

b(r)R j,k(r)2r dr ≧

∫ β

α+β
2

b(r) dr +
∫ β

α+β
2

b1(r)
(

R j,k(r)2r − fs(r)
)

dr

−2Cε,

and then, for indices ( j, k) such that r1
j,k =

z′
j,1

z j,k
<

α+β
2

, with j + k large enough,

according to the limit (55) which is valuable in vague topology, it follows (note

that b1 is smooth) that the integral
∫ β

α+β
2

b1(r)
(

R j,k(r)2r − fs(r)
)

dr is small, and

we get, if j + k is small enough, and if ε is small enough, that

γ j−1,k(T )

( j + k)2( j + α)

∫ β

α

b(r)R j,k(r)2r dr ≧
1

4

γ j−1,k(T )

( j + k)2( j + α)
)

∫ β

α+β
2

b(r) dr.

Since the right-hand side of the inequality tends to +∞, the result follows. ⊓⊔
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The proof of Theorem 2 is complete.

4. Conclusion

Considering general parabolic equations on a bounded open connected subset

� of R
n , we have modeled the problem of optimal shape and location of the

observation domain having a prescribed measure, in terms of maximizing a spectral

functional over all measurable subsets of fixed Lebesgue measure. This spectral

functional has been interpreted as a randomized observability constant which, in

contrast to the classical deterministic one, corresponds to an average version of the

classical observability inequality over random initial data.

We have given sufficient spectral assumptions under which we are able to prove

that the resulting optimal design problem has a unique solution. Moreover, the

optimal domain can be built from a truncated version of the spectral functional,

thus with a finite number of modes only. The optimal domain is semi-analytic and

hence has a finite number of connected components, which is in strong contrast

with previous results obtained for conservative wave and Schrödinger equations.

We have proved that our results cover the case of the Stokes equation in the disk

and of anomalous diffusion equations in which the operator is given by an arbitrary

positive power α of the negative of the Dirichlet-Laplacian. Using a refined and

highly technical analysis, we have been able to prove that, for anomalous diffusion

equations, the complexity of the optimal domain may depend both on the geometry

of the domain and on the value of α. In particular we have proved that, in the unit

square ofR2, the optimal domain has a finite number of connected components, and

this, independently on the value of α. In contrast, in the unit disk of R2, the optimal

domain consists of a finite number of rings if α > 1/2, and of an infinite number

of rings accumulating at the boundary if α < 1/2 or if α = 1/2 and T is small

enough. These properties have been illustrated on several numerical simulations.

To conclude, let us provide several further comments and open problems.

Exponential concentration properties of eigenfunctions. In Section 3.5, in order

to prove Theorem 5, we have used in particular a minimax argument involving the

switching function ψ defined by

ψ(x) =
∑

j∈N∗

γ j (T )β∗
j φ j (x)2, (84)

and the optimal design function a∗ has been characterized in terms of the level sets

of the function ψ .

As a consequence, if we are able to establish that, under appropriate assump-

tions, the function ψ defined by (84) is analytic in � (or at least, cannot be constant

on any subset of positive measure), then the function a∗ can only take the values

0 and 1, and therefore a∗ = χω∗ is the characteristic function of some subset ω∗

such that χω∗ ∈ UL .

We have seen in Section 3.5 with the example of the unit disk that, in order to

prove that the switching function ψ is analytic, fine asymptotic properties of the
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eigenfunctions have to be used, in combination with a study of active and inactive

indices.

As explained in Section 2.5, if every quantum limit associated with the eigen-

functions φ j contains a density which is positive over the whole �, then the uni-

form lower bound assumption (H2) of Theorem 1 is satisfied, and the existence

and uniqueness of a semi-analytic optimal domain follows. Therefore the worst

possible case is when there exist quantum limits which are completely concen-

trated, such as a Dirac along the projection on the configuration space of a closed

geodesic C of the phase space (scarring eigenfunctions). In accordance with the

proof in Section 3.5 (see in particular Lemma 12), indices j associated with sub-

sequences of φ2
j dx converging to a completely singular measure along C may be

active, that is, β∗
j > 0 a priori. Then, in order to ensure that ψ is analytic, it is

required to know that the scarring subsequences of eigenfunctions φ j enjoy expo-

nential concentration properties. More precisely it is required to know that, outside

of any neighborhood of C, the subsequences φ j ’s which concentrate on C can be

bounded from above by exponentials decreasing with j . For completely integrable

systems, such concentration properties are expected to occur on invariant tori, but

up to our knowledge no general result is known. For ergodic systems, in relation

with the Shnirelman theorem, the situation is widely open. In any case, any new

result establishing some concentration features for eigenfunctions could certainly

help to analyze the analyticity properties of the switching function ψ .

In this section we briefly comment on some open problems and subjects for

possible future research related with the contents of this paper.

On the Strong Conic Independence Property (H2). Our methods apply to a wide

class of parabolic problems allowing a spectral decomposition. One of the key subtle

issues is to verify the property (H2). The way we have addressed this property is

by combining the analyticity of the eigenfunctions (which allows to extend the

dependence condition to the whole domain �) with the boundary conditions. This

applies to the Dirichlet-Laplacian. The same proof would apply for other elliptic

equations with analytic coefficients.

But the analysis of this issue is widely open in two directions. First, in what

concerns elliptic equations with non-analytic coefficients, and, second, for other

boundary conditions. For instance, the proof above does not work for the Neumann

boundary conditions except in some particular cases (as in the square domain where

the eigenfunctions are explicit in separated variables).

On the concentration of eigenfunctions. Another spectral property that plays a

key role in our analysis is the lower bounds of the form

∫

E

φ j (x)2 dx ≧
e−2C

√
μ j

C2|E |
, (85)

valid uniformly over measurable sets E , proved in [5] and extending previous results

in [40] on open sets.

Extending the results of this paper to other parabolic models would require the

extension of these concentration inequalities for the corresponding spectra: other
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boundary conditions, Stokes problem, fourth order problems, reaction-diffusion

systems, etc..

Note also that one could also consider optimal placement problems for these

inequalities. For instance, in view of (85), it would be natural to analyze the problem

of determining the measurable set E in � of a given measure so that the constant

in the exponential lower bound in (85) is minimized. This would correspond, in

some sense, to determining the set E where the deconcentration is maximized,

which would be a good candidate for being an optimal observation set of the whole

dynamics. Note however that this problem involves the whole spectrum of the

Laplacian, contrarily to the problem considered here for the heat equation in which

the intrinsic strong dissipative effect makes the whole problem to be governed by

a finite number of eigenfunctions.

Heat equations with lower order potentials. The results of this paper could be

applied to heat equations with lower order terms, of the form

∂t y − △y + p(x)y = 0, (t, x) ∈ (0, T ) × �. (86)

The techniques of this paper allow to introduce, by the randomization procedure, the

spectral observability criterion. The proof of the main results of this paper requires

exponential lower bounds as in [5] on the possible concentration of the eigenfunc-

tions of the associated operator −△+ p id on measurable sets. The analysis of these

concentration inequalities, and their dependence on the regularity of the potential

p = p(x) is, as far as we know, an open problem.

The topics considered in this paper are even more widely open in the case

where the potential p is also time-dependent, in particular because of the lack of

the existence of a spectral basis to perform the Fourier decomposition leading to

the spectral criterion that we have considered throughout.

Heat equations with convective potentials. It would be also interesting to analyze

these issues for heat equations with convective terms, of the form

∂t y − △y + V (x) · ∇ y = 0, (t, x) ∈ (0, T ) × �. (87)

In dimension one, with a simple change of variables, the problem can be reduced

to the form (86). Of course this is no longer true in the multi-dimensional case.

The main difficulty is then that one cannot expand the solutions in a spectral basis.

Note that null controllability and observability properties of these models has been

analyzed in [39] by means of resolvent estimates. But nothing is known about the

optimal location of sensors or actuators.

Analysis of the full Gramian. As explained in the paper, our analysis corresponds

to focus on the diagonal terms of the Gramian operator (15). The analysis of the

full Gramian is a widely open problem. Note that, as pointed out in [44], the off-

diagonal terms in the Gramian operator play a fundamental role when dealing with

the full observation/control problems. One cannot exclude that, when dealing with

the full Gramian, the optimal domains be not fully determined by a finite number

of Fourier modes.
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Other fractional models. In this paper we have considered the fractional Lapla-

cian defined in spectral terms. In this way we have taken advantage of the properties

that are well known for the spectrum of the Laplacian such as, for instance, (H2) or

(85). Significant added developments would be needed to consider parabolic equa-

tions involving other versions of the fractional Laplacian, such as the non-local one

in [14]. As far as we know, very little is known about the spectrum of this operator,

except in the 1D case. The analogue of (H2) and (85), and of the results of this

paper constitute interesting open problems for these alternative fractional models.

The same can be said for models involving fractional derivatives in time (see [35]).
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